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ABSTRACT

Optimal Stopping under Model Uncertainty

Ingrid-Mona Zamfirescu

The aim of this paper is to extend the theory of optimal stopping to

cases in which there is model-uncertainty. This means that we are

given a set of possible models in the form of a family P of probability

measures, equivalent to a reference probability measure Q on a given

measurable space (Ω,F). We are also given a filtration F = {Ft}t≥0

that satisfies the “usual conditions”, and a nonnegative adapted re-

ward process Y with RCLL paths. We shall denote by S the class

of F− stopping times. Our goal is to compute the maximum ex-

pected reward under the specified model uncertainty, i.e., to calculate

R = supP∈P supτ∈S EP (Yτ ), and to find necessary and/or sufficient con-

ditions for the existence of an optimal stopping time τ ∗ and an optimal

model P ∗. We also study the stochastic game with the upper value V =

infP∈P supτ∈S EP (Yτ ) and the lower value V = supτ∈S infP∈P EP (Yτ );

we state conditions under which this game has value, i.e. V = V =: V ,

and conditions under which there exists a “saddle-point” (τ ∗, P ∗) of

strategies, i.e. V = EP ∗
(Yτ∗).
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1 Introduction

Throughout this paper we shall consider the reward to be a nonnegative process Y

with RCLL paths (Right-Continuous, with Left-hand Limits), on the measurable

space (Ω,F), which is adapted to the filtration F = {Ft}0≤t≤T of sub-σ-algebras of

F ; this filtration satisfies the “usual conditions” of right-continuity and augmenta-

tion by the null sets of F = FT . We consider the time horizon T = ∞, although the

problem can be solved by just the same methods for any fixed constant T ∈ (0,∞).

Therefore, we interpret F∞ = σ(
⋃

t≥0Ft) and Y∞ = limsupt→∞ Yt. We denote by

S the class of F− stopping times with values in [0,∞]; for any stopping time v ∈ S,

we set Sv , {τ ∈ S � τ ≥ v, a.s.}.

On this measurable space we shall consider a family P of probability measures

P , all of them equivalent to a given “reference measure” Q ∈ P . We shall think

of the elements of P as our different possible “models” or scenarios. For technical

reasons, which we shall unveil in the subsequent section, we shall assume that the

family of “models” is convex.

The optimal stopping problem under model uncertainty consists of:

• computing the maximum “expected reward”

R = sup
P∈P

sup
τ∈S

EP (Yτ ), (1.1)

and of
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• finding necessary and/or sufficient conditions for the existence of an optimal

stopping time τ ∗ and of an optimal model P ∗ (that attain the supremum in

(1.1)).

We shall assume that 0 < R < ∞, and under this assumption we shall con-

struct a generalized version of the so-called Snell envelope of Y . This generalized

Snell envelope R0 is the smallest P−supermartingale with RCLL paths that dom-

inates Y . Here by P−(super)martingale we mean an adapted process, that is

P−(super)martingale with respect to each measure P ∈ P . We shall show that a

stopping time τ ∗ and a probability model P ∗ are optimal, if and only if we have

R0
τ∗ = Yτ∗ , a.s. (i.e., at time τ ∗ the “future looks just as bright as the present”),

and the stopped P ∗−supermartingale {R0
t∧τ∗ ,Ft} is in fact a P ∗−martingale.

In order to prove the existence of an optimal stopping time and of an optimal

model, we shall impose the condition: supP∈P EP [supt≥0 Yt] < ∞. To study the

existence of an optimal probability model P ∗ we shall decompose the generalized

Snell envelope into the difference between a P−martingale and a nondecreasing

process, and use this decomposition to characterize the optimal model.

The key to this study is provided by the family {Rv}v∈S of random variables

Rv , esssup
P∈P

esssup
τ∈Sv

EP [Yτ |Fv], v ∈ S. (1.2)

The random variable Rv is in fact the maximal conditional expected reward that

can be achieved by stopping at time v or later, under any of the models. Since
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any fixed, deterministic time t ∈ [0,∞] is also a stopping time, (1.2) also defines

a nonnegative adapted process R = {Rt,Ft; 0 ≤ t ≤ ∞}. For every v ∈ S, it is

tempting to regard (1.2) as the process R evaluated at the stopping time v. We

shall see that there is indeed a modification R0 = {R0
t ,Ft; 0 ≤ t ≤ ∞} of the

process R, i.e. P [R0
t = Rt] = 1 for all t ∈ [0,∞], such that R0 has RCLL paths,

and for each v ∈ S we have

Rv(ω) = R0
v(ω)(ω) for a.e. ω ∈ Ω.

This process R0 is the generalized Snell envelope of the reward process Y .

In Section 3, we shall study some aspects of the non-cooperative version of the

optimal stoping problem. There are many examples when it is interesting to solve

the optimization problem assuming that “nature” is working against us. Namely,

we are going to study the stochastic game with lower value

V , sup
τ∈S

inf
P∈P

EP (Yτ ) (1.3)

and upper value

V , inf
P∈P

sup
τ∈S

EP (Yτ ). (1.4)

We are going to establish that this stochastic game has a value, i.e., that the

upper and lower values are in fact the same: V = V =: V . We are also going to

give necessary and sufficient conditions under which this game will have a “saddle-

point”, that is, a strategy (τ ∗, P ∗) such that V = EP ∗
(Yτ∗). It is well known (and

easy to check) that the existence of a saddle-point implies that the game has a

value.
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Let us recall from the theory of optimal stopping the following notation for the

Snell envelope, under a given probability “scenario” P :

V̂P (t) , esssup
τ∈St

EP [Yτ |Ft] , 0 ≤ t ≤ ∞. (1.5)

The same theory also states that the Snell envelope V̂P (·) is the smallest P -

supermaringale dominating the reward process Y (·) = 0, and that if we im-

pose appropriate conditions (i.e., if Y is assumed quasi-left-continuous, and if

EP [sup0≤t Yt] < ∞), then V̂P is P -martingale up to the stopping time

ρ̂P (t) , inf{u ≥ t � V̂P (u) = Yu}, (1.6)

which attains the supremum in (1.5).

The key to the study of our stochastic game problem is given by the the family

of random variables

V τ , essinf
P∈P

V̂P (τ), τ ∈ S, (1.7)

the “upper-value” process of the stochastic game, and by the family of stopping

times

ρτ , inf{u ≥ τ � V u = Yu}, τ ∈ S. (1.8)

The random variable V τ is the maximum expected reward for stopping at time

τ or later. We notice that we must have ρτ ≤ ρ̂P (τ), since

Yu ≤ V u ≤ V u ≤ V̂P (u) ≤ Ru, for all u ∈ [0,∞].
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Here Ru , esssupP∈P V̂P (u) is the value of the cooperative game, which we shall

study extensively in the next section.

We shall show that the stochastic game has a value, namely Vτ := V τ = V τ , for

all τ ∈ S. Under appropriate conditions on the family of “scenarios” P , we shall

also show that there exists a stopping time τ ∗ and a probability model P ∗ which

constitute a saddle-point under the following necessary and sufficient conditions:

that Vτ∗ = Yτ∗ , a.s. (i.e., at time τ ∗ the “future looks just as bright as the present”),

and that the stopped P ∗−supermartingale {Vt∧τ∗ ,Ft} is a P ∗−martingale.



6

2 Cooperative Game

2.1 Generalized Snell Envelope

We now begin to study the properties of the family of random variables defined

in (1.2). Since P contains equivalent probability measures, we can define the

likelihood ratio ZP
t , dP

dQ
|Ft for any t ∈ [0,∞] and any P ∈ P . Obviously ZP is a

Q-martingale with ZP
0 = 1 and ZP

t > 0 a.s., for all t ∈ [0,∞]. Therefore, we can

define the set Z of Q-martingales

ZP
t =

dP

dQ

∣∣∣
Ft

, 0 ≤ t ≤ ∞ for P ∈ P . (2.1)

Because of the Bayes’ rule (see [7]: Lemma 5.3/page 193), we can rewrite EP [Yτ |Fv]

as

EP [Yτ |Fv] = EQ

[
ZP

τ

ZP
v

Yτ

∣∣∣Fv

]
=

1

ZP
v

EQ
[
ZP

τ Yτ |Fv

]
, (2.2)

for all τ ∈ Sv, and Rv becomes

Rv = esssup
Z∈Z

esssup
τ∈Sv

Γ(v|τ, Z), (2.3)

where we have set

Γ(v|τ, Z) ,
1

Zv

EQ [ZτYτ |Fv] . (2.4)

Clearly, the random variable of (2.4) depends only on the restriction of the process

Z to the stochastic interval [[[v, τ]]]. We shall denote by Zv,τ the restriction of Z to

this interval.
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Lemma 2.1. Suppose the set of Q-martingales Z in (2.1) is convex. Then, for

any v ∈ S, the family of random variables {Γ(v|τ, Z) / τ ∈ Sv, Z ∈ Zv,τ} is stable

under the operations of supremum and infimum. That is, for all v ∈ S, there

is a sequence {(τk, Z
k)}k∈N with τk ∈ Sv and Zk ∈ Zv,τk

such that the sequence

{Γ(v|τk, Z
k)}k∈N is increasing, and

Rv = lim
k→∞

↑ Γ(v|τk, Z
k). (2.5)

Proof: Let τ1, τ2 ∈ Sv and Z1, Z2 ∈ Z, and consider the event

A = {Γ(v|τ2, Z
2) ≥ Γ(v|τ1, Z

1)} ∈ Fv.

We can also define:

τ = τ11Ac + τ21A

Zu = Z1
u Q(Ac|Fu) + Z2

u Q(A|Fu)

Since A ∈ Fv, the random time τ is a stopping time with τ ∈ Sv, and moreover

because Z is convex, we have that Z ∈ Z. Therefore:

Γ(v|τ, Z) = EQ

[
Zτ

Zv

Yτ

∣∣∣Fv

]
= EQ

[
Z1

τ1

Z1
v

Yτ1

∣∣∣Fv

]
1Ac + EQ

[
Z2

τ2

Z2
v

Yτ2

∣∣∣Fv

]
1A

= Γ(v|τ1, Z
1)1Ac + Γ(v|τ2, Z

2)1A

= Γ(v|τ1, Z
1) ∨ Γ(v|τ2, Z

2).

In other words, the set {Γ(v|τ, Z) / τ ∈ Sv, Z ∈ Zv,τ} is closed under pairwise max-

imization. The fundamental property of the essential supremum (see [8]: Theorem
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A.3 /page 324), assures us that for all v ∈ S, there is a sequence {(τk, Z
k)}k∈N

with τk ∈ Sv and Zk ∈ Zv,τk
for each k ∈ N, and such that

Rv = lim
k→∞

↑ Γ(v|τk, Z
k), a.s.

