Hedging and Optimization
under Transaction Costs

Kenji Kamizono

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2001



© 2001

Kenji Kamizono

All Rights Reserved



ABSTRACT

Hedging and Optimization
under Transaction Costs

Kenji Kamizono

In this paper we address problems of partial-hedging and utility maximiza-
tion, in a general continuous-time multi-currency market with proportional
transaction costs. After setting up the market model and describing its basic
properties in Chapter 2, we study in Chapter 3 two partial-hedging prob-
lems for a cash-settled contingent claim: the problem of minimizing expected
shortfall, and the problem of maximizing probability of perfect hedge. With
the help of tools from non-smooth convex analysis, we establish the existence
of optimal trading strategies and describe them in terms of appropriate dual
optimization problems.

In Chapter 4, we consider a utility maximization problem under the same
market model. Unlike the existing literature in mathematical finance, our
utility function is the so-called “direct utility” depending on terminal con-
sumption, rather than the “indirect utility” that depends on terminal wealth.
We analyze the consumer’s choice at the terminal time and compare our di-
rect utility approach with the traditional indirect utility approach. We show
that in a market with transaction costs, direct utility is much easier to han-
dle than indirect utility, and that the standard tools from convex analysis
and the smooth calculus of variations still suffice to establish the existence

result.
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Chapter 1 Introduction

As is well-known, F. Black and M. Scholes presented in the celebrated paper
[6] their famous formula for pricing options via partial differential equations
(PDE). The modern martingale approach in mathematical finance was orig-
inated by yet another celebrated paper [19] by J. M. Harrison and S. Pliska.
Among the fundamental assumptions on the financial markets, as studied in
these pioneering papers and in most of the ensuing literature, is the assump-
tion that the market is frictionless; in particular, there exist no transaction
costs such as sales taxes, brokerage fees, telecommunication costs and mem-
bership fees in the exchange. In such a market, an investor has to pay
(respectively, can receive the full amount of) only the quoted price of the
asset when buying (respectively, selling) the asset.

The attempts to relax this assumption of no-transaction costs, have also
taken either the PDE approach or the martingale approach. Since the opti-
mization problems under transaction costs take the form of the so-called sin-
gular stochastic control problem, the PDE approach involves a free-boundary
problem which is to be satisfied by the optimal value function. One of the
important works in this spirit was done by M. H. A. Davis and A. R. Norman,;
in their paper [15] they obtained, with the help of the dynamic programming
principle, an explicit solution to a utility maximization problem under an

infinite time-horizon market with a single risky asset, whose price-process



follows a geometric Brownian motion. Another important work in this pe-
riod was the paper [32] by S. E. Shreve, H. M. Soner and J. Cvitani¢, who
considered the super-hedging problem of a call-option under the same setting
as [15]; there authors proved that the upper-hedging price of a call-option is
equal to the initial stock price, and that the optimal trading strategy is the
simple “buy-and-hold” strategy. This result was generalized by [12] to the
case of more general European contingent claims, and by [3] to the multi-
asset case. The paper [35] has an extensive survey on the PDE approach to
the transaction costs model with a single risky asset.

On the other hand, the martingale approach to continuous-time markets
with transaction costs began to appear in the second half of the 90’s. The fun-
damental work in this direction is the paper [9] by J. Cvitani¢ and I. Karatzas,
who showed that in a single-risky-asset, It6-process market model with pro-
portional transaction costs, one can identify a pair of positive martingales
(“conjugate processes”), satisfying certain additional conditions, which play
the same role as the likelihood-ratio process of an equivalent martingale mea-
sure in an incomplete market without transaction costs. This fact enables
us to take the convex-duality approach to hedging and portfolio optimiza-
tion problems under transaction costs, exactly in the same manner as in an
incomplete market. The results of that work were recently generalized by
the papers [20] and [21] to the case of markets with several risky assets.
This present thesis is on this recent spirit and framework of the martingale
approach, and considers hedging and optimization problems in a general
multi-asset, financial market under proportional transaction costs.

We organize this thesis as follows. First, in Chapter 2, we set up our
model for the financial market, essentially in the spirit of [21]. In our model,

there exist one risk-free asset, which will be called the domestic currency, and



d risky assets, which will called foreign currencies. The currency prices, i.e.,
the foreign/domestic exchange rates, are continuous semi-martingales. The
basic structure of transaction costs, is that whenever we want to transfer
as much as one domestic-currency-unit from the i-th currency account to
the j-th currency account, then we actually need to withdraw as much (1 +
A9) domestic-currency-units from the i-th currency account because of the
transaction cost of rate A\¥. The set K of (2.3) below, which will be called
the solvency region, is of fundamental importance in such a setting. We
review the basic properties of the solvency region and, give some simple but
useful results which have not been pointed out so far; see Propositions 2.2.4
and 2.2.5. We also review, in Section 2.3, the fundamental results about
super-hedging of contingent claims. The basic situation in hedging-problems
is the following. Suppose that we under-write a contingent claim at time
t = 0. Then at maturity (¢t = T'), we are going to have to pay some random
amount of domestic or foreign currency to the holder of the claim. The
question then, is to find an initial endowment and a trading strategy which
will provide terminal portfolio holdings vector in such a way, that we do not
suffer any shortfall after covering the liability, under any circumstances; in
other words, the probability of shortfall is zero. Theorem 2.3.7, obtained
by [21], gives a description in terms of the conjugate processes about the
minimum amount of initial endowment that is necessary for such riskless
super-hedging.

We start our original contribution with Chapter 3. There, we consider
two typical problems of partial-hedging. Suppose again that we are under-
writing a contingent claim. This time, however, we also suppose that we are
given some initial endowment which is strictly less than what is required for

riskless super-hedging of the contingent claim. In such a situation, we cannot



completely eliminate the risk of possible shortfall at maturity. As already
indicated by the papers [32], [12] and [3] cited above, under proportional
transaction costs, it is more the rule than the exception that we may not have
initial endowment enough to find a riskless super-hedging trading strategy,
simply because the minimum amount of initial endowment that is necessary
for such riskless super-hedging is too high. Thus, it is frequently a crucial
matter to find an alternative hedging scheme. The fundamental question
of partial-hedging is to find a trading strategy that minimizes that risk.
Obviously, such a question does not make sense unless we specify some risk-
measure. We shall consider two different risk measures and show that for
each of them, there exists a certain terminal portfolio holdings vector and
the super-hedging of this terminal holdings is optimal for the original problem
of partial-hedging.

In Chapter 4, we consider utility maximization problems. Our main con-
tribution in this chapter is that we deal with a market with several con-
sumption goods by using a so-called direct utility function. In mathematical
finance, it is of common practice to specify a “utility” function of terminal
wealth and/or of inter-temporal consumption, measured in monetary-units.
In other words, utility depends on consumption only through the total expen-
diture allocated for consumption. Such a utility function is called an indirect
utility function. A direct utility function is a more fundamental object, and
depends on how much physical amount of consumption good is actually con-
sumed. In a complete market without transaction costs, it was proved by
P. Lakner in his doctoral dissertation that a separation principle holds, which
relates direct and indirect utility functions. According to Lemma 3.3 of [27],
in order to solve a utility maximization problem with a direct utility func-

tion, we may first consider a utility maximization problem over the total



expenditure process with some suitable indirect utility function; then, with
the optimal total expenditure process specified, we may consider an alloca-
tion problem, namely about how much portion of the total expenditure to
allocate to each consumption good. In our model, Proposition 4.3.5 below
corresponds to such a separation principle, and states that a utility maxi-
mization problem with a direct utility function is equivalent to that with a
suitable indirect utility function. However, in our case, the resulting indirect
utility function turns out to be rather hard to deal with. This is because in
our market model, (i) there exist transaction costs, and (ii) several different
currencies are available for purchasing consumption goods. We show in Sec-
tion 4.4 that with direct utility function, we can prove the existence result by
standard tools from convex analysis and the smooth calculus of variations.
Finally, in the Appendix, we provide some auxiliary results and ramifica-
tions. In Section A.1, we review the bipolar theorem (Theorem A.1.1 below)
on the space of all non-negative random variables which are not necessarily
integrable. We prove some related results which we have used in Section 3.4.
Sections A.2 and B.1 contain the proofs for ramifications of our results in

Chapters 3 and 4, respectively.



