Theorem. Given points P and Q, the set of points equidistant from P and Q is a line, which is the perpendicular bisector of $\overline{P Q}$.

We proved this in class for the Euclidean plane (see Theorem 3.5 in the textbook).
Your assignment is to prove it for spherical geometry using vectors, as follows:
(a) Let P and Q be points in \mathbf{R}^{3}, which are both distance 1 from the origin O. Show that the set of points in \mathbf{R}^{3} equidistant from P and Q is a plane which passes through O.

Hint: Let X be any point in \mathbf{R}^{3} equidistant from P and Q. Prove that $\overline{P Q} \perp \overline{O X}$. (This step is similar to $\# 1$ from the vector HW, except it's for vectors in \mathbf{R}^{3}.) Now, determine the plane in (a) using its vector form.
(b) Let P and Q be points on S^{2}. Deduce from (a) that the set of points in S^{2} equidistant from P and Q is a line (great circle) on S^{2}. Explain why it's the perpendicular bisector of $\overline{P Q}$.