3

Remark 2.2. It seems that a simpler version of Lemma 2.1 can be proved; i.e.,

if Z is convex, then the family Zτ , {Zτ / Z ∈ Z} is stable under the operations

of supremum and infimum. Hence, under the same fundamental property of the

essential supremum we can conclude that there exist an increasing sequence {Zk
τ } ∈

Zτ and an decreasing sequence {Z̃k
τ } ∈ Zτ such that

esssup
Z∈Z

Zτ = lim
k→∞

↑ Zk
τ , (2.6)

and

essinf
Z∈Z

Zτ = lim
k→∞

↓ Z̃k
τ . (2.7)

Proof. Let Z1
τ , Z

2
τ ∈ Zτ , and consider the event A , {Z2

τ ≥ Z1
τ } ∈ Fτ . We can

also define

Zu = Z1
u Q(Ac|Fu) + Z2

u Q(A|Fu)

Since A ∈ Fτ , and Z is convex, we have that Z ∈ Z. Therefore, Zτ = Z1
τ∨Z2

τ ∈ Zτ .

The same argument stands for pairwise minimization as well. 3

Since Lemma 2.1 and Remark 2.2 will be extensively applied throughout the rest

of this work, we shall assume from now on that the family of probability measures

P is convex, without specifying it all the time.
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Proposition 2.3. For any v ∈ S, τ ∈ Sv we have:

esssup
P∈P

EP [Rτ |Fv] = esssup
P∈P

esssup
σ∈Sτ

EP [Yσ|Fv], a.s. (2.8)

as well as

EP [Rτ |Fv] ≤ Rv, a.s. (2.9)

for all P ∈ P.

Proof: Let P ∈ P be arbitrary, and denote Z = ZP . Let N Z
v,τ = {M ∈

Zv,τ/ Mu = Zu, ∀u ∈ [v, τ ]} be the set of Q-martingales in Z which agree with Z

on the stochastic interval [[[v, τ]]]. Then, according to Lemma 2.1 and without any

loss of generality, we may write:

Rτ = lim
k→∞

↑ Γ(τ |τk, M
k),

where τk ∈ Sτ and Mk ∈ N Z
v,τ

⋂
Zτ,τk

for every k ∈ N, and obtain with the help of

Fatou’s lemma:

EP [Rτ |Fv] = EQ

[
Zτ

Zv

Rτ

∣∣∣Fv

]
= EQ

[
Zτ

Zv

lim
k→∞

EQ

[
Mk

τk

Mk
τ

Yτk

∣∣∣Fτ

] ∣∣∣Fv

]
= EQ

[
lim
k→∞

EQ

[
Zτ

Zv

Mk
τk

Mk
τ

Yτk

∣∣∣Fτ

] ∣∣∣Fv

]
≤ lim

k→∞
EQ

[
Mk

τk

Mk
v

Yτk

∣∣∣Fv

]
≤ esssup

P∈P
esssup

σ∈Sτ

EP [Yσ|Fv].
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But this is valid for arbitrary P ∈ P , so we have:

esssup
P∈P

EP [Rτ |Fv] ≤ esssup
P∈P

esssup
σ∈Sτ

EP [Yσ|Fv], a.s. (2.10)

The reverse inequality follows immediately, since for all τ ∈ Sv and all σ ∈ Sτ

we have:

Rτ ≥ EP [Yσ|Fτ ], a.s. (2.11)

from (1.2). Therefore, we can say that for all σ ∈ Sτ , and for all P ∈ P we have

EP [Rτ |Fv] ≥ EP [EP [[Yσ|Fτ ]|Fv] = EP [Yσ|Fv],

and after taking the essential supremum we obtain the desired inequality:

esssup
P∈P

EP [Rτ |Fv] ≥ esssup
P∈P

esssup
σ∈Sτ

EP [Yσ|Fv], a.s. (2.12)

From (2.10) and (2.12), the equation (2.8) now follows. Finally, the proof of (2.9)

is immediate, since for any P ′ ∈ P we have:

EP ′
[Rτ |Fv] ≤ esssup

P∈P
EP [Rτ |Fv]

= esssup
P∈P

esssup
σ∈Sτ

EP [Yσ|Fv]

≤ esssup
P∈P

esssup
σ∈Sv

EP [Yσ|Fv] = Rv, a.s.

thanks to (2.8) and (1.2). 3

As mentioned earlier, we may take the stopping time v in (1.2) to be equal to a

constant t ∈ [0,∞], and thereby obtain a nonnegative, adapted process {Rt,Ft; 0 ≤
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t ≤ ∞}. From (2.9) we see that this process is a P−supermartingale. For our

purposes, this is not enough; we should like to see if there is at least a RCLL

modification of this process.

Theorem 2.4. There exists an adapted process {R0
t ,Ft; 0 ≤ t ≤ ∞} with RCLL

paths, that satisfies

Rt = R0
t a.s. (2.13)

for every t ∈ [0,∞], and is a P−supermartingale.

Definition 2.5. Let X1, X2 be arbitrary processes. We say that X1 dominates X2

if P{X1
t ≥ X2

t ,∀t ∈ [0,∞]} = 1 holds for some (then also for all) P ∈ P.

Remark 2.6. If X1, X2 are right-continuous processes and for each t ∈ [0,∞] we

have X1
t ≥ X2

t a.s., then X1 dominates X2.

Remark 2.7. If X1, X2 are right-continuous processes and X1 dominates X2,

then X1
τ ≥ X2

τ a.s., for any τ ∈ S. This is because every stopping time can

be approximated from above by a decreasing sequence of stopping times that take

values in a countable set.

Proof of Theorem 2.4: Let D = Q+. Because R is P-supermartingale, we have

the following well known facts (see, for instance, [7]: Prop 3.14/page 16):

(i) the limits Rt+(ω) = lims∈D,s↓t Rs(ω) and Rt−(ω) = lims∈D,s↑t Rs(ω) exist for

all t ≥ 0 (respectively, t > 0).
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(ii) EP [Rt+|Ft] ≤ Rt, P -a.s, ∀t ≥ 0.

(iii) {Rt+,Ft+, 0 ≤ t ≤ ∞} is P−supermartingale with P−almost every path

RCLL, for any P ∈ P .

Now observe that, since the filtration F is right-continuous (i.e., Ft = Ft+ for all

t), we must have that {Rt+,Ft, 0 ≤ t ≤ ∞} is P-supermartingale. Also, because

we assume that the process Y has RCLL paths, we have Rt+ ≥ Yt+ = Yt a.s for

any given t ∈ [0,∞). Hence, Remark 2.6 gives us that Rt+ dominates Yt; therefore,

due to Remark 2.7, the property (iii), and the right-continuity of the filtration and

of the processes involved, we must have:

Rt = esssup
P∈P

esssup
τ∈St

EP (Yτ |Ft) ≤ esssup
P∈P

esssup
τ∈St

EP (Rτ+|Ft+) ≤ Rt+, a.s.

On the other hand, property (ii) and the fact that the filtration F is right-

continuous, imply

Rt+ = EP [Rt+|Ft] ≤ Rt, a.s.,

and we conclude that Rt = Rt+, a.s. Therefore, our choice of the process R0 has

to be the process t 7→ Rt+, that is, we should take R0
t ≡ Rt+. This process R0 is

indeed a RCLL modification of R. 3

Theorem 2.8. The generalized Snell envelope R0 of Y satisfies Rv = R0
v a.s. for

all v ∈ S. Moreover, R0 is the smallest P−supermartingale with RCLL paths,

which dominates Y in the sense of the Definition 2.5.
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Proof: Let us show that Rv = R0
v holds a.s., for all v ∈ S. We have already

seen that Rt = R0
t a.s. for all t, therefore Rv = R0

v a.s. for all stopping times v

with values in the set D of dyadic rationals. Also, we know that for any v ∈ S,

there is a decreasing sequence {vn} of stopping times with values in D, such that

v = limn→∞ ↓ vn.

Step 1: We prove first R0
v ≤ Rv, a.s., that is, for any v ∈ S, A ∈ Fv, and for

any P ∈ P , we have
∫

A
R0

vdP ≤
∫

A
RvdP .

Because of the P−supermartingale property of R we can say that, for any

A ∈ Fv, and for any P ∈ P :∫
A

RvndP ≤
∫

A

RvdP (2.14)

holds almost surely for all positive integers n. Therefore, the sequence {
∫

A
RvndP}n∈N

is nondecreasing and bounded from above by
∫

A
RvdP ; hence limn→∞

∫
A

RvndP ≤∫
A

RvdP . The same argument can be made about R0, so we also have:

lim
n→∞

∫
A

R0
vn

dP ≤
∫

A

R0
vdP.

The reverse of this inequality follows from Fatou’s lemma and the right-continuity

of R0. Coupling these observations, we obtain:∫
A

R0
vdP = lim

n→∞

∫
A

R0
vn

dP = lim
n→∞

∫
A

RvndP ≤
∫

A

RvdP. (2.15)

Step 2: We need to prove that for any P ∈ P and A ∈ Fv, we have:∫
A

YτdP ≤ lim
n→∞

∫
A

RvndP, ∀τ ∈ Sv. (2.16)
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For this, let us take an arbitrary τ ∈ Sv. On the event {τ = v} things are easy,

since Fatou’s lemma and the right-continuity of Y guarantee that:∫
A∩{τ=v}

YτdP ≤ lim
n→∞

∫
A∩{τ=v}

YvndP (2.17)

≤ lim
n→∞

∫
A∩{τ=v}

RvndP, a.s.

For establishing this inequality on the event {τ > v}, we define the following

sequence of stopping times:

τn =

 τ , if vn < τ

∞ , if vn ≥ τ

 ∈ Svn , ∀ n ∈ N,

and observe ∫
{vn<∞}∩A∩{τ>v}

YτndP −
∫
{τ≤vn<∞}∩A∩{τ>v}

Y∞dP

=

∫
{vn<τ}∩A∩{τ>v}

YτndP =

∫
{vn<τ}∩A∩{τ>v}

EP [Yτn|Fvn ]dP

≤
∫
{vn<τ}∩A∩{τ>v}

RvndP ≤
∫
{v<∞}∩A∩{τ>v}

RvndP, ∀ A ∈ Fv.

Now Yτn = Yτ holds a.e. on {τ > v} for all n large enough, and we have 1{vn<∞}∩A ↑
1{v<∞}∩A almost surely; letting n →∞ in the previous inequality, we obtain∫

{v<∞}∩A∩{τ>v}
YτdP ≤ lim

n→∞

∫
{v<∞}∩A∩{τ>v}

RvndP. (2.18)

due to the right-continuity of Y . This leads directly to∫
A∩{τ>v}

YτdP ≤ lim
n→∞

∫
A∩{τ>v}

RvndP. (2.19)
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Summing (2.19) and (2.17), we conclude that (2.16) holds.