Chapter 2 The Model

2.1 Trading Strategies and Portfolio Holdings

Throughout this thesis, we fix a complete probability space (2,.%,P), and
on it a filtration F = {F(t); t € [0, T]} satisfying the usual conditions. Also,
whenever we deal with a martingale, we shall always take the RCLL (right-
continuous with finite left-hand limits) modification; the usual conditions
enable us to take this convention. The time-horizon T' € (0,00) is a fixed
constant. Our financial market consists of d-currencies with prices given
by the components of an F-semimartingale S(-) = {(S*(¢),...,S%(t)); t €
[0, T}, with values in (0,00)¢ and continuous paths. We assume that the
first component S'(-), denoting the “domestic currency”, is normalized to be

1. We also assume the following.

Assumption 2.1.1. There exists at least one equivalent martingale measure
Q for the process S(+); that is, Q is a probability measure, equivalent to P,

under which the process S(-) is a martingale.

The reason that we regard S(-) as a vector of currencies is that it is more
convenient to take such a viewpoint for the utility maximization problem in
Chapter 4. For the partial-hedging problems in Chapter 3, however, there is
no such convenience in viewing the components of S(+) as prices of currencies;

we may simply think of the first component S*(-) as the risk-free asset or



the bank-account, and of the remaining components S?(-), ..., S%(-) as risky
assets such as equity stocks.

In our market, a transfer from the ¢-th currency account to the j-th
currency account is subject to a proportional transaction cost at the rate A%,
where each \¥ is a nonnegative constant such that \ = 0, V1 < i < d. This
means that in order to transfer 1-unit of the i-th currency to the j-th currency,
an investor needs to withdraw (1-+\%)-units of the i-th currency and pay A\¥-
units to the exchange (or the broker) as a transaction cost. A trading strategy
is an R%?_valued, F-adapted process L(-) £ (L¥(-))1<; j<a defined on [0, T),
with each component L¥(-) having right-continuous, non-decreasing paths
with L¥(T—) £ limyr LY(t) < oo a.s. The random variable L¥(t) denotes
the cumulative amount of the i-th currency transferred to the j-th currency
over the period [0,¢]. Since L(-) is assumed to be right-continuous, L(t)
can depend on S(t) at each time ¢; thus dL(t) should be understood as the
transfer made immediately after the price S(¢) has been observed. We do not
require L(0) to be equal to 0, which means a transfer at time 0 is allowed.
We adopt the convention L(0—) = 0, so that L(0) — L(0—) is equal to the
transfer made at time 0.

For an initial endowment x € R? and a trading strategy L(-), we define
the portfolio holdings process X*(-) = (XI*(-),..., X3 (.)) by

(2.1) X(t)=a' +/0 X;;L(u—)dgil((ul;) {0 — (L AL}

tel0,T),i=1,...,d

The i-th element X*(¢) of the random vector X*(¢) thus denotes the amount
of the i-th currency held at time ¢. Each X¢(¢) is measured in terms of the

domestic currency; that is, X'L(t)/S%(t) denotes the number of i-th currency



units held at time ¢. The equation (2.1) can be rewritten in terms of the

“number of currency units” held, namely as

(2.2) ";(g) _ Sf”(lo) o Siiu);{dﬂi(u)—(1+)\“)dLU(u)},

for every t € [0,T) and ¢ = 1,... ,d. Note that since we have assumed the
trading strategy process L(-) to be right-continuous, the portfolio holdings
process XX(-), which is also right-continuous, should be understood as the

position right after the transfer at time ¢ has taken place. In particular, we
have X (0) # z if L(0) # 0.
2.2 The Solvency Region

Following [20], we define the solvency region K by
(2.3)

Ké{xeRd

d
Ja € M% :x"+Z[aﬁ—(1+A“)aU] >0,Vi=1,... ,d},

j=1

and the positive polar K* of K by
(2.4) K2{yeR'|yx>0 VzeK}.

Here and in the sequel, we denote by M¢ the space of (d x d)-matrices with
real-valued components such that the diagonal elements are equal to 0, and by
Mi the space of matrices that belong to M¢ and have non-negative elements.
The vector space M? can be identified with RX¢1  Similarly, under this

identification, M? can be identified with the non-negative orthant Ri(dfl) of

Rd(d-1)



The economic significance of the solvency region K in (2.3) is the follow-
ing. Suppose that the portfolio holdings vector x belongs to K. Then there
exists a so-called “transfer matrix” a € Mi such that

d
o+ [0 = (14 A)a"] >0, Vi=1,...,d.

j=1
In other words: if, for each 7 and j, we transfer as much as a” domestic
currency units, from the i-th currency to the j-th currency, then after all such
transfers have been completed and the appropriate transaction costs have
been paid, we obtain a new vector of portfolio holdings with non-negative

amounts in each currency.

Proposition 2.2.1. The sets K and K* are closed convex polyhedral cones
of RY satisfying K* C RY C K. Furthermore, we have (K*)* = K, that is

K={zecR |y -2>0, Yy c K*}.

Proof. It is obvious that R? C K and thus K* C R%. To show that K is a
closed convex polyhedral cone, define the set A by

(2.5)

A= {(w,a) € R? x M2

d
o+ [ = (L+X7)a¥] >0, Vi=1,... ,d}-

j=1
Then, as the intersection of finitely many closed linear half-spaces of R? x
M? ~ R A is a closed convex polyhedral cone. Since K is the image of A
under the projection from R? x M? onto R?, it follows from Theorem 19.3 of
[29] that K is a closed convex polyhedral cone. As the positive polar of K,
K* is a closed convex polyhedral cone from Corollary 19.2.2 of [29]. O

The following property states that the cone K* of (2.4) consists of those

vectors of portfolio holdings which are parsimonious; the holdings in each
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of the currencies are worth there more than in any other currency, after
factoring-in the transaction costs for the transfers. Although this property
can be easily checked by direct computation, we offer a proof that will also

be informative for Propositions 2.2.4 and 2.2.5 below.

Proposition 2.2.2. The positive polar cone K* of (2.4) can also be ex-

pressed as

(2.6) K*={yeR] |y —(L+X9)y’ <0, Vi#j}.

Proof. Let A* be the positive polar of the set A defined in (2.5), namely
(2.7)  A* = {(y,b) € R* x M? | y-z + vec(b)-vec(a) > 0, V(z,a) € A},

where vec(a) is the vector corresponding to the matrix a € M? under the
identification M% ~ R¥?~1)  Notice that for each (z,a) € R xM?, (z,a) € A

if and only if

e;i-x + vec(c;)-vec(a) >0, Vi=1,...,d,

vec(d;;)-vec(a) > 0, Vi # j.

where e; is the i-th unit vector of R?, §;; is the (i, 7)-th unit matrix of M?

and ¢; is a matrix in M? with (j, k)-element given by

1 if j=i#k
(2.8) = (14N i k=i
0 otherwise

Thus, from p.122 of [29] and (2.5), we see that

A* = cone{(e;,¢;), (0,0;5); i1 # 7}
= cone {(e1,c1), .-, (ea,ca)} + ({0} x M%) .
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Therefore, (y,b) € A* if and only if there exist « € R and v € M such
that

d d
y= Z oafe, and b= Z ey, + u.
k=1 k=1

By solving the first equation for o and substituting it into the second, we

see that (y,b) € A* if and only if y € R and
(2.9) b7 >yl — (1+ A7)y, Vi # j.
Finally, notice that since K is the image of A under the projection onto R?,
we have
K*={yeR"|(y,0) € A*},
which, in conjunction with (2.9), gives the assertion. O

Corollary 2.2.3. Every non-zero vector in the cone K* has only strictly

positive components. In other words, we have K*\ {0} C (0, 00)<.

Proof. Let y € K*\ {0}. Without loss of generality, we may assume that
y' > 0. Then from (2.6), we have

0<y' <(1+AXYy', Vi=2,....d,
which implies y € (0, c0). O
The next proposition states that the inequality on the right-hand-side
of (2.3) can be actually replaced by equality. This implies that whenever

r9 —x1 € K, we may find a transfer matrix a with which we can move from

the position x5 to the position z; without making any surplus.