Step 3: We know from Step 1, that R0
v ≤ Rv holds P−a.s., for all v ∈ S and

P ∈ P . We shall argue by contradiction that the reverse inequality also holds.

Suppose then, that there exists a v ∈ S, such that P (R0
v < Rv) > 0, for some

P ∈ P . In other words, there exists an ε > 0, such that P (R0
v ≤ Rv − ε) > 0.

Setting Aε , {R0
v ≤ Rv− ε} ∈ Fv, we must have P (Aε) > 0 for all P ∈ P , since P

contains equivalent probability measures. Because (2.16) is satisfied for all A ∈ Fv,

it must be satisfied for Aε, too. From this inequality, (2.15), and the definition of

Aε, we must have for all τ ∈ Sv:∫
Aε

YτdP ≤ lim
n→∞

∫
Aε

RvndP =

∫
Aε

R0
vdP ≤

∫
Aε

(Rv − ε)dP. (2.20)

Let us take an arbitrary τ ∈ Sv and an arbitrary set A ∈ Fv. Then∫
A

YτdP =

∫
Aε∩A

YτdP +

∫
Ac

ε∩A

YτdP

≤
∫

Aε∩A

(Rv − ε)dP +

∫
Ac

ε∩A

RvdP

≤
∫

A

(Rv − ε1Aε)dP. (2.21)

In other words, EP (Yτ |Fv) ≤ Rv − ε1Aε , for all P ∈ P . And after taking the

essential supremum with respect to P ∈ P and τ ∈ Sv, we obtain

Rv ≤ Rv − ε1Aε , a.s. (2.22)

But this contradicts our assumption, that P (Aε) > 0 holds for all P ∈ P . There-

fore, we must have R0
v = Rv, a.s, for all v ∈ S.
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Finally, let R̃ be a RCLL supermartingale dominating Y . Then, for any t ∈
[0,∞] and τ ∈ St, the optional sampling theorem implies that EP [Yτ |Ft] ≤
EP [R̃τ |Ft] ≤ R̃t, a.s. Therefore, for each t ∈ [0,∞], we have

R0
t = Rt = esssup

P∈P
esssup

τ∈St

EP [Yτ |Ft] ≤ R̃t, a.s.

3

Theorem 2.9 (Necessary And Sufficient Conditions For Optimality). A

stopping time τ ∗ and a probability measure P ∗ are optimal in (1.1), i.e.,

EP ∗
[Yτ∗ ] = R0

0 = sup
P∈P

sup
τ∈S

EP [Yτ ] (2.23)

holds, if and only if:

(i) R0
τ∗ = Yτ∗, and

(ii) the stopped P−supermartingale {R0
t∧τ∗ ,Ft, 0 ≤ t ≤ T} is a P ∗-martingale.

Proof of Necessity: Suppose τ ∗ and P ∗ are optimal, i.e., that (2.23) holds. We

can use then (2.8) with τ = τ ∗ and v = 0, and obtain:

EP ∗
(R0

τ∗) ≤ sup
P∈P

EP [R0
τ∗ ]

= sup
P∈P

sup
σ∈Sτ∗

EP [Yσ]

≤ sup
P∈P

sup
σ∈S

EP [Yσ]

= EP ∗
[Yτ∗ ]

≤ EP ∗
(R0

τ∗),
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since R0 dominates Y , and (i) follows.

In order to prove (ii), we start by noticing that for all σ ∈ S we have:

EP ∗
[Yτ∗ ] = R0

0 = sup
P∈P

sup
τ∈S

EP [Yτ ] = sup
P∈P

sup
τ∈Sσ∧τ∗

EP [Yτ ].

On the other hand, we can use (2.8) with τ = σ ∧ τ ∗ and v = 0, to obtain:

sup
P∈P

EP [R0
σ∧τ∗ ] = sup

P∈P
sup

τ∈Sσ∧τ∗
EP [Yτ ] = EP ∗

[Yτ∗ ],

and the supermartingale property of R0 gives

EP ∗
[R0

σ∧τ∗ ] ≤ sup
P∈P

EP [R0
σ∧τ∗ ] = EP ∗

[Yτ∗ ] ≤ EP ∗
[R0

τ∗ ] ≤ EP ∗
[R0

σ∧τ∗ ].

Consequently, EP ∗
[R0

τ∗ ] = EP ∗
[R0

σ∧τ∗ ], so the expectation EP ∗
[R0

σ∧τ∗ ] does not

depend on σ; this shows that the process {R0
t∧τ∗ ,Ft, 0 ≤ t ≤ ∞} is indeed a

P ∗−martingale (see [7], Problem 1.3.26).

Proof of Sufficiency: Conversely, (i) and (ii) give:

EP ∗
[Yτ∗ ] = EP ∗

[R0
τ∗ ] = R0

0 = sup
P∈P

sup
τ∈S

EP [Yτ ],

thus, the pair (τ ∗, P ∗) is optimal. 3
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2.2 Existence Of Optimal Stopping Times

Having characterized optimal stopping times in Theorem 2.9, we now seek to estab-

lish their existence. We begin by constructing a family of “approximately optimal”

stopping times. For α ∈ (0, 1) and v ∈ S, define the stopping time:

Uα
v , inf{t ≥ v � αR0

t ≤ Yt} ∈ Sv. (2.24)

Proposition 2.10. For any α ∈ (0, 1) and v ∈ S, we have

R0
v = esssup

P∈P
EP [R0

Uα
v
|Fv], a.s. (2.25)

Proof:

Step 1: For fixed α ∈ (0, 1), define the family of nonnegative random variables

suggested by the right-hand side of (2.25), namely

Jα
v , esssup

P∈P
EP [R0

Uα
v
|Fv], (2.26)

and note that we have Jα
v ≤ R0

v, a.s. from Theorem 2.8. We want to show that,

for any P ∈ P and τ ∈ Sv, we also have the supermartingale property

EP [Jα
τ |Fv] ≤ Jα

v , a.s. (2.27)

or, to put it in an equivalent form:

EQ

[
Zτ

Zv

Jα
τ

∣∣∣Fv

]
≤ Jα

v , a.s. (2.28)
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for any given Z ∈ Z and τ ∈ Sv. It is very easy to show, following a proof similar

to that of Lemma 2.1, that there exists a sequence {Mk}k∈N ⊆ Zτ,Uα
τ

such that:

Jα
τ = lim

k→∞
↑ EQ

[
Mk

Uα
τ

Mk
τ

R0
Uα

τ

∣∣∣Fτ

]
a.s.

Again without any loss of generality, we can assume {Mk}k∈N ⊆ N Z
v,τ (recall the

notation established in the proof of Proposition 2.3). Therefore, for any Z ∈ Z
and τ ∈ Sv, we have:

EQ

[
Zτ

Zv

Jα
τ

∣∣∣Fv

]
= EQ

[
Zτ

Zv

· lim
k→∞

EQ

[
Zτ

Zv

·
Mk

Uα
τ

Mk
τ

R0
Uα

τ

∣∣∣Fτ

] ∣∣∣Fv

]

≤ lim
k→∞

EQ

[
Zτ

Zv

·
Mk

Uα
τ

Mk
τ

R0
Uα

τ

∣∣∣Fv

]

≤ esssup
M∈NZ

v,τ

EQ

[
MUα

τ

Mv

R0
Uα

τ

∣∣∣Fv

]
≤ esssup

M∈Z
EQ

[
MUα

τ

Mv

R0
Uα

τ

∣∣∣Fv

]
= esssup

M∈Z
EQ

[
MUα

v

Mv

· EQ

[
MUα

τ

MUα
v

R0
Uα

τ

∣∣∣FUα
v

] ∣∣∣Fv

]
≤ esssup

M∈Z
EQ

[
Mk

Uα
v

Mk
v

R0
Uα

v

∣∣∣Fv

]
= Jα

v , a.s.

This proves (2.28), and we conclude that the process {Jα
t ,Ft; 0 ≤ t ≤ ∞} is

indeed a P−supermartingale, for all α ∈ (0, 1).

Step 2: We need to show that Jα
v ≥ R0

v holds a.s. for any α ∈ (0, 1), v ∈ S.

Since we have already shown the reverse inequality, this will prove (2.25).
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For a fixed α ∈ (0, 1), consider the P−supermartingale αR0 + (1− α)Jα. With

τ ∈ Sv arbitrary but fixed, we have the following inequalities:

• On {Uα
τ = τ} we have Jα

τ = R0
τ from (2.26) and thus, for any P ∈ P :

αR0
τ + (1− α)Jα

τ = αR0
τ + (1− α)R0

τ = R0
τ ≥ Yτ , a.s.

• On the other hand, (2.24) implies

αR0
τ + (1− α)Jα

τ ≥ αR0
τ > Yτ , a.s. on {Uα

τ > τ}.

Therefore, for all τ ∈ Sv we have:

αR0
τ + (1− α)Jα

τ ≥ Yτ , a.s.,

which leads immediately to:

EP [Yτ |Fv] ≤ EP [αR0
τ + (1− α)Jα

τ |Fv] ≤ αR0
v + (1− α)Jα

v , a.s.,

thanks to (2.27) and to Theorem 2.8. And after taking the supremum, we obtain

the inequality

R0
v = esssup

P∈P
esssup

τ∈Sv

EP [Yτ |Fv] ≤ αR0
v + (1− α)Jα

v ,

which leads immediately to Jα
v = R0

v. 3

For fixed v ∈ S, the family of stopping times {Uα
v }α∈(0,1) is nondecreasing in α,

so we may define the limiting stopping time:

U∗
v , lim

α↑1
Uα

v , a.s. (2.29)
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It seems now that U∗
0 is a good candidate for optimal stopping time. To prove this

we shall need some sort of “left-continuity” property for Y ; it turns out that it is

enough to assume what we will call “quasi-left-continuity”, in order to prove the

optimality of U∗
0 .

Definition 2.11. We shall say that a process Y is quasi-left-continuous, if for any

increasing sequence {τn}n∈N ⊆ S we have

limsup
n→∞

Yτn ≤ Yτ , a.s.,

where τ , limn→∞ τn ∈ S.

Theorem 2.12. Assume that Y ∗ := sup0≤t<∞ Yt is integrable with respect to all

P ∈ P, and that the process Y is quasi-left-continuous. Then for each v ∈ S, the

stopping time U∗
v , defined by (2.29), satisfies:

R0
v = esssup

P∈P
EP [YU∗

v
|Fv], a.s. (2.30)

In particular, the stopping time U∗
0 attains the supremum in the initial problem of

(1.1). Furthermore, for all v ∈ S:

U∗
v = Vv , inf{t ≥ v/R0

t = Yt}, a.s. (2.31)

Proof: From the supermartingale property of R0
v we obtain immediately that

EP [YU∗
v
|Fv] ≤ EP [R0

U∗
v
|Fv] ≤ R0

v, a.s.,
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for every P ∈ P , which implies

esssup
P∈P

EP [YU∗
v
|Fv] ≤ R0

v, a.s. (2.32)

We shall prove the reverse inequality by contradiction. Suppose that for all

ε > 0 the event Aε , {R0
v − ε ≥ EP [YU∗

v
|Fv]} ∈ Fv is such that P (Aε) > 0, for all

P ∈ P . Hence, for all A ∈ Fv we have:∫
A

YU∗
v
dP =

∫
A

EP [YU∗
v
|Fv]dP

=

∫
A∩Aε

EP [YU∗
v
|Fv]dP +

∫
A∩Ac

ε

YU∗
v
dP

≤
∫

A∩Aε

(R0
v − ε)dP +

∫
A∩Ac

ε

R0
U∗

v
dP

≤
∫

A∩Aε

(R0
v − ε)dP +

∫
A∩Ac

ε

R0
vdP

=

∫
A

(R0
v − ε1Aε)dP

That is, we can say that EP [YU∗
v
|Fv] ≤ R0

v − ε1Aε , holds almost surely. Since Y

is quasi-left-continuous we have the following inequalities.

lim
α↑1

EP [R0
Uα

v
|Fv] ≤ lim

α↑1
EP

[
1

α
YUα

v

∣∣∣Fv

]
≤ EP

[
lim
α↑1

(
1

α
YUα

v

)]
≤ EP [YU∗

v
|Fv],

for all P ∈ P . Therefore, the exists an α0 ∈ (0, 1) such that

EP [R0
U

α0
v
|Fv] ≤ R0

v − ε1Aε ,
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holds almost surely, for all P ∈ P . At last, taking supremum with respect to all

P ∈ P , we arrive to a contradiction. Hence,

R0
v ≤ esssup

P∈P
EP [YU∗

v
|Fv], a.s. (2.33)

Then (2.33) and (2.32) lead to

R0
v = esssup

P∈P
EP [YU∗

v
|Fv], a.s.,

and this shows that the stopping time U∗
v is optimal.

Now, we turn to (2.31). Because of the definition of Uα
v , we have:

αR0
Uα

v
≤ YUα

v
a.s., hence α · EP (R0

Uα
v
) ≤ EP (YUα

v
) for all P ∈ P .

We also know that {Uα
v }α∈(0,1) is an increasing family of stopping times, therefore

Uα
v ≤ U∗

v for all α ∈ (0, 1), and

α · EP (R0
U∗

v
) ≤ α · EP (R0

Uα
v
) ≤ EP (YUα

v
) for all α ∈ (0, 1), P ∈ P

from the P−supermartingale property of R0 (Theorem 2.8). Taking the limit

α ↑ 1, and using the fact that Y is quasi-left-continuous to apply the dominated

convergence theorem, we obtain:

EP (R0
U∗

v
) ≤ liminf

α↑1
EP (R0

Uα
v
) ≤ lim

α↑1
EP (YUα

v
) ≤ EP (YU∗

v
) for all P ∈ P .

But Y is dominated by R0, so we must have R0
U∗

v
= YU∗

v
a.s.; therefore,

U∗
v ≥ Vv as on the right-hand-side of (2.31). (2.34)
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For the reverse inequality, note that on the event {v < U∗
v } we must have v < Uα0

v

for some α0 ∈ (0, 1). Moreover, this is true for all α ≥ α0 since the family of

stopping times is increasing. Therefore, because of the definition of Uα
v , on the

event {v < U∗
v } we have :

Yt < αR0
t ≤ R0

t for all t ∈ [v, Uα
v ), and for all α ∈ [α0, 1).

Therefore, we must have Uα
v ≤ Vv for all α ∈ [α0, 1) on {v < U∗

v }, thus

U∗
v = lim

α↑1
Uα

v ≤ Vv, on {v < U∗
v }.

On the other hand, on {v = U∗
v } the inequality U∗

v ≤ Vv is obviously satisfied, so

we can conclude that:

U∗
v ≤ Vv, a.s. (2.35)

Putting (2.34) and (2.35) together, the theorem is completely proved. 3

Remark 2.13. If Y is not quasi-left-continuous, then we can only guarantee that

each Uα
0 is α-optimal, for every α ∈ (0, 1).



25

2.3 Existence Of Optimal Models

In what follows we shall attempt to find conditions on the family P , under which

there is an optimal model for our problem. It turns out that under suitable condi-

tions for the family P , we can decompose our generalized Snell envelope in a “uni-

versal fashion”, i.e., in the form R0
t = R0

0 + Xt − Ct, where X is a P−martingale

with RCLL paths and X0 = 0, and C is an adapted process with non-decreasing,

RCLL paths, C0 = 0, and EP (C∞) < ∞ for all P ∈ P .

Obviously, the conditions we need to impose on the family P are required in

order to ensure the existence of such a special P−martingale X.

Thus, we are looking for a P−martingale X with RCLL paths, such that

〈Z,X〉 = 0 for every Q−martingale Z in the class Z of (2.1). This can be achieved

in the spirit of the Kunita-Watanabe work on square-integrable martingales (see

[5]).

Let us denote by M2 the set of all zero-mean, square-integrable Q-martingales.

It was proved in the above-mentioned paper that {M2, ‖·‖t} is a complete separable

space, where the semi-norms ‖ · ‖t are defined by the formula: ‖X‖t =
√

EQ(X2
t ),

for X ∈M2; see also Proposition 1.5.23 in [7].

Definition 2.14. A subset N of M2 is called a subspace of M2, if it satisfies the

following conditions:

• X, Y ∈ N then X + Y ∈ N .
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• If X ∈ N and φ is predictable, then
∫

φdX ∈ N .

• N is closed in {M2, ‖ · ‖t}.

Remark 2.15. If N is a subspace of M2 in the sense of Definition 2.14, then any

element of M2 can be decomposed uniquely as W = W ′ + W ′′, where W ′ ∈ N and

W ′′ ∈ N⊥. This decomposition is generally referred to as the “Kunita-Watanabe

decomposition”; see Proposition 3.4.14 in [7].

Notation: For every Q−local martingale N , we shall denote by E(N) the Doléans-

Dade exponential of N , that is, the solution of the Stochastic Differential Equation:

dUt = Ut−dNt, with U0 = 1. Also recall that if two probability measures P and

Q are equivalent, then there is a Q−local martingale N , such that dP
dQ
|Ft = E(N)t

(see [9]).

Consider now, as N the set of all Q−martingales N , for which E(N) belongs in

the set Z of (2.1).

Remark 2.16. If N , as considered above, is closed in {M2, ‖ · ‖t}, we can prove

that Z of (2.1) is also closed in the set of all square-intergable martingales with

mean 1, under the semi-norms ‖ · ‖t defined by the following formula: ‖Z‖t =√
EQ(Zt − 1)2.

Theorem 2.17. Suppose that N is a subspace of M2 in the sense of the Definition

2.14. Then any P−supermartingale S with RCLL paths and of class DL with

respect to the reference probability measure Q ∈ P(see the Definition 4.8 in [7]/page
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24), can be decomposed as:

St = S0 + Xt − Ct, 0 ≤ t < ∞,

where X ∈ M2 is a RCLL P-martingale, and C is an optional increasing process

with RCLL paths and C0 = 0.

In contrast to the standard Doob-Meyer decomposition, the process C is in gen-

eral not predictable but only optional, and is not uniquely determined. However,

the decomposition is “universal”, in the sense that it holds simultaneously for all

P ∈ P . The existence of such an “optional decomposition” was shown by El Karoui

and Quenez, [9], and Kramkov, [2], for a special class of models, P , while solving

the problem of hedging contingent claims in incomplete security markets. Also,

Fölmer and Kabanov, [4], have proved such a decomposition in a more general

framework that El Karoui - Quenez and Kramkov. However, their result is insuf-

ficient for the purposes of our paper, since our set of probability models is more

general than the one Fölmer and Kabanov are working with. Theorem 2.17 suits

our problem much better, since it provides conditions under which there is such

a special P-supermartingale X; moreover, we do not assume that P is the class

of all equivalent martingale measures of X, as it was the case in the above cited

papers.

Proof of Theorem 2.17:

Since S is supermartingale of class DL under Q, it admits the Doob-Meyer

decomposition S = S0 +M−A, where M is a Q-martingale and A is an increasing
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predictable process with A0 = 0. Also, because N is a subspace of M2 , the

martingale M admits the Kunita-Watanabe decomposition: M = L + X, where

L ∈ N , and X ∈ N⊥, i.e., 〈N, X〉 = 0 for all N ∈ N . This leads to 〈E(N), X〉 = 0

for all N ∈ N ; in other words, we have identified X as the P-martingale in our

decomposition. Hence, we can say that:

St = S0 + Xt + Lt − At, 0 ≤ t < ∞, Q− a.s. (2.36)

Now, the square-integrable martingale L ∈ N can be decomposed further as the

sum of its continuous martingale part Lc, and its purely discontinuous martingale

part Ld; moreover 〈Lc, Ld〉 = 0 (see [1] /page 367).

Step 1: We want to show now that Lc = 0.

First, observe that because S is P-supermartingale, we obtain as a consequence

of the Girsanov theorem (see Corollary 1A (ii) in the Appendix of [9], also see [1],

VII.45. page 255).

〈N, L + X〉 − A is a decreasing process, ∀N ∈ N . (2.37)

And because 〈N, X〉 = 0 for every N ∈ N , we can rewrite (2.37) as:

A− 〈N, L〉 is an increasing process, ∀N ∈ N . (2.38)

Since (2.38) is satisfied for all N ∈ N , we can try and use it for a conveniently

chosen N ∈ N . We shall take:

Nt =

∫ t

0

ηsdLc
s 0 ≤ t < ∞ (2.39)
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where η is a bounded predictable process to be chosen shortly in a convenient way.

Since N is a subspace of M2, it is closed under stochastic integration, and we must

have N ∈ N . Therefore, (2.38) implies that

A−
∫

ηsd〈Lc〉s is increasing. (2.40)

Now let us decompose the measure dAt with respect to d〈Lc〉t, and try to choose

a convenient η. The process 〈Lc〉 is integrable, because L ∈M2. By the Lebesgue

decomposition theorem, there exists a positive predictable process h ∈ L1([0,∞)×
Ω, d〈Lc〉dQ) and an integrable predictable increasing process B, such that

dAt = htd〈Lc〉t + dBt (2.41)

and such that, Q almost surely, the measure dBt is singular with respect to d〈Lc〉t.
For each integer p, we can write the following version of (2.41):

dAt = ht1{ht≤p}d〈Lc〉t + dBp
t , (2.42)

where, Q almost surely, the measure dBp
t is singular with respect to 1{ht≤p}d〈Lc〉t.