Proposition 2.2.4. The solvency region K can also be written as

(2.10)

K:{xeRd

d
aaeMi:xi+2[aﬂ—(1+w)a“]:0, v¢:1,...,d}.

j=1
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Proof. Let Ky be the set appearing in the right-hand-side of (2.10) and K}
be its positive polar. Then, as in the previous two propositions, we can show

that K, and K are closed convex polyhedral cones of R? and that K is

given by
(2.11) K; = {yeRd Y — (1+29)y' <0, Vz';éj}.
It is clear that K* C Kj. We claim K* = K. To see this, let y € K. Then
we have
Y <(1+A7)y" and ¢ < (14N, Vi,
and thus
- 1 )
1+ A9 — —ly" >0, Vi=1,...,d.
+ 1 + )\]Z y — Y ¢ Y 7d

Since 1+ A% — 1/(1 + M%) > 0, it follows y* > 0. This proves K* = K} as
claimed. Therefore, we have K = (K*)* = (K{§)* = K,. O

From Proposition 2.2.4, for each ¢ € K, there exists a matrix a € M‘i

such that

(2.12) T+

J

[ — (1+ X9)a¥] =0, Vi=1,...,d.

d
=1

For each = € R%, let A(z) be the set of matrices a € M? that satisfy (2.12).

The map x — A(z) is then a multifunction of K into M.

Proposition 2.2.5. The multifunction A(-) admits a continuous (and thus,

in particular, Borel-measurable) selection, which we hereafter denote by a(-).
Proof. Define a linear map T': M?¢ — R? by
>iala? — (14 A)aV]
T(a) = : , a€M’,
S [0 — (14 A¥)ad]

j=1
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or equivalently,
vec(cp)-vec(a)
T(a)= : = cvec(a),

vec(cq)-vec(a)

where
vec(ep)!

>

e Rixd(d-1)
vec(eq)'
with ¢; given by (2.8). It is easy to see that the vectors vec(¢;); i =1,...,d,
are linearly independent, and hence rank(7") = d. Noting that we have a
vector space isomorphism M? ~ R¥d-1) ~ R x Rdd-2)

exists a linear map S: M? — R 92 with rank(S) = d(d — 2) such that the

, we see that there

linear map
(T,8): M? 3 a (T(a),S(a)) € R x RH4-2)

is non-singular.

Now, from Proposition 2.2.4, we have K = —T'(M%) and thus
K = ~T(M3) = projga[—(T, S)(M{ )] = projpa[-T(M7) x {0}],

where projps is the projection of R*?=1 onto the space R? of the first d
components. In particular, —(7, )" maps K x {0} into M? . Furthermore,
by the definition of the multifunction A, we have A(z) = (=T *(z)) N M,
Vo € K. Thus, the map

a(z) = —(T,S5) *(z,0), z€K,

gives a continuous selection of A(-). O
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As a closed cone in R?, the solvency region K induces the partial pre-

ordering = on R? by
(213) T2 i 1 g Ty — 1 € K.

According to the economic significance of the solvency region K, which we
explained in the first paragraph of this section, the inequality x5 > x; signifies
that, starting with the portfolio holdings vector x5, an investor can move to
the new portfolio holdings vector x;, by making appropriate transfer. In

particular, for each portfolio holdings vector z € R?, the quantity
(2.14) {(z) £sup{¢ €R |z = (£0,...,0)}

denotes the maximal amount of the domestic currency that can be ob-
tained through liquidating the portfolio holdings vector . We call the func-
tion £(-) the liquidation function; it is real-valued, as we explain right after
Lemma 2.2.6 below.

For our purposes, it is sometimes convenient to “normalize” the vectors
in the positive polar cone K* so that the first component is equal to 1. We

thus introduce the set
(2.15) AE K N ({1} x R,

The set A of (2.15) has the following properties. The proofs can also be
found in Lemma 5.1 of [3] and Section 3.3 of [4].

Lemma 2.2.6. (i) A is non-empty and compact in R¢;
(ii) x> x1 if and only if y-(zs —2x1) >0, Yy € A.

Proof. (i) From (2.6), it is clear that (1,...,1) € A and thus A # 0. Since
K* is closed in R?, so also is A. Let y € A. Since y' = 1, the equation (2.6)
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gives
0<y/ <(1+AY), Vji=2,...,d,
which implies that the set A is bounded and thus compact.
(ii) Suppose that y-(xs — x1) > 0, Vy € A. Let z € K* be arbitrary. If
2 # 0, we have 2! > 0 from Corollary 2.2.3, and thus,

z-(zy — 2p) = 2 (%) (zg —x1) >0,

since z/2! € A. For z = 0, we trivially have z-(zy — z;) = 0. It follows that
z-(x2 —x1) > 0, Vz € K*, which implies x5 — z; € K because K = (K*)*,
and thus zo = z;. This proves the “if” part. The “only if” part is obvious
from (2.13) and (2.3). O

Part (ii) of Lemma 2.2.6 gives a “dual representation” of the partial
preordering = of (2.13). As a consequence, we have the following dual rep-

resentation

(2.16) {(r) =inf{y-x |y € A}, VzrecR

for the liquidation function ¢(-). From Proposition 2.2.1, we have then
l(z) >0 < z€ K.

Note also that from (i) of Lemma 2.2.6, the infimum in (2.16), and thus, by

duality, the supremum in (2.14), is always attained.

2.3 Hedging

In this section, we summarize results from [21] which will be used frequently

in our later analysis. We denote by .#; the set of all P-martingales Z(-)



16

with values in (0,00)? such that diag[S(¢)]7*Z(t) € K*, Vt € [0,T]. Here
and in the sequel, we denote by diag[v] the (d x d)-diagonal matrix with
diagonal elements v!,...  v9, for any vector v = (vy,...,v%) € R?. For each
z € diag[S(0)]K*\ {0}, we denote by Zy(z) the set of terminal values of such

martingales starting from z, i.e.,
(2.17) D(2) ={Z(T) | Z(-) € Mo, Z(0) = z}.

Recall now Assumption 2.1.1, take an arbitrary equivalent martingale mea-
sure Q for S(-), and let p(-) be the (RCLL modification of the) strictly positive

P-martingale
s |9Q
(2.18) p(t) =E {d_IP’ ‘f(t)] , te[0,T].

Then, for each 2z € diag[S(0)]K*\{0}, the process p(-) diag[S(+)] diag[S(0)] 'z
belongs to Zp(z) and in particular, the class Zy(z) is non-empty. Indeed,
since S(+) is a martingale under Q, Bayes’ rule (Lemma 3.5.3 of [25]) implies
that p(-) diag[S(-)] diag[S(0)] 'z is a martingale under P.

In order for the hedging results of [21] (Theorems 2.3.6 and 2.3.7 below)

to be valid, we need the following assumption on “efficient friction”.
Assumption 2.3.1. The cone K* has nonempty interior.

We see easily that (1,...,1) € int(K*) from (2.6), if A\¥ > 0, Vi # j.
Also, it is clear that this assumption does not hold if \¥ = 0, Vi and Vj.
This implies that our model does not include the market without transaction
costs as a special case, and most of our results are particular to markets with
transaction costs; see also the F-condition of [21] and [20]. From now on, we

shall always assume that Assumption 2.3.1 holds.
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An R?-valued stochastic process X (-) will be called S-bounded from below

if there exists a real constant k > 0 such that
(2.19) X(t) = —kS(t), Vtel0,T)

holds almost surely. For an arbitrary initial portfolio holdings vector z € R?,

a trading strategy L(-) and a martingale Z(-) € .#, Itd’s formula gives
Z(t) - diag[S(t)] "X (1)

= Z(0) - diag[S(0)] 'z + / diag[S(u)] ' XE(u—)-dZ (u)

0,4
d
u ..
dL7*(u) — (1 + A\9)dLY
*;/tswz{ X)L )}

— 2(0) - diag[S(0)] 'z + /[0 | diag{S()] " X (u)-a7()

O IRE

i=1,j

SH

Zz(u) i (q
S(u)}dL (u).

On the right-most-side, the stochastic integral is a local martingale, and the

+ V)

last Lebesgue-Stieltjes integral is non-increasing in ¢ because of (2.6); thus,
the process Z(-)-diag[S(-)] *XL(-) is a local supermartingale. Part (i) of the
next lemma states that it is actually a supermartingale if X’ (-) is S-bounded
from below. Part (ii) implies that the trading strategy L(-) is “admissible”
in the sense of Definition 2.3.3 below, if and only if XZ(-) is S-bounded from
below and X2 (T—) € K holds almost surely; see also Remark 2.3.5 below.