An immediate consequence of the singularity of the measure dBp
t with respect to

1{ht≤p}d〈Lc〉t is that on the event {h ≤ p} we have

At =

∫ t

0

hs1{hs≤p}d〈Lc〉s. (2.43)

Let us select ηt , (1 + ht)1{ht≤p}. According to (2.40), on the event {h ≤ p},
the process A−

∫
(1 + hs)1{hs≤p}d〈Lc〉s is increasing. Therefore, due to (2.43), we
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conclude that on the event {h ≤ p}:

At −
∫ t

0

ηsd〈Lc〉s =

∫ t

0

hs1{hs≤p}d〈Lc〉s −
∫ t

0

(1 + hs)1{hs≤p}d〈Lc〉s

is an increasing process. Hence, Q almost surely, −〈Lc〉t is increasing on {h ≤ p},
for all p, and this yields the equality:

〈Lc〉∞ = 0, Q-a.s.

Hence, Lc = 0, and thus L = Ld.

Step 2: Next we need to show that not only is L a purely discontinuous mar-

tingale, it also has only negative jumps. To prove this, let us decompose L with

respect to the sign of its jumps: L = L+ + L−, where L+ (respectively, L−) is

the compensated integral of 1{∆L>0} (respectively, 1{∆L<0}) with respect to L. No-

tice that L+ and L− are both square-integrable martingales. Following the same

pattern as in Step 1 for Nt =
∫ t

0
ηsdL+

s , we prove that L+ = 0.

Step 3: We have proved so far, that the L process in the decomposition (2.36)

is indeed a purely discontinuous martingale with negative jumps. Hence, the pro-

cess Ct = At − Lt is indeed increasing, although not necessarily predictable, only

optional. Since A is predictable, the failure of A− L to be predictable must be a

result of L being just optional (RC instead of LC). Thus, we conclude is that we

can decompose S, in a “universal fashion”

St = S0 + Xt − Ct, ∀ t ∈ [0,∞] (2.44)

almost surely, where X is RCLL, mean zero, P-martingale, and C is RCLL,

adapted, optional increasing process with C0 = 0. 3
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Corollary 2.18. If N is a subspace of M2 in the sense of the Definition 2.14,

and if supP∈P EP (Y ∗) < ∞ holds for Y ∗ , supt≥0 Yt, then the generalized Snell

envelope R0 of the process Y admits a “universal” optional decomposition; i.e.,

there exists a RCLL, mean zero, uniformly integrable P-martingale X, and an

optional increasing process C with RCLL paths and C0 = 0, such that almost

surely:

R0
t = R0

0 + Xt − Ct, ∀ t ∈ [0,∞]. (2.45)

Proof: In order to use Theorem 2.17, we need to show that the process R0 is

of class DL with respect to the reference probability Q ∈ P . We shall see that in

fact we have more; due to the condition supP∈P EP (Y ∗) < ∞, we can prove that

R0 is of class D, with respect to any probability measure P ∈ P .

Thus, let us prove the uniform integrability of the family {R0
τ}τ∈S . From (2.8),

and Theorem 2.8 for v = 0, we obtain

EP (R0
τ ) ≤ sup

P∈P
EP (R0

τ ) ≤ sup
P∈P

sup
σ∈Sτ

EP (Yσ) ≤ sup
P∈P

EP (Y ∗) < ∞,

for all τ ∈ S. Given P ∈ P and ε > 0, there exists δ > 0 such that:

A ∈ F∞ and P (A) < δ =⇒
∫

A

Y ∗dP < ε.

Let α > 1
δ
supP∈P EP (Y ∗) be given. Then we have

P{R0
τ > α} ≤ 1

α
sup
P∈P

EP (Y ∗) < δ
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and

EP (R0
τ1{R0

τ >α}) ≤ sup
P∈P

EP (Y ∗1{R0
τ >α}) = sup

P∈P

∫
{R0

τ >α}
Y ∗dP < ε, ∀ τ ∈ S.

Therefore, the family {R0
τ}τ∈S is uniformly-integrable, under any P ∈ P, which

makes R0 a P-supermartingale of class D under all P ∈ P. Now we are free to

use the Theorem 2.17, so the desired decomposition holds. Moreover, we can use

a similar argument as the one presented in [7] for the proof of Theorem 1.4.10,

to argue that if R0 is of class D, then the P-martingale X must be P−uniformly

integrable. 3

Since all of our subsequent results depend on the existence of this “universal”

optional decomposition, we shall assume from now on, that the set N is a sub-

space of M2, that the reward process Y has quasi-left-continuous paths, and that

supP∈P EP (Y ∗) < ∞, without specifying it all the time.

Theorem 2.19. If R0
τ = EP ∗

(YU∗
τ
|Fτ ) a.s. for some τ ∈ S, and P ∗ ∈ P, then

R0
τ = EP (YU∗

τ
|Fτ ) a.s. for any P ∈ P.

Proof: Because of (2.31) we can say that:

EP ∗
(R0

τ ) = EP ∗
(YU∗

τ
) = EP ∗

(R0
U∗

τ
).

Then, the decomposition (2.45) and the optional sampling theorem, lead to EP ∗
(Cτ ) =

EP ∗
(CU∗

τ
). But C is a non-decreasing process, so we must have Cτ = CU∗

τ
, P ∗-a.e.,

thus also P -a.e. for all P ∈ P. Since the decomposition of R0 is universal, that
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is it holds for all P ∈ P , we conclude that EP (R0
τ ) = R0

0 + EP (Xτ ) + EP (Cτ ) =

R0
0 + EP (XU∗

τ
) + EP (CU∗

τ
) = EP (R0

U∗
τ
). Consequently, we get

R0
τ = EP (R0

U∗
τ
|Fτ ), P -a.s. (2.46)

3

Remark 2.20. For τ = 0, Theorem 2.19 gives the following result. If an optimal

model P ∗ exists, then any P ∈ P is optimal.

In other words, in this context it is enough to find conditions for the existence of

an optimal model P ∗. A good place to start is to look for conditions under which

Cτ = CU∗
τ

holds P−a.s., for any P ∈ P and τ ∈ S.

If the non-decreasing process C of the optional decomposition in (2.45) is in

fact predictable, we obtain very interesting necessary and sufficient conditions for

the existence of an optimal model P ∗. Very recent work of Delbaen and Protter,

[3], shows that the process C of the optional decomposition is predictable, if all

the martingales in the set Z of (2.1) have continuous paths.

Theorem 2.21. Suppose that the non-decreasing process C in the optional de-

composition of (2.45) is predictable. Then we have R0
τ = EP ∗

(YU∗
τ
|Fτ ) a.s. for

any τ ∈ S as well as P ∗ ∈ P, if and only if C is “flat” away from the set

H(ω) = {t ≥ 0 � R0
t (ω) = Yt(ω)}, that is,

∫∞
0

1{R0
t (ω)>Yt(ω)}dCt = 0 a.s.

Proof of Necessity: If C is “flat” away from the set H, then Ct = CU∗
t

a.s.

Therefore, we must have (2.46) as argued in the previous proof.
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Proof of Sufficiency:

Step 1: We can show that, if P ∗ is optimal, then R0 is regular, i.e., we have

EP (R0
v) = limn→∞ EP (R0

vn
) for any nondecreasing sequence {vn}n∈N of stopping

times in S with v = limn→∞ vn a.s. for all P ∈ P .

The inequality EP (R0
v) ≤ limn→∞ EP (R0

vn
) follows from the supermartingale

property of R0. For the reverse inequality, observe that the sequence {U∗
vn
}n∈N of

stopping times is also nondecreasing; moreover, limn→∞ U∗
vn
∈ Sv. Then we must

have, due to Theorem 2.19: EP (R0
vn

) = EP (YU∗
vn

), for any P ∈ P . Therefore,

Fatou’s lemma, the quasi-left-continuity of Y , and the supermartingale property

R0, lead to:

limsup
n→∞

EP (R0
vn

) = limsup
n→∞

EP (YU∗
vn

)

≤ EP (limsup
n→∞

YU∗
vn

)

≤ EP (Y { lim
n→∞

U∗
vn
})

≤ EP (R0{ lim
n→∞

U∗
vn
})

≤ EP (R0
v).

Thus R0 is regular. Also, because the process C is assumed predictable, we can

prove as in [7] (Th.4.14/ page 28) that C is actually continuous.

Step 2: Define the family of stopping times:

pt = inf{s ≥ t � Ct < Cs} for t ∈ [0,∞]. (2.47)
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Then, due to Theorem 2.19:

EP (R0
pt

) = EP (YU∗
pt

) = EP (R0
U∗

pt
), for any P ∈ P .

Also, after applying the optional sampling theorem in the optional decomposi-

tion, we conclude that: EP (Cpt) = EP (CU∗
pt

), for any P ∈ P . And since C is

nondecreasing, we must have Cpt = CU∗
pt

a.s.

The definition of pt shows that pt(ω) ∈ H(ω). Moreover, we can say that for

P -a.e. ω ∈ Ω, we have

{pq(ω) � q ∈ [0,∞) ∩Q} ⊆ H(ω). (2.48)

We now fix an ω for which (2.48) holds, for which the mapping t 7→ Ct(ω) is

continuous, and for which the mappings t 7→ R0
t (ω), t 7→ Yt(ω) are RCLL. To

understand the set on which C is “flat”, we define

J(ω) , {t ≥ 0 � (∃)ε > 0 with Ct−ε(ω) = Ct+ε(ω)}. (2.49)

It is apparent that J(ω) is open, and thus can be written as a countable union

of open intervals whose closures are disjoint:

J(ω) = ∪i(αi(ω), βi(ω)). (2.50)

We are interested in the set

Ĵ(ω) = ∪i[αi(ω), βi(ω)) = {t ≥ 0 � (∃)ε > 0 with Ct(ω) = Ct+ε(ω)},
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and in its complement Ĵ c(ω). The function t 7→ Ct(ω) is “flat” on Ĵ(ω), in the

sense that ∫ ∞

0

1Ĵ(ω)(t)dCt(ω) =
∑

i

[Cβi(ω) − Cαi(ω)] = 0. (2.51)

Our task is to show that:

Ĵ c(ω) ≡ {t ≥ 0 � (∀)s > t, Ct(ω) < Cs(ω)} ⊆ H(ω). (2.52)

Let t ∈ Ĵ c(ω) be given. Then there is a strictly decreasing sequence {tn}∞n=1

such that {Ctn}∞n=1 is also strictly decreasing, and

t = lim
n→∞

tn, Ct(ω) = lim
n→∞

Ctn(ω).

For each n, let qn be a rational number in (tn, tn+1). Then t ≤ pqn(ω) ≤ tn+1

and t = limn→∞ pqn(ω). From (2.48) we have R0
pqn (ω)(ω) = Ypqn (ω)(ω), and letting

n → ∞, using the right-continuity of R0 and Y , we discover that t ∈ H(ω), so

(2.52) is proved. 3

Going back to the study of the process C we observe

EP [R0
U∗

v
|Fv] = R0

v − EP [CU∗
v
− Cv|Fv], a.s.

from (2.45). After taking the supremum with respect to P , we obtain:

essinf
P∈P

EP [CU∗
v
− Cv|Fv] = 0. (2.53)
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Using again the fundamental property of essential supremum/infimum we get a

sequence {Zk} ⊆ Z such that:

essinf
Z∈Z

EQ

[
ZU∗

v

Zv

· (CU∗
v
− Cv)

∣∣∣Fv

]
= lim

k→∞
↓ EQ

[
Zk

U∗
v

Zk
v

· (CU∗
v
− Cv)

∣∣∣Fv

]
= 0.

Then we use Fatou’s lemma for conditional expectations to obtain:

0 ≤ EQ

[
lim
k→∞

↓
Zk

U∗
v

Zk
v

· (CU∗
v
− Cv)

∣∣∣Fv

]
≤ lim

k→∞
↓ EQ

[
Zk

U∗
v

Zk
v

· (CU∗
v
− Cv)

∣∣∣Fv

]
= 0.

Therefore,

EQ

[
lim
k→∞

↓
Zk

U∗
v

Zk
v

· (CU∗
v
− Cv)

∣∣∣Fv

]
≡ 0.

But, because C is nondecreasing, if limk→∞ ↓
(

Zk
U∗

v

Zk
v

)
> 0, we must have Cv =

CU∗
v
, P−a.s.

Lemma 2.22. If Z is closed (as in Remark 2.16), then

essinf
Z∈Z

(
Zµ

Zτ

)
> 0, a.s.

for all stopping times τ, µ ∈ S.

Proof. The Remark 2.16 tells us that Z is closed, and implied that Zσ =

{Zσ �Z ∈ Z} being closed, with respect to the L2 norm, for all stopping times
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σ ∈ S. Hence, due to Remark 2.2 we must have that there exist processes Z, Z ∈ Z,

such that almost surely,

Zµ , essinf
Z∈Z

Zµ = lim
k→∞

↓ Z̃k
µ ∈ Zµ, and (2.54)

Zτ , esssup
Z∈Z

Zτ = lim
k→∞

↑ Zk
τ ∈ Zτ .

It is obvious then, such that for all Z ∈ Z

Zµ

Zτ

≥
Zµ

Zτ

> 0 a.e.

Recall that for all Z ∈ Z we have Z > 0, a.s., and also Z < ∞, a.s., since the

processes Z are Radon-Nikodym derivatives for an equivalent pair of probability

measure. Hence, the above ratios ar not only well defined, but they must also be

strictly positive. Therefore, after taking essential infimum with respect to Z, the

Lemma is proved. 3

Recall now that we have assumed N to be a subspace of M2, therefore it is a

closed set, and this implies that Z is closed as well. Thus, by using the Lemma

2.22, we have that Cv = CU∗
v
, a.s., which leads immediately to:

EP [R0
U∗

v
|Fv] = R0

v, a.s. (2.55)

and therefore, due to the Theorem 2.9, the following theorem is proved.

Theorem 2.23. There exists an optimal model P ∗ for our optimization problem.

Moreover, any model is then optimal.
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2.4 Deterministic Approach to the Optimal Stopping Prob-

lem Under Model-Uncertainty

We have already seen in the previous subsection that, under appropriate conditions,

we can decompose our Snell envelope R0 into R0
t = R0

0 + Xt−Ct, where X is a P-

martingale, and C is an adapted process with nondecreasing, RCLL paths, C0 = 0,

and EP (C∞) < ∞ for all P ∈ P . The focus of our analysis was mostly on C, which

has the obvious interpretation as the loss of available reward due to failure to stop

at the right times. Here we show that the martingale component X also has a clear

interpretation; namely, that the (non-adapted) process Λ defined by Λt = X∞−Xt

is the Lagrange multiplier enforcing the constraint that the modified process Y +Λ

must be stopped at stopping times rather than at general random times.

Theorem 2.24. We have

R = sup
P∈P

sup
τ∈S

EP (Yτ ) = EP

[
sup

0≤t≤∞
(Yt + Λt)

]
, (2.56)

for all P ∈ P, where Λt , X∞ −Xt.

Proof: With Mt , R0
0 +Xt = R0

t +Ct, it is obvious that Λt = M∞−Mt. Define

Qt , Yt + Λt, and νt , sups≥t Qs. We shall prove that

EP [νt|Ft] = R0
t a.s. (2.57)
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holds for every t ∈ [0,∞] and P ∈ P, from which (2.56) will follow immediately

by taking t = 0. Observe that,

Qs = Ys + M∞ −Ms

= Ys + (R0
∞ + C∞)− (R0

s + Cs)

= R0
∞ − (R0

s − Ys) + (C∞ − Cs).

But R0
s − Ys ≥ 0, and C∞ − Cs ≤ C∞ − Ct for s ≥ t, so clearly we have:

Qs ≤ R0
∞ + C∞ − Ct = M∞ − Ct.

Therefore, if we take the supremum over all s ≥ t, we obtain:

νt ≤ M∞ − Ct, for all t ∈ [0,∞]. (2.58)

On the other hand we have, for any α ∈ (0, 1):

QUα
t

≥ R0
∞ −R0

Uα
t
(1− α) + (C∞ − CUα

t
)

= M∞ −R0
Uα

t
(1− α)− CUα

t

= M∞ − Ct −R0
Uα

t
(1− α).

We have used the fact that the non-decreasing process C is flat on the interval

[t, U∗
t ], which consists of all Uα

t for all 0 < α < 1. Letting α ↑ 1 we conclude that

νt ≥ M∞ − Ct, for all t ∈ [0,∞], (2.59)

since Ct = CU∗
t

= limα↑1 CUα
t

for all t ∈ [0,∞]. Therefore:

νt = M∞ − Ct. (2.60)
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Now let us take the conditional expectations with respect to any P , given Ft, and

obtain:

EP [νt|Ft] = EP [M∞ − Ct|Ft] = R0
t .

3

Another interesting result, inspired by Rogers [10], is very useful in the context

of dealing with the rather cumbersome task of determining the martingale X of

the optional decomposition.

Theorem 2.25. We have

R = inf
λ∈L

EP

(
sup

t∈[0,∞]

(Yt + λt)

)
, (2.61)

for all P ∈ P. Here L is the class of measurable processes λ : [0,∞] × Ω → R,

for which EP (sup0≤t≤∞ |λt|) < ∞ and EP (λτ ) = 0, hold for every P ∈ P and for

any τ ∈ S. The infimum is attained by λ = Λ (where Λ is the Lagrange multiplier

from Theorem 2.24).

Proof:

From the optional sampling theorem, the process Λ· ≡ X∞ −X· from Theorem

2.24 satisfies EP (Λτ ) = EP (X∞) − EP (Xτ ) = 0, for any τ ∈ S, thus Λ ∈ L, and

we have:

R = EP

[
sup
t≥0

(Yt + Λt)

]
≥ inf

λ∈L
EP

[
sup
t≥0

(Yt + λt)

]
,
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for every P ∈ P . To prove the reverse inequality, it suffices to show that

EP (Yτ ) ≤ EP

[
sup
t≥0

(Yt + λt)

]
,

for any τ ∈ S holds for every λ ∈ L. But this is obvious. 3
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3 Non-cooperative Game

3.1 The Value of the Stochastic Game

We shall begin in the study of the stochastic game by recalling a key result of the

theory of optimal stopping, for a given probability “scenario” P . It was proved in

[8] (see page 358, Th D.12) that if we assume that the “reward” process Y is quasi-

left-continuous, and that Y ∗ , supt∈[0,∞] Yt is P−integrable, the Snell envelope has

the following “martingale” property:

EP
[
Yρ̂P (τ)|Fτ

]
= EP

[
V̂P (ρ̂P (τ))|Fτ

]
= V̂P (τ) (3.1)

a.s., for every P ∈ P . Moreover, since the Snell envelope V̂P is P−supermatingale,

(3.1) is also true if we replace ρ̂P (τ), with any stopping time ρ with values in the

stochastic interval [[[τ, ρ̂P (τ)]]]. This property of the Snell envelope will help us prove

the following two “key” results about the upper-value process V of (1.7).

Proposition 3.1. For all P ∈ P, and any stopping time ρ with values in the

stochastic interval [[[τ, ρτ]]], we have:

EP
[
V ρ|Fτ

]
≥ V τ , a.s. (3.2)

In particular, the stopped process {V t∧ρ0 ,Ft}0≤t≤∞ is a P−submartingale.

Proof. As a consequence of the fundamental property of the essential infimum,

we can show that for a certain sequence {Pk}k∈N ⊆ P we have V t = limk→∞ V̂Pk
(t).
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Also, notice that since 0 ≤ V̂Pk
(t) ≤ Rt, holds a.s. for all Pk ∈ P, hence the

sequence {V̂Pk
(t)}k∈N is dominated by the random variable Rt, random variable

which is integrable if we assume that the cooperative version of the game has

value, i.e. R0 < ∞. (Recall that the P−supermartingale property of R gives us

that EP (Rt) ≤ R0; the maximum expected reward of the cooperative game.)

Consider under the same notation as in the Subsection 2.1, the processes Zk
t =

dPk

dQ

∣∣
Ft

and Zt = dP
dQ

∣∣
Ft

in Z.

Clearly, for σ ≤ ρ, the random variable V̂Pk
(ρ) does not depend on the values

of Zk
σ ; therefore, we may assume, without any loss of generality, that {Zk}k∈N ⊆

Z ∩N Z
τ,ρ, i.e., that Zk agrees with Z on the stochastic interval [[[τ, ρτ]]].

Hence, due to dominated convergence theorem and because ρ ≤ ρτ ≤ ρ̂P (τ) for

all P , we have:

EP
[
V ρ|Fτ

]
= EP

[
lim
k→∞

V̂Pk
(ρ)|Fτ

]
= lim

k→∞
EP
[
V̂Pk

(ρ)|Fτ

]
= lim

k→∞
EQ

[
Zρ

Zτ

· V̂Pk
(ρ)|Fτ

]
= lim

k→∞
EQ

[
Zk

ρ

Zk
τ

· V̂Pk
(ρ)|Fτ

]
= lim

k→∞
EPk

[
V̂Pk

(ρ)|Fτ

]
≥ essinf

P∈P
EP
[
V̂P (ρ)|Fτ

]
= essinf

P∈P
V̂P (τ) = V τ .
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3

Another consequence of Proposition 3.1 is that, under the worst case scenario,

had the player not stopped the game before time τ , should wait until time ρτ to

do so.