Lemma 2.3.2. Let * € R? be an initial endowment vector and L(-) be a
trading strategy. Suppose that the portfolio holdings process XE(-) is S-

bounded from below. Then the following assertions hold.

(i) For every Z(-) € My, the process Z(-) - diag[S(-)] ' XL(-) is a super-

martingale;
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(i) If XX(T-) € K a.s., then XE(t) € K a.s. for every t € [0,T).

To see (i), it suffices to observe that the local supermartingale Z(-) -
diag[S(-)] *XL(-) is bounded from below by a martingale if XZI(-) is S-
bounded from below. Part (ii) is an easy consequence of the supermartin-
gale property, and of the fact that p(-) diag[S(-)] diag[S(0)]7'z € 4, Vz €
diag[S(0)]K™* \ {0} with p(-) given by (2.18) for some equivalent martingale
measure Q. For a more complete proof, see Lemmas 3.1 and 3.3 there in [21].
For an argument similar to (ii), see also the proof of the “sufficiency” part
of Lemma 4.5.1 in Section 4.5.

Now, let € R? be an initial portfolio holdings vector and L(-) be a
trading strategy. Note that a component XF(-) of the random vector XZ(-)
of (2.1) can take negative values, which means that an investor can take a
short position for some currencies. We do not allow, however, the “total
value” of the portfolio holdings vector X’ (t) to be negative at any time ¢.

More precisely, we make the following definition of admissibility.

Definition 2.3.3 (Admissible Trading Strategies). Let z € K be an
initial endowment vector. A trading strategy L(-) is called admissible for x,

if the following “no-bankruptcy” condition
(2.20) XEt)ye K, vtelo,T)

holds almost surely. We denote by &7 (x) the set of all admissible trading

strategies.

Note that the condition XX (t) € K is equivalent to ¢(XZ(t)) > 0, in
terms of the liquidation function of (2.14).

Definition 2.3.4. A contingent claim is a K-valued, % (T')-measurable ran-

dom vector G = (G,... ,G9%). The i-th component denotes the amount of
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the ¢-th currency that the claim holder receives at time 7' from the issuer of
the claim, measured in terms of the domestic currency; in other words, the

number of i-th currency units received is G'/S*(T).

The purpose of the issuer of the claim is to invest some initial endowment
vector € K over the time period [0,7"), by taking some admissible trading
strategy L(-) € &(z), so that the terminal holdings vector XZ(T—) “covers”
the liability G in the sense that

(2.21) XHT-)-GEeK, as.

In other words, by appropriate transfers of his holdings at time ¢ = T', the
issuer of the claim can move his holdings X2(T—) to the target-position G,
that he has to deliver to the holder (recall Proposition 2.2.4 and the discussion
preceding it).

If such a trading strategy L(-) € &/ (x) exists, we say that the contingent
claim G is hedgeable with the initial endowment x and the trading strategy
L(-) hedges the contingent claim G. We denote by A, the set of all contingent

claims that are hedgeable with initial endowment z, i.e.,
(2.22) A, 2 {G e LK) |3L(-) € Z(z) : XX(T-) = G as.}

forz € K.

Here and in the sequel, we denote by L° (E) the set of all E-valued, Z (T')-
measurable random variables, for any Borel set E of some Euclidean space
R™. Similarly, for 1 < p < 0o, we denote by LP(E) the set of p-th integrable
(essentially bounded, if p = oo) random vectors in LY(E). We omit E and
write LY or I?, when E = R.

If a contingent claim G is hedgeable with the amount z, and the holder

agrees to pay the amount z to the issuer at time ¢ = 0, as the price of the
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right to receive the amount G at time ¢t = T, then the issuer can safely
assume the liability associated with the contingent claim G without taking

any risk of shortfall.

Remark 2.3.5. The paper [21] defines admissibility of a trading strategy L(-)
to be S-boundedness from below of the portfolio holding process XZ(-). For
our purpose, however, the only interesting trading strategies will be those
with terminal holdings XZ(T—) € K. By virtue of (ii) of Lemma 2.3.2,
if XE(-) is S-bounded from below and XX (T—) € K, then we automati-
cally have XX (t) € K, Vt € [0,T) almost surely. Similarly, while a contin-
gent claim is defined in the paper [21] to be an arbitrary R¢-valued, % (T)-
measurable random vector G such that G = —xS(T') a.s. for some constant
k > 0, we need to consider, for our purposes, only K-valued contingent

claims.

The next theorem is an easy consequence of Lemma 3.5 of [21] about the

more general, so-called “S-Fatou” closedness of the set A, .

Theorem 2.3.6. Under Assumption 2.3.1, the set A, of (2.22) is closed un-
der a.s.-convergence; i.e., if {Gplnen C Ay is a sequence converging almost

surely to some F (T')-measurable random vector G, then we have G € A,.

If G is a hedgeable contingent claim with initial endowment = € K, then
there exists an admissible trading strategy L(-) € /() such that XZ(T—) =
G. Tt then follows from (i) of Lemma 2.3.2, the continuity of the paths of
S(-), the uniform integrability of the martingale { Z(¢);t € [0, T'|} and Fatou’s
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lemma that

E [Z(T)-diag[S(T)] G| < E[Z(T)-diag[S(T)] ' X2(T-)]
Z(T)-diag[S(T—)] "' X7 (T )]

E [2() diaglS(T—)| " X£(T-) | #(T-)]]
Z(T-)-diag[S(T—-)] ' X2 (T—)]

lim E [ Z(1)-diag[S(t)] " XX(1)]

<E
E
E
E

[
[
[
[

| A

IN

t1T
Z(0)-diag[S(0)] "a.

The next Theorem 2.3.7 states that this condition is actually necessary and
sufficient for the hedgeability of G. The theorem can be derived from the
corresponding Theorem 3.2 of [21] (with slightly different terminology) by

using (ii) of Lemma 2.3.2 above.

Theorem 2.3.7. Let Assumption 2.3.1 hold. Let G be a contingent claim,
and let x € K be an initial endowment. Then G is hedgeable with x, if and

only if
(2.23)  E[Z(T)-diag[S(T)]"'G] < Z(0)-diag[S(0)] 'z, VZ(-) € Mo,

or equivalently,

(2.24) E[Z-diag[S(T)] 'G] < z-diag[S(0)] ',
VZ € Py(z) and Vz € diag[S(0)] K™\ {0}.
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Chapter 3 Partial-Hedging of Cash-Settled

Contingent Claims

3.1 Introduction

In Section 2.3, we briefly described the results about hedging a contingent
claim. In particular, Theorem 2.3.7 gave a necessary and sufficient condition
for hedgeability in terms of duality. However, it has been pointed out that
hedging a contingent claim often requires a large amount of initial capital.
For example, in the case of simple European call-options, the minimum initial
cash required for hedging is just the initial stock price, which is a trivial upper
bound on the value of the option; and the optimal strategy for hedging a
call-option is the so-called buy-and-hold strategy; see [32] or [28]. Therefore,
unless the option writer is willing to take some risks of possible shortfall,
writing a call-option is meaningless, and hence, for an option writer, taking
and controlling the risk of shortfall is essentially a decision problem.

With such a situation in mind, a natural question arises: What s the best
strateqy to follow when the initial capital is less than the upper hedging price?
This is the main problem which we consider in this chapter. First of all, in
order to evaluate the performance of the trading strategy, we need to specify
a certain criterion. We consider two different criteria; the first is minimiza-
tion of expected shortfall, and the second is maximization of the probability

of perfect hedge. We also consider a modified version of the second criterion,
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namely, mazximization of the expected success-ratio. These risk-measures are
considered by [17] and [18] in the case of a complete market, by means of the
Neyman-Pearson fundamental lemma,; the authors also discussed several in-
teresting cases, including the incomplete market and the volatility jump stock
process. The paper [24] discussed the connection between Monge-Ampere-
type equations and the optimal value function of the problem of maximizing
the probability of perfect hedge in markets with partial information. The
result obtained by [24] was generalized by the paper [33]. The paper [33] also
considered the case where wealth processes have nonlinear drift. As for the
problem of minimizing expected shortfall, the paper [10] considered the case
of a complete market with a margin requirement, and also took into account
the uncertainty of the knowledge about the real-world measure. The paper
[8] gave an explicit formula for the optimal target wealth to attain the min-
imum expected shortfall in terms of the dual optimization problem for the
case of incomplete and constrained markets, which is similar to the formula
which we obtain in this chapter.

In this thesis, we consider partial-hedging problems for cash-settled con-
tingent claims and with initial endowment in cash, that is, the payoff of
the contingent claim and the initial endowment allocated for the effort to
hedge the contingent claim arise in the domestic currency. Since the con-
tingent claims and initial endowments appearing in this chapter are all one-
dimensional, we omit the super-script to denote them. We denote by IL8r the
set of .# (T')-measurable random variables with values in [0, 00), and by L%

the set of integrable random variables in LY .
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3.2 Cash-Settled Contingent Claims

A cash-settled contingent claim is simply an % (T)-measurable, non-negative
random variable G; then the random vector (G,0,...,0) is a contingent
claim, as defined in Section 2.3. Given an initial endowment x > 0 in cash
(i.e., domestic currency), we denote by Al the set of all cash-settled contin-

gent claims G that are hedgeable with initial endowment z, i.e.,
(31) Ai = {G S L(—)i— | (Ga 07 cee 70) € A(.’E,O,... ,0)}-
Using the liquidation function ¢ of (2.14), we can write the set Al as

(3.2)
Al ={G el |3L € #((x,0,...,0) : (X[} (T—) > G, as.}.

For each 2z > 0, we define a “cash-settled version” 2} (z) of the set Z(-) of
(2.17) by

(3.3)
A(Z2,...,Z9) e LO(RE 1), 3(22,... 2% e RL!

P;(2) 2 Zel?
’ | such that (Z,22,...,2% € Do((2,2%,...,2%))

Noting Z4(z) = 2%;(1) and our assumption S'(-) = 1, we can see the
following “cash-settled version” of Theorem 2.3.7.
Theorem 3.2.1. Let G be a cash-settled contingent claim and let © > 0 be

an initial endowment in cash. Then G is hedgeable with z, i.e., G € Al

( equivalently, (G,0, ... ,0) is hedgeable with (z,0,...,0)), if and only if

G(0)= sup E[ZG] <.

Ze2i(1)

In other words,

(3.4) Al ={Gell |EZG) <z, VYZe (1)}
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The number G(0) is called the upper-hedging price of G. It is equal to the
minimal amount of cash required to hedge the cash-settled contingent claim
G.

For our purposes, we need to enlarge slightly the space 2} (z). As a dual

of the space Al in (3.1), we choose the space 2'(z) defined by
(3.5) 2'(z) £ {H € L} |E[HG] < zz, Yz > 0 and VG € AL}

for every z > 0. From (3.4), we can easily see that Z;(z) C 2'(z2).
For later use, we summarize some of the basic properties of the set Al of

(3.2) in Proposition 3.2.2 below. Given a subset A of L}, we define the polar
A° of A by

(3.6) A2 {gell |Elfg <1, Vfe A}

Also, we say the set A is solid in LY if f € A, g € L% and g < f a.s. imply
g€ A

Proposition 3.2.2. (i) The set Al of (3.2) is convex, solid and closed

in LY under the topology of convergence in probability;
(ii)  The constant function 1 belongs to A ;
(i) Al ==zA] for every z > 0.

Proof. (i) Convexity and solidity are obvious. We show the closedness. First,
let {Gp}nen € Al be a sequence which converges almost surely to some G €
LY . Then, the sequence {(Gp,0,...,0)}nen C Apyp,... o) clearly converges to
(G,0,...,0), and thus (G,0,...,0) € Auy,. o from Theorem 2.3.6. This
implies that G € A].



26

Now, given a sequence {G,}5; C A] that converges to G € L% in
probability as n — oo, we can extract a subsequence {Gp, }$2; that converges
to G as k — oo, almost surely. Thus, G € A{.

(ii) By taking L(-) = 0, we see X}, 4 (-) = (1,0,...,0) = 0, and thus
(1,0,...,0) € A;. It follows from (3.1) that 1 € A].

(iii) Clearly, Aj = {0}. Let z > 0. Given G € A, take an admis-
sible trading strategy L(-) € #/((1,0,...,0)) such that X}, o (T—) =
(G,0,...,0) a.s. Consider the trading strategy xL(-). From (2.2), we have

X(xx%o,... ,0) ()= xX(Ii,o,... ,0) QF

This shows that zL(-) € &/((x,0,...,0)) and

X(a;cI:O,...,O) (T_) = xX(Ii,O,...,O) (T_) = l‘(G, O; s 70)

Thus zG € Al. Conversely, let G € Al and take an admissible trading
strategy L(-) € #/((,0,...,0)) such that X[, (T—) = (G,0,...,0). By
the same argument, we can show that the trading strategy L(-)/z belongs to
#((1,0,...,0)) and X5 (T—) = (G/x,0,... ,0). This shows G/z € A}
and thus G = z(G/z) € zA]. O

There is a similar characterization for the sets of (3.5).

Proposition 3.2.3. (i) The set 2*(1) of (3.5) is convez, solid and closed
m L& under the topology of convergence in probability. More precisely, it is

the smallest such subset of L. that contains the set Z3(1) of (3.3);
(ii) 2'(1) is bounded in L';

(iii) 2% (z) =292'(1) for every z > 0.
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Proof. (i) From (3.5) with z = 1, (3.6) and (iii) of Proposition 3.2.2, we
have
2'(1) = (A1)
On the other hand, (3.4) of Theorem 3.2.1 gives
Ay = (Z,(1))".
Combining these two, we get

2'(1) = (2(1))™.

But then, from the bipolar theorem of [5], 2'(1) is equal to the smallest
convex, solid subset of LY , closed under the topology of convergence in prob-
ability P, that contains Z;(1); for a brief synopsis of the bipolar theorem,
see Appendix A.1.

(ii) Since the constant function 1 belongs to Al we have E[H] < 1 for
every H € 2*(1).

(iii) This follows immediately from (3.5). O

The next proposition indicates that the enlargement of the dual space 2
to 2! is “minimal”, in the sense that it preserves the dual characterization

of the upper-hedging price.

Proposition 3.2.4. For every G € L., we have

(3.7) G(0) = sup E[ZG]= sup E[HG].

Zegt(1) He9'(1)

Proof. Since 2;(1) C 2%(1), it is obvious that

sup E[ZG] < sup E[HG].
Ze2i(1) He9'(1)



28

To prove the reverse inequality, we first claim that for each fixed G € Al

the map Jg: LY — [0, o] defined by
(3.8) Jo(H) £ E[HG]

is lower semi-continuous under the topology of convergence in probability.

But, since this topology is also given by the metric
A
o HK)=E1AN|H-K||, H K€ Li,
we only need show that

(3.9) E[HG] < lim E[H,G|

n—o0
for any sequence {H,}22, C LY, convergent to H € L in probability, such
that lim, .., E[H,G] exists in [0,00]. Given such a sequence {H,}%°,, we
may take a subsequence {H,, }?>, which converges to H almost surely; see,
for example, Exercise 4.2.7 of [7]. It then follows from Fatou’s lemma that

E[HG] < lim E[H,,G] = lim E[H,G],
—00

n—yo0
which gives (3.9).

We now proceed to prove the assertion of the proposition. Let H € 2'(1)
be arbitrary. We first consider the case where E[HG] < oco. In this case, from
the lower semi-continuity of the map Jg(-) of (3.8), for every £ > 0, there
exists 6 > 0 such that

E[HG] < E[KG] + ¢
holds for every K € LY satisfying o(H, K) = E[1 A |H — K|] < §. But since
2 (1) is the smallest convex, solid, closed set that contains 2 (1), there exists
a convex combination of the form > " | a;W; such that o(H, 3 7", a;W) <
d, where 0 < a; < 1, for every j = 1,...,m, 37" o = 1, W; € L) and



29

W; < Z; for every j = 1,...,m for some random variables Z; € Z;(1); see

Proposition A.1.2 in Appendix A.1 for a proof of this claim. It then follows

that

E[HG] < E

o)

+e= ZQJE[W]G] +¢
j=1

j=1 j=1
< max E[Z;G]+e¢ < sup E[ZG|+e.
1<j<m zeat(1)

Let € | 0 to obtain
EHG] < sup E[ZG].

Ze2i(1)

< iajE[ZjG] +e< <1I§Ilja§a)’an[ZjG]> (i aj) +e

Next, consider the case where E[HG] = co. Then, the lower semi-continuity

of the map Jg(+) of (3.8) implies that for every M > 0 there exists a number
§ > 0 such that M < E[KG] for every K € 2'(1) with o(H,K) < 4. Asin

the above, we can show that

sup E[ZG] =E[ZG] = .
Ze2i(1)
In either case, we have

EHG] < sup E[ZG].

Ze2i(1)

By taking the supremum over H € 2'(1), we obtain the assertion.

3.3 Minimizing Expected Shortfall

Suppose that G is a cash-settled contingent claim such that

(3.10) G(0) = sup E[ZG] < .
Zeat()
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According to Theorem 3.2.1, with initial endowment z > G(0), the claim
issuer can hedge the contingent claim G without risk. However, as we men-
tioned in the introduction of this chapter, the upper-hedging price G(0) is
often too high, for the holder of the claim to agree to pay it at time t = 0.
Now, given z < G(0), there exists no hedging trading strategy for G, and
the claim issuer must take some risks of shortfall. The natural question is
then “what is the optimal trading strategy that minimizes the risk?”. This
is the partial-hedging problem we shall consider in the rest of this chap-
ter. Clearly, what we need to do first, is to give a precise meaning to the
concept “risk”. In this section and the next, we choose the expected shortfall
E(G— K(X(I;,o,... 0)(T'=)))" as the risk measure and consider the minimization
problem of it. The value function of this problem is then given by

3.11 Viz) 2 inf E(G— (Xt T-9))", z>o0.
(3.11) (z) e o) ( (XGoo..0(T-)) >

To exclude uninteresting case, we assume, in addition to (3.10), that
(3.12) E[G] < oo.

If the process S(+) is a martingale under the original probability measure P,
then we have 1 € Z3(1), and thus the inequality (3.12) automatically follows
from (3.10). Finally, note that the value function V(-) of (3.11) can also be
expressed as
(3.13) V(z) = inf E(G —&)7,
£ehy

where the set Al is defined by (3.1).

We adopt the convex-duality approach. In this approach, the role of
“dual variables” will be played by the elements of the spaces 2%(z), z > 0

in (3.5). And as the “conjugate” of the convex objective function R(u) =
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(g —u)", u >0, for any given fixed g > 0, we consider the concave function

R:[0,00) — R defined as

(3.14) R(v) & igg[(g —u)" +ovul=(1Av)g, v>0.

By definition, we have

(3.15) (g—u)" > 1 Av)g—vu, Yu>0, Vv>0,
with equality if

(3.16) u € I(v).

Here I is the multifunction

{9} if 0<v<1
(3.17) I(v) =X [0,g] if v=1

{0} if v>1
The function v — —R(—wu) is the so-called Legendre-Fenchel transform of
the map u — (g — w)*, which is by now a well-known standard tool for
optimization problems in mathematical finance.

Now, for any £ € AL, 2 > 0 and H € 2'(1), the equations (3.15) and

(3.5) give

(3.18) E(G — &) > E[(1 A zH)G] — 2E[HE] > E[(1 A 2H)G| — zz,
with equality if
(3.19) € l(zH) and E[H¢] =z.

Notice that the first condition is equivalent to the existence of an % (T')-

measurable random variable U such that 0 < U < G and

(3.20) §=Glegay +Ula-1y.
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From this observation, we see that, with suitable z, H and U, the random

variable ¢ given by (3.20) attains the infimum in (3.13) if it belongs to Al

and satisfies E[H¢] = z. In order to find such z, H and U, we consider the

dual optimization problem given by

(321) W(z)2 sup {E[(1 AzH)G] - 2z} =supy(z;z) < V(z)
220, HEP (1) 220

thanks to (3.18) and (3.13), where

(3.22) Y(z;2) 2 V(2) — 22, 2>0,2>0
(3.23) V(z)2 sup E[(1AzH)G], z>0.
He21(1)

By virtue of (iii) of Proposition 3.2.3, the concave function V(-) can also be

expressed as

(3.24) V(z)= sup E[(1AK)G], Vz>0.
Ke21(z)

The main result is the following theorem.

Theorem 3.3.1. Let G be a cash-settled contingent claim satisfying the con-
dition (3.10) and (3.12), and let = be initial endowment such that 0 < x <
G(0). Then:

(i) There exist a number 2 > 0 and a random variable H € 9'(1) that

attain the first supremum in (3.21);

(ii) There exists a random variable U € LY with U < G a.s. such that the
random variable
= Gligoy T Ulgp gy,
given by the right-hand-side of (3.20) with (2, H) = (Z, I:I), belongs to
AL, satisfies E[HE] = & and thereby attains the infimum in (3.13).

T )
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We shall prove this theorem in the next section. The next corollary easily

follows once this theorem is proved.

Corollary 3.3.2. There exists a trading strategy L(-) € 4/((z,0,...,0))
that attains the infimum in (3.11).

Proof of Corollary 3.3.2. From the part (ii) of Theorem 3.3.1, we know that
the random variable ¢ € Al attains the infimum in (3.13). Since & be-
longs to AL, there exists a trading strategy L(-) € &/((x,0, ... ,0)) such that
UXEo,. 0(T=)) > €, a.s., and hence

Vi) =BG ~ &) > E(G— (X}, o(T-) > V()

This shows that the trading strategy L(-) attains the infimum in (3.11). O

3.4 Existence via Convex Duality

In this section we shall construct an optimal é € Al for the primal problem,
in terms of the solution of the dual problem (3.21). This will be done with
the help of Lemmas 3.4.1 — 3.4.3 below. We can see by now that, in spite of
the presence of transaction costs, the basic convex-duality structure of the
optimization problem is completely parallel to that of an incomplete market;
see [8]. We may thus mainly follow Section 3 of [8]; a similar methodology for
testing composite hypotheses versus composite alternatives in mathematical

statistics, was followed in the article [11].

Lemma 3.4.1. For each z > 0 there exists a random variable H = ﬁ(z) €

2'(1) that attains the supremum in (3.23).

Proof. Take a sequence { H,}>>, C 2'(1) such that lim, ., T E[(1AzH,)G] =
V(z). First, from Proposition 3.2.3, we know that 2'(1) is bounded in L.
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Thus, from Komlés’ theorem (see, for example, [30]), there exists a subse-
quence {H,, }%, of {H,}, such that the sequence {O}°; defined by
Lk
Op =D Hny kEN

i=1

converges, almost surely, to some random variable H € ILBF. Since

k
1
E[O:€] = - > E[H, €] < supE[H, ¢ <1, Ve Al
k= ieN
we have O, € 2'(1), Vk € N, and thus H € 2'(1) from the closedness of the
set 2'(1) in probability. Next, the fact that @, € 2'(1) and the concavity
of the functional H — E[(1 A zH)G] imply that

k
~ 1
(3.25) V(z) > E[(1 A 264)G] > + > E[(1AzH,)G), VkeN.

i=1
Let k — oco. Then, being the Cesaro average of the set of numbers {E[(1 A
2H, )G}~ the right-hand-side of (3.25) converges to V(z), which implies
that
(3.26) lim E[(1 A 20;)G] = V(2).

k—o00

Finally, since 0 < (1A 20;)G < G € !, Vk € N, the dominated convergence

theorem gives

(3.27) E[(1 A zH)G] = lim E[(1 A 26;)G].
—00

The equations (3.26) and (3.26) now give

V(z) =E[(1 A zH)G].
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We next show that the function v(-;z) of (3.22) is concave and attains
its supremum at some 0 < Z < oo, when 0 < z < G(0). In order to prove

this, we need to investigate the behavior of the function (- ;z).

Lemma 3.4.2. The function v(-;z) defined by (3.22), is continuous and

concave on [0,00), and satisfies

(3.28) lim 152 o) >0,
zZ—r v
as well as
(3.29) lim 252 _
Z—00 z

Proof of the concavity of y(-;x): It suffices to prove the concavity of V(-).
Let 21 >0, 25 > 0, K; € 212%(1), Ky € 22'(1) and 0 < a < 1. We clearly

have

(3.30)
E[(ak; + (1 — a)K5)é] = aE[K &) + (1 — a)E[K€] < az; + (1 — @)z, VE € Al

which implies that aK; + (1 — @)K, € 2 (az; + (1 — a)22). It then follows
from (3.24) and the concavity of the map K — (1 A K)G that

Viazr + (1 — a)z) > E[(1 A (aK; + (1 — a)K>))G]
> aE[(1 AN K1)G] + (1 — o)E[(1 A Ky)G].

Taking the supremum of the right-hand-side over K; € 2;2'(1) and K, €
202 (1), and using (3.24), we obtain

Viaz 4+ (1—a)z) > aV(z) + (1 —a)V(z).
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Proof of the continuity of ~(-;x): It suffices to prove that lim, o V(z) = 0.
By definition, we have 0 < V(z) = SUPgegr(1) E[(1N2H)G] < zsupgeg) E[HG] =

2G(0). Since G(0) < oo, it follows that lim, o V' (z) = 0. O

Proof of (3.28): Since

/ 1
V(z) = sup E [(— A H> G] < sup E[HG] = G(0),
Z He91(1) z He9(1)
we have
(3.31) AR el GNP
zl0 z z]0 z

To show the reverse inequality for the limit-inferior, we take, for each £ > 0,

a random variable H, € 2'(1) such that

E[H.G] > sup E[HG]—e¢=G(0)—e.
He21(1)

Then, for each z > 0, we have

2T G
7( ) = sup E HG].{ZH<1} + _]-{szl} -7
z Hegl(1) <

> sup E[HGlgpoy)—=
He1(1)

Z E[HEGl{zHE<1}] — T.

Letting z | 0, we obtain from Fatou’s lemma

lim 25 S Jim E[H.Glig. ] — 2 > E[H.G] -z > G(0) — = — x.
2,0 z 2,0

Since € > 0 is arbitrary, we conclude that

(3.32) li 25 )
2]0 z

> G(0) — z.

In conjunction with (3.31), the equation (3.32) now gives (3.28). O



Proof of (3.29): Since V(z) > ~y(z;z) from (3.21), we have

V() (o) _ V()

> —x>—x, Vz>0.
z z z

Then, since 0 < V(z) < E[G] < oo, we may let z — oo to obtain

0> lim V(z) —r > —r,

z—o00 2

and thus _
e > Tm L8
z—00 2

By letting x | 0, we obtain

im L)

Z— 00 VA

It follows that _
lim 1z 2) = lim _V(z)

zZ—00 z Z—00 z

— T = —T.

This completes the proof of the lemma.
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O

Lemma 3.4.3. The function (- ;x) attains its supremum at some 0 < 2 <

0.

Proof. Because of (3.29), we cannot have supy_,_, 7((; #) = lim¢yoo 7(¢; 7) >

v(z; ), Vz € (0,00). Therefore, the concave function 7(-; ) either attains

its supremum at some 0 < Z < oo, or else y(z;z) < v(0;z) = 0, Vz > 0.

Suppose the latter is true. Then (z;z)/z < 0, Vz > 0; but this is again

impossible, because of (3.28). Therefore, the function 7(-; z) must attain its

supremum at some 0 < 2 < 0.

O

With the help of Lemmas 3.4.1 — 3.4.3, we now proceed to prove Theo-

rem 3.3.1.
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Proof of Theorem 3.3.1: Let 0 < Z < 0o be the number given in Lemma 3.4.3,
and denote by H = H(%) € 2"(1) the random variable given in Lemma 3.4.1.
Then it is clear that the pair (2, H) attains the first supremum in (3.21). This
proves ().

To prove (ii), we introduce the space
(3.33) LERxL!
equipped with the norm
(3.34) Iz, )| = || + EIK], (2 K) €L,

and consider its subset
G' 2 {(z)H)eL|z>0, He 9'(2)}

(3.35)
={(z,2H) e L|2>0, H e 2'(1)}.

Then from Proposition 3.2.3, ¢ is convex in .. Moreover, ¢! is closed in the
norm topology of L. To see this, let {(z,, 2, H,)}>%; be any sequence in ¥*
that converges to some (z, K) € L. Then z, — z and E|z,H,, — K| — 0 as
n — oo. If z =0, then E|z, H,| = z,E|H,| — 0 as n — oo, because of the
L'-boundedness of 2'(1), thus K = 0 a.s., and we are done. If z # 0, then

K 1
E‘Hn — _‘ <= <E|an — 2pHy| + Elzn Hy, — K|>
z z
1
z
—0, as z— oo,

again by the L'-boundedness of 2'(1). Since 2'(1) is closed under the
topology of convergence in probability, it is closed in L! as well; it follows

that K/z € 2'(1), thus (2, K) € 4.
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On the space L, we consider the functional U: L. — R given by
(3.36) U(z,K) %2 —E[(1 AK)G] + 2z, (2, K)cL.

It is easy to see that this functional is convex and proper. By using the
dominated convergence theorem, we can easily check that U is lower semi-
continuous under the norm topology of L. Furthermore, from Lemma 3.4.1
and Lemma 3.4.3, we know that U attains the infimum over ¢! at (2, 2H) €
g"\{(0,0)}.

Therefore, from standard results on convex optimization (for example,
Corollary 4.6.3 of [2]), it follows that there exists a pair (§,Y) in the dual
space L* = R x IL*® that satisfies

(3.37) —(9,Y) € a0 (3, 2H)
and
(3.38) (9,Y) € N(3,2H).

Here, OU (2, 23]:[) is the subdifferential of U/, and N (2, EI:I) is the normal cone
of 41, at the point (2, éﬁ) These sets are given by

[~E[(1 A 2H)G] + za] — [-E[(1 A K)G] + 2a]
<E(GH-K)Y]+((-2)y, Y(zK)eL

ZE[HY ]+ zy < 2E[HY] + 2y, ¥(z,zH) € %1};
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see, for example Propositions 4.4.4 and 4.3.3 of [2]. By definition, (3.37) and
(3.38) are equivalent to

(3.41) —E[(1 A2H)G] + 2z + E[(1 A K)G] — zz

< -E[(¢H - K)Y]—-(2-2)§, Y(zK)€L,
and
(3.42) (E[HY ) + 2z < 2E[HY] + 23, Y(z,zH) € 4,

respectively. We claim that this ¥ serves as an optimal solution to (3.13).

For this end, it is enough to prove the following.
(a) Y € Al;
(b) E[HY] = z;

(c) Y can be written as the right-hand-side of (3.20).
First, we note that § = —z. Indeed, observe from (3.41) that

(2—2)(z+9) <E[(1AZH)G]-E[(1AK)G]-E[(:H - K)Y], V(2 K)eL.

If x + g # 0, then letting z — +oo with K fixed, we could make the left-
hand-side — oo, a contradiction. Therefore y = —z.
Next, we show that Y satisfies E[HY] = z. From (3.42) with § = —z, we

have

—a(z — 2) + E[(zH — 2H)Y] <0, V(z,zH) e %"

Letting z = 0, we obtain

z2 — 2E[HY] <0,
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and hence, by dividing by z > 0,
Also, from (3.42) with § = —z, H = H and z = 2 + ¢ for some ¢ > 0, we get
(24 e)E[HY] - 2E[HY] < (2 + &)z — 2z

and hence E[HY] < z. Therefore,
(3.43) E[HY] = z.

Now, from (3.42) with z = 2, we can see

E[HY] > E[HY],
for any H € 2'(1). This together with (3.43) implies
E[HY] <z, VH e 2'(1),

showing ¥ € AL,
Finally, we show that ¥ can be written as the right-hand-side of (3.20).

To show this, we define the random variable A by
(3.44) Y =Glip.qy + A

We need to show that this random variable A satisfies P[0 < A < G] =1
and P[A # 0, 2H = 1] = 0. Observer first that (3.41) with § = —z implies

—E[(1 A 2H)G] +E[(1 A K)G] < B[(Gly gz + A)(K — 2H)],
and hence,
(3.45)  E[A(K — 2H)]
> E[(1 A K)G] - E[(1 A 2H)G] — B[(K — 2H)G1 5.y
=E|(Liony — Lgasy) 6] +E| (Toeen = lgaey ) K6

=E [(1{K<1} - 1{2ﬁ<1}) (&~ 1)G]
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for every K € L', In particular, for every K € L! with {K < 1} = {2H < 1},
the inequality (3.45) reduces to

(3.46) E[A(K — 2H)] > 0.
First, suppose that ]P’[,%ﬁ <1, A> 0] >0, and take

K £ _1{zﬁ<1, A>0} + 2H1{zﬁ21 or A<0}

so that K € L' and {K < 1} = {2H < 1}, and thus that the inequality
(3.46) applies to this K. But under the assumption ]P’[é]—:f <1, A>0] >0,

we would also have
E[A(K - 2H)] = —E[A(2H + Dlggarasol € —ElAlzgo 400 <0,
a contradiction. Therefore, it must be that
(3.47) A<0 on {zH <1}.
Next, suppose that ]P’[éﬁ > 1, A< 0] >0, and take
K= 2ﬁ1{2ﬁ<1 or A>0} T 221:[1{21321, A<0}

so that K € L' and {KG < 1} = {#HG < 1} and thus that the inequality
(3.46) applies to this K. But under the assumption P[ZH > 1, A < 0] > 0

we would also have
E[A(K — 2H)| = E[AéHl{zﬁzl, A<0}] < E[Al{zﬁzl,A@}] <0,
a contradiction. Therefore, it must be that

(3.48) A>0 on {zH >1}.
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Next, suppose P[A < 0, 2H < 1] > 0. Then, there exists a number § > 0
such that

(3.49) E[A(2H — 1)1i5.0] > 6.
For given € > 0, take
K=(1- 5)1{zﬁ<1} + 1{21221}-
Thanks to (3.48) and (3.49), we have then
E[A(K — 2H)] = E[A((1 = &)lppoy + gy — 2H)]
= —E[A(ZH — 1)1{zH<1}] [A1{2ﬁ<1}] —E[A(ZH — 1)1{21?21}]

IN

<0,
which contradicts (3.46). Therefore,
(3.50) A=0 on {zH <1}.
In conjunction with (3.50), the inequality (3.46) becomes
(3.51) E[A(K — 2H)1gp5.1,] > 0,
which is to hold for every K € L' satisfying {K < 1} = {#H < 1}. Take
K= 1{21&21}-
Then, the inequality (3.51) applies to this K and yields

E[A(1 - H:I)l{szx}] > 0.
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The integrand is nonpositive because of (3.48). It is strictly negative on the

set {A > 0,2H > 1}. Since the integral is nonnegative, it follows that
(3.52) A=0 on {zH >1}.

Then, (3.50) and (3.52) together with (3.45) imply

(3.53) EJA(K — 1)1g4_ ] > E [(1{K<1} - 1{2ﬁ<1}) (K — 1)G] VK € L.

It remains to show that A < G on the set {#H = 1}. Suppose that
P[A > G, 2H = 1] > 0. Then, there exists a number § > 0 such that

E[Al{A>G, zﬁzl}] >0+ E[Gl{A>G, zﬁ:1}]-
Let
(3.54) K= Logca sy T (L =)l
for an arbitrary € > 0. Then, we can easily see that
(K-1)= —Liase, sa=1y — €l
and

Lig<1y — 1{2ﬁ<1} = 1{A>G, sh=1) T 1{5ﬁ>1}-

Using these equalities, we compute both sides of (3.53) as
(3.55) LHS of (3.53) = ~E[Al ¢ .5 1y] < 0 —EGl ¢ . 1),
and

(3.56) RHS of (3.53)
e —E |:(]-{A>G, EHZI} + 1{2ﬁ>1}) (1{A>G, 2}’“{:1} + 61{21’“{#1}) G:|

=K [(1{A>G, sia=1y T 51{2H>1}) G]
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respectively. Combining the equations (3.55) and (3.56) with (3.53), we

obtain
0 < LHS of (3.53) — RHS of (3.53) < —0 + ¢E[G1l; 5. 4]

This must be true for any € > 0, which is impossible. Therefore, A < G on
the set {2I:I = 1}, which completes the proof. a

3.5 Maximizing the Probability of Perfect Hedge

As in the previous section, let G be a cash-settled contingent claim satisfying
(3.10). In this section, we consider the problem of maximizing the probability
of perfect hedge P[K(X(La;,o,...,o) (T—)) > G], and the problem of maximizing

the ezpected success-ratio E[go(Lx,O,m o) with

L A
(3.57) P(z,0,...,0) — 1{‘5(X(I;,o,...,

0)(T—)=>G}
(o 0D
G {Z(X(z,O,... ,0)(T*))<G};
over trading strategies L(-) € &/((z,0,...,0)) for a given initial endowment

0 < z < G(0) in cash (domestic currency). The value functions correspond-

ing to these two optimization problems are

(3.58) Vi(z) = sup PlU(X(p,.. 0(T=)) = G,
L(-)ed ((z,0,...,0))

and

(3.59) Vi(z) = sup Bl Lext, @-)=c

e Laxz o @on<er]| s
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respectively. These functions can also be written as

(3.60) Vi(z) = sup P¢ > G] = sup E[l{e> 3],
geAl gehy

and

(3.61) Va(z) = sup E |1z + él{&c} :
gen]

respectively, where the set AL was defined in (3.1). Unlike the minimization of
expected shortfall, the two problems considered in this section are not based
on the first moment, and thus we no longer need the assumption E[G] < 0.

The difference between the two partial hedging problems of (3.58) and
(3.59) is that, while the former considers only the event that the terminal
holdings vector successfully hedges the liability, the latter evaluates the per-
formance of the trading strategy even in the case of a not completely success-
ful hedge (“partial credit”). In this sense, the latter is a more sophisticated
risk measure than the former. Nevertheless, the probability of perfect hedge
is also meaningful as a dynamic version of the Value-at-Risk concept, which
is commonly used by practitioners.

As in the previous chapter, we adopt the convex duality approach. We

first observe that for a given constant g > 0, the function

u
Ry (1) = Tgo0)(u) + S oo (w), wE(0,00)

is the smallest concave function that dominates the function
Ry(u) £ 10y (u), u € [0,00)

(In the definition of R;(u), we take the last term to be 0, when g = 0).

Therefore, these two functions R;(-) and Ry(-) have the common conjugate
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function R: [0,00) — R given by

R(v) 2 (1 - vg)*

(3.62) = sup|ljg o0y (1) — vl

u>0

u

(3.63) =sup |lige0)(v) + =109 (u) — vul,

u>0 g
so that

u

(3.64) g o0) (1) < jg.o0) (1) F — Tueo (1) < (1 - vg)" +vu.

The supremum in (3.63) is attained, and thus the second inequality in (3.64)
holds as equality, if and only if we have u € I;(v) with

{0} if vg>1
(3.65) L(v)£4 [0,g9] if vg=1
{9} if 0<wvg<1
Furthermore, the supremum in (3.62) is attained — and thus all the inequal-
ities in (3.64) hold as equalities — if and only if we have u € Iy(v) with
{0} if vg>1
(3.66) Lv) =< {0,9} if vg=1
{9} if 0<wvg<1
From the second inequality of (3.64), for any £ € AL, 2 > 0 and H €
2'(1), we have

Lg>ay + él{«c} < (1-2HG)" +2H¢,
and hence, by taking expectations,
E l{gzg} + £1{§<G} S E(]_ — ZHG)+ + ZE[Hg]

(3.67) G
<E(l-zHG)" + zx.
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Both inequalities in (3.67) hold as equalities, if and only if
(3.68) € Li(zH) and E[H¢] =z.

Note that the first of theses conditions is equivalent to the existence of an

& (T')-measurable random variable U with 0 < U < G such that

(3.69) §= Gl{zHG<1} + Ul ng=1}-
In a similar fashion, we have

(3.70) P¢ > G)=E Liesay + él{§<G} =E(1 - zHG)+ + zz,

if and only if
(3.71) §€(zH) and E[H¢] =z.

The first condition is equivalent to the existence of an % (T)-measurable set

FE such that

(3.72) § = Glgpg