Proposition 3.2. V τ = essinfP∈P EP [Y (ρτ )|Fτ ] a.s.

Proof. From to Proposition 3.1, we have

EP [Yρτ |Fτ ] = EP
[
V ρτ |Fτ

]
≥ V τ , a.s.

for all P ∈ P, hence V τ ≤ essinfP∈P EP [Y (ρτ )|Fτ ] a.s. The reverse inequality

follows immediately, since:

V τ = essinf
P∈P

esssup
σ∈Sτ

EP [Yσ|Fτ ] ≥ essinf
P∈P

EP [Y (ρτ )|Fτ ] , a.s.

3

Theorem 3.3. The stochastic game of (1.3), (1.4) has value, i.e., for all τ ∈ S,

Vτ = V τ = V τ , a.s.

Proof. The proof follows immediately from Proposition 3.2, which gives

V τ = essinf
P∈P

EP [Y (ρτ )|Fτ ] ≤ esssup
σ∈Sτ

essinf
P∈P

EP [Yσ|Fτ ] , V τ ,

and from the definitions (1.3), (1.4) which give V τ ≥ V τ , a.s. 3

From now on we shall deal only with the “value” process V .
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3.2 Properties Of The “Value” Process

We have established so far the behavior of the value process V on stochastic inter-

vals of the type [[[τ, ρτ]]]. It is not clear, however, what happens with this process the

rest of the time. The following propositions attempt to answer this very question.

Proposition 3.4. For all stopping times v ∈ S and τ ∈ Sv, we have:

essinf
P∈P

EP [Vτ |Fv] ≤ essinf
P∈P

esssup
σ∈Sτ

EP [Yσ|Fv] . (3.3)

Moreover, the reverse inequality holds for all τ in the stochastic interval [[[v, ρv]]].

Proof. From Proposition 3.1 we have Vτ ≤ EP [Vρτ |Fτ ] for all P ∈ P . Therefore,

after taking conditional expectations, we obtain

EP [Vτ |Fv] ≤ EP
[
EP [Vρτ |Fτ ] |Fv

]
= EP [Vρτ |Fv]

= EP [Yρτ |Fv] ≤ esssup
σ∈Sτ

EP [Yσ|Fv] , ∀P ∈ P .

for all τ ∈ Sv. Taking essential infimum with respect to P , we arrive at the

inequality (3.3).

Moreover, from the same Proposition 3.1 (the submartingale property of V on

[[[v, ρv]]]), we deduce that for all τ in the stochastic interval [[[v, ρv]]], we have

EP [Vτ |Fv] ≥ Vv

= essinf
P∈P

esssup
σ∈Sv

EP [Yσ|Fv]

≥ essinf
P∈P

esssup
σ∈Sτ

EP [Yσ|Fv] , ∀P ∈ P .
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Taking again the essential infimum with respect to P ∈ P we obtain the desired

inequality for all τ in the stochastic interval [[[v, ρv]]]. 3

The following result offers additional insight into the nature of the “value”

process. Although it does not necessarily prove that V is a supermartingale, it

shows that indeed, under the worst case scenario, the expected “value” decreases

with time.

Proposition 3.5. For all stopping times τ , µ such that τ ≤ µ, we have

inf
P∈P

EP (Vτ ) ≥ inf
P∈P

EP (Vµ). (3.4)

Proof. We use again the fundamental property of essential infimum; from Propo-

sition 3.1, we have

Vτ = essinf
P∈P

esssup
σ∈Sτ

EP [Yσ|Fτ ]

≥ essinf
P∈P

EP
[
Yρµ|Fτ

]
= essinf

P∈P
EP
[
Vρµ|Fτ

]
= essinf

P∈P
EP
[
EP
[
Vρµ|Fµ

]
|Fτ

]
≥ essinf

P∈P
EP [Vµ|Fτ ]

= lim
k→∞

EPk [Vµ|Fτ ]

= lim
k→∞

EQ

[
Zk

µ

Zk
τ

· Vµ|Fτ

]
,

for a certain sequence {Pk}k∈N ⊆ P.
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Let us have a probability model P ∈ P fixed. Once again we can select the

sequence {Pk}k∈N, such that {Zk}k∈N ⊆ Z ∩ N Z
0,τ , therefore due to dominated

convergence theorem

EP (Vτ ) ≥ EQ

[
Zτ · lim

k→∞
EQ

[
Zk

µ

Zk
τ

· Vµ|Fτ

]]
= lim

k→∞
EQ
[
Zk

µVµ

]
= lim

k→∞
EPk(Vµ)

≥ inf
P∈P

EP (Vµ),

and after taking the infimum with respect to P , the inequality (3.4) is proved. 3

Corollary 3.6. For all stopping times τ ∈ S we have

inf
P∈P

EP (Vτ ) = inf
P∈P

EP (Vρτ ). (3.5)

Proof. From Proposition 3.1 we know that EP (Vτ ) ≤ EP (Vρτ ) holds for all

P ∈ P , therefore after taking infimum we obtain:

inf
P∈P

EP (Vτ ) ≤ inf
P∈P

EP (Vρτ ).

But τ ≤ ρτ a.e., and thus the reverse inequality follows from Proposition 3.5. 3

In this subsection we have used the term worst case scenario rather loosely,

since we do not know, yet, whether such a scenario exists, and moreover, if at any

time the same probability model will make for the worst case scenario. The next

proposition helps us shed some light into this mater.
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Proposition 3.7. If EP ∗
(Vρτ ) = infP∈P EP (Vρτ ) for some P ∗ ∈ P and τ ∈ S,

then we must have EP ∗
(Vτ ) = EP ∗

(Vρτ ).

Proof. The previous Corollary and Proposition 3.1 give

EP ∗
(Vρτ ) = inf

P∈P
EP (Vρτ ) = inf

P∈P
EP (Vτ ) ≤ EP ∗

(Vτ ) ≤ EP ∗
(Vρτ ).

3
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3.3 Characterization of a Saddle-Point

In this subsection we present results about the characterization of a saddle-point

for the stochastic game defined by (1.4) and (1.3). First we shall need some

preliminary facts.

Lemma 3.8. For all stopping times τ, µ with µ ≥ τ , we have

{Z∗
τ = essinf

Z∈Z
Zτ} ⊆ {Z∗

µ = essinf
Z∈Z

Zµ}. (3.6)

Proof. The proof is based on the fact that the processes Z ∈ Z are Q−martingales,

dominated by an integrable random variable in the following sense: for all Z ∈ Z
we have Zσ ≤ Z̃σ , esssupZ∈Z Zσ, where Z̃σ is Q−integrable, since

EQ(Z̃σ) = EQ
(

lim
k→∞

↑ Zk
σ

)
= lim

k→∞
EQ(Zk

σ) = 1

thanks to Remark 2.2 and the Monotone Convergence Theorem, for some increas-

ing sequence {Zk
σ}k∈N. Therefore, we may apply the Dominated Convergence The-

orem to a conveniently chosen sequence {Zk
µ}k∈N, for which we have

essinf
Z∈Z

Zµ = lim
k→∞

↓ Zk
µ

as explained in Remark 2.2.

Notice now that the event A , {Z∗
τ = essinfZ∈Z Zτ} belongs to Fτ , hence the
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Dominated Convergence Theorem and the martingale property of Z give us∫
A

essinf
Z∈Z

ZµdQ =

∫
A

lim
k→∞

↓ Zk
µdQ

= lim
k→∞

↓
∫

A

Zk
µdQ

= lim
k→∞

↓
∫

A

Zk
τ dQ

≥
∫

A

Z∗
τ dQ

=

∫
A

Z∗
µdQ

≥
∫

A

essinf
Z∈Z

ZµdQ.

Therefore, we must have Z∗
µ = essinfZ∈Z Zµ on A, i.e.

{Z∗
τ = essinf

Z∈Z
Zτ} ⊆ {Z∗

µ = essinf
Z∈Z

Zµ} (3.7)

for µ ∈ Sτ , and the Lemma is proved. 3

In the following proposition we investigate in more detail the nature of a saddle

point (τ ∗, P ∗). We notice that if at time τ ∗ the “reward” process Y becomes

null, there is no room for improvement in the future. If the probability P ∗ can

be interpreted as the “scenario” that returns the smallest expected reward at a

certain time, then we can be sure that the same probability model is going to be

worst case scenario at any other stopping time from then on as well.

Proposition 3.9. If (τ ∗, P ∗) is a saddle-point (i.e. EP ∗
(Yτ ) ≤ EP ∗

(Yτ∗) ≤
EP (Yτ∗), holds for all stopping times τ ∈ S, and probability models P ∈ P),

then
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(i) {Yτ∗ = 0} ⊆
⋂

µ∈Sτ∗
{Yµ = 0};

(ii) EP ∗
(Yµ) ≤ EP (Yµ) for all P ∈ P and for all µ ∈ Sτ∗.

Proof. To prove (i) notice that for all stopping times µ ∈ Sτ∗ the first of the

saddle-point inequalities can be written as

Yτ∗ ≥ EP ∗
(Yµ|Fτ∗), a.s.

Therefore, 0 = Yτ∗1{Yτ∗=0} ≥ EP ∗
(Yµ1{Yτ∗=0}|Fτ∗) ≥ 0, a.s. Then we must have

{Yτ∗ = 0} ⊆ {Yµ = 0}, for all stopping times µ ∈ Sτ∗ .

To prove (ii) we shall follow a similar argument as the one presented in the proof

of the Lemma 3.8 and we obtain that

EP ∗
(Yτ∗) = EQ(Z∗

τ∗ · Yτ∗)

≥ EQ

(
essinf
Z∈Z

Zτ∗ · Yτ∗

)
= EQ

(
lim
k→∞

↓ Zk
τ∗ · Yτ∗

)
= lim

k→∞
↓ EQ(Zk

τ∗ · Yτ∗) ≥ EQ(Z∗
τ∗ · Yτ∗)

= EP ∗
(Yτ∗).

Therefore,

EQ

(
essinf
Z∈Z

Zτ∗ · Yτ∗

)
= EQ(Z∗

τ∗ · Yτ∗). (3.8)

This means that on the event {Yτ∗ > 0} we must have Z∗
τ∗ = essinfZ∈Z Zτ∗ .

Therefore, due to Lemma 3.8, we must have Z∗
µ = essinfZ∈Z Zµ on this same event,
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for all µ ∈ Sτ∗ . From the above observation, and from part (i) of this proposition,

it follows that, for an arbitrary µ ∈ Sτ∗ , and P ∈ P (setting Zσ , dP
dQ
|Fσ for σ ∈ S),

we have

EP ∗
(Yµ) = EQ(Z∗

µ · Yµ)

= EQ
(
Z∗

µ · Yµ1{Yτ∗=0} + Z∗
µ · Yµ1{Yτ∗>0}

)
≤ EQ

(
Z∗

µ · Yµ1{Yµ=0}
)

+ EQ
(
Z∗

µ · Yµ1{Yτ∗>0}
)

≤ EQ
(
Zµ · Yµ1{Yτ∗>0}

)
≤ EQ(Zµ · Yµ) = EP (Yµ),

and the proposition is proved. 3

We are able now to identify the necessary and sufficient conditions on a pair

(τ ∗, P ∗) to be a saddle-point for the stochastic game defined by (1.4) and (1.3).

Theorem 3.10. A pair (τ ∗, P ∗) is a saddle point for the stochastic game (i.e.

EP ∗
(Yτ ) ≤ EP ∗

(Yτ∗) ≤ EP (Yτ∗), holds for all stopping times τ ∈ S, and probability

models P ∈ P), if and only if:

(i) Yτ∗ = Vτ∗, a.e.;

(ii) {Vt∧τ∗ ;Ft} is a P ∗−martingale;

(iii) {Vt;Ft} is a P ∗−supermartingale.

Proof of Necessity: Suppose that (τ ∗, P ∗) is a saddle point. (i) follows immedi-

ately form Proposition 3.1, and because EP ∗
(Yτ ) ≤ EP ∗

(Yτ∗) for all stopping times
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τ ∈ S; namely,

EP ∗
(Yτ∗) ≤ EP ∗

(Vτ∗) ≤ EP ∗
(Vρτ∗ ) = EP ∗

(Yρτ∗ ) ≤ EP ∗
(Yτ∗).

Therefore, we have EP ∗
(Yτ∗) = EP ∗

(Vτ∗), and again using the fact that Yτ ≤ Vτ ,

holds a.s., for all τ ∈ S, we have that Yτ∗ = Vτ∗ , a.e.

To prove (ii) we need to notice that, because (i) holds, we must have ρτ ≤ ρτ∗ =

τ ∗ for all τ such that τ ≤ τ ∗. Then, because (τ ∗, P ∗) is saddle-point, and because

we can apply Proposition 3.5, we obtain the following inequalities:

inf
P∈P

EP (Vτ∗) ≤ inf
P∈P

EP (Vρτ ) ≤ EP ∗
(Vρτ ) = EP ∗

(Yρτ )

and

EP ∗
(Yρτ ) ≤ EP ∗

(Yτ∗) = inf
P∈P

EP (Yτ∗) = inf
P∈P

EP (Vτ∗).

Hence, infP∈P EP (Vρτ ) = EP ∗
(Vρτ ) = EP ∗

(Vτ∗), and Proposition 3.7 implies that

EP ∗
(Vτ ) = EP ∗

(Vρτ ) = EP ∗
(Vτ∗) (3.9)

holds for all τ such that τ ≤ τ ∗. Therefore, (ii) holds.

To prove (iii) we must combine the results of Propositions 3.5, 3.7, and 3.9.

Part(ii) of Proposition 3.9 shows that for all τ ∈ Sτ∗ , and P ∈ P we have

EP ∗
(Yτ ) ≤ EP (Yτ ). (3.10)
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Let us consider µ, σ in Sτ∗ , arbitrary stopping times, such that µ ≤ σ. We can

use (3.10), for stopping times ρµ, and ρσ, respectively, to apply Proposition 3.7.

We can do so since we have Yρµ = Vρµ , and Yρσ = Vρσ , respectively. Therefore,

the value process must be P ∗−martingale on the stochastic intervals [[[µ, ρµ]]], and

[[[σ, ρσ]]]. Combining this observation with Proposition 3.5 we obtain

EP ∗
(Vµ) = EP ∗

(Vρµ) = inf
P∈P

EP (Vρµ) ≥ inf
P∈P

EP (Vρσ) = EP ∗
(Vρσ) = EP ∗

(Vσ),

for all stopping times µ, σ in Sτ∗ , such that µ ≤ σ, i.e. we have proved the super-

martingale property of the process V from the stoping time τ∗ on. At this point we

can conclude due to (ii) that, {Vt,Ft}0≤t≤∞ is indeed P ∗−supermartingale, hence

(iii) is proved.

Proof of Suficiency. Let us assume now that the conditions (i)-(iii) hold. It is

easy to see that, since the maximal reward process V is a P ∗−supermartingale and

a martingale up to time τ ∗, due to optional sampling theorem we have

EP ∗
(Yτ ) ≤ EP ∗

(Vτ ) ≤ EP ∗
(Vτ∗) = EP ∗

(Yτ∗), ∀ τ ∈ S. (3.11)

To prove the second inequality of the saddle-point property, we observe that (i)

implies ρ0 ≤ τ∗ a.e., therefore the martingale property of V implies

V0 = EP ∗
(Vρ0) = EP ∗

(Vτ∗). (3.12)

We can use Proposition 3.2 for τ = 0, and obtain:

V0 = inf
P∈P

EP (Yρ0) = inf
P∈P

EP (Vρ0). (3.13)
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Hence, (3.12) and (3.13) imply EP ∗
(Yρ0) ≤ EP (Yρ0) holds for all P ∈ P ; and thus,

(ρ0, P
∗) becomes a saddle-point. We may use now the result offered by the part

(ii) of Proposition 3.9, for the saddle-point (ρ0, P
∗) to conclude that for all τ ∈ Sρ′ ,

thus also for τ = τ ∗, we have

EP ∗
(Yτ ) ≤ EP (Yτ ), ∀P ∈ P . (3.14)

Therefore, the pair (τ ∗, P ∗) is indeed a saddle-point for the stochastic game. 3
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3.4 Existence of a Saddle-Point

From what we have seen in the previous subsection, it seems that if we can find

P ∗ ∈ P such that {Vt,Ft} is a P ∗−supermartingale, we have already identified a

saddle point in the form of the (ρ0, P
∗). The problem that we still face is that such

a specific “scenario” may not exist in general, hence we are confronted with the

issue of determining appropriate conditions for the existence of such a probability

measure. Conditions like “Z is closed” (as in Remark 2.16), although by no means

minimal, seem sufficient for what we need, i.e., they assure us that there is a

Z∗ ∈ Z such that P ∗ defined as dP ∗

dQ
|Ft , Z∗

t could be interpreted as a “worst case

scenario”.

Proposition 3.11. If Z is closed (as in Remark 2.16), then there exit a probability

P ∗ ∈ P such that the value process V is a P ∗−supermartingale.

Proof. The Remark 2.16 tells us that Z is closed, translates to Zτ being closed

with respect to the L2 norm, for all stopping times τ ∈ S. This is true then for

the stoping time ρ0. Hence, due to Remark 2.2 we must have that, almost surely,

Z∗
ρ0

, essinf
Z∈Z

Zρ0 = lim
k→∞

↓ Zk
ρ0
∈ Zρ0 .

In other words, there exist a process Z∗ ∈ Z, such that the above equation is

satisfied. Then due to Lemma 3.8, we can say that Z∗
τ = essinfZ∈Z Zτ , is true a.s.

for any stopping time τ ∈ Sρ0 .

We observe next that since the value process is non-negative we must have
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EP ∗
(Vτ ) ≤ EP (Vτ ), for all τ ∈ Sρ0 , and P ∈ P . Therefore due to Proposition 3.5

we can conclude that the value process V behaves as a P ∗−supermartingale from

the time ρ0 on, since EP ∗
(Vτ ) ≥ EP ∗

(Vµ), for any stopping times τ, µ ∈ Sρ0 such

that τ ≤ µ.

We conclude the proof be observing that Proposition 3.2 implies that V0 =

infP∈P EP (Vρ0) = EP ∗
(Vρ0), therefore {Vt∧ρ0 ,Ft} is P ∗−martingale.

Hence the {Vt,Ft}0≤t≤∞ is P ∗−supermartingale for P ∗ ∈ P , chosen such that

Z∗
ρ0

, essinfZ∈Z Zρ0 . 3

3.5 Deterministic Approach to the Stochastic Game

We have already seen in the previous subsection that if Z is closed, then the process

{Vt,Ft}0≤t≤∞ is a P ∗− supermartingale for some P ∗ ∈ P . Therefore, the “value”

process V admits the Doob-Meyer decomposition of the form

Vt = V0 + Xt − Ct, (3.15)

where X is a P ∗−martingale with X0 = 0, and C is an increasing, predictable

process with C0 = 0.

The next result will offer an interpretation of the martingale X, just like in the

case of the cooperative version of the stochastic game.
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Theorem 3.12. If Z is closed, there is P ∗ ∈ P such that

V0 = EP ∗
(

sup
0≤t<∞

(Yt + Λt)

)
(3.16)

where Λt , X∞ −Xt.

The process Λ can be interpreted as the Lagrange multiplier enforcing the con-

straint that the player should stop at stopping times rather than arbitrary random

times.

Proof. Let us denote by Mt , V0+Xt, therefore Λt , M∞−Mt. Also, like in the

proof of the theorem 2.24 we define the processes Qt , Yt +Λt, and νt , sups≥t Qs.

We shall prove that:

EP ∗
[νt|Ft] = Vt a.s. (3.17)

holds for every t ∈ [0,∞], from which (3.16) will follow immediately by taking

t = 0. Observe that,

Qs = Ys + M∞ −Ms

= Ys + (V∞ + C∞)− (Vs + Cs)

= V∞ − (Vs − Ys) + (C∞ − Cs).

But Vs − Ys ≥ 0, and C∞ − Cs ≤ C∞ − Ct for s ≥ t, so clearly we have:

Qs ≤ V∞ + C∞ − Ct = M∞ − Ct.
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Therefore, if we take the supremum over all s ≥ t, we obtain:

νt ≤ M∞ − Ct, for all t ∈ [0,∞]. (3.18)

To prove the reverse inequality, observe that

Qρt = Yρt + M∞ −Mρt = M∞ + Vρt −Mρt = M∞ − Cρt . (3.19)

Also, recall that EP ∗
(Vt) = EP ∗

(Vρt), hence EP ∗
(Ct) = EP ∗

(Cρt), and since the

process C is increasing we can conclude that Ct = Cρt a.e. Therefore (3.19)

becomes

Qρt = M∞ − Cρt = M∞ − Ct ≥ sup
s≥t

Qs. (3.20)

Since ρt ∈ St, we must have

Qρt = M∞ − Ct = sup
s≥t

Qs.

Therefore we can conclude that

EP ∗
(νt|Ft) = EP ∗

(M∞ − Ct|Ft) = Mt − Ct = Vt.

And this proves our result, for t = 0.
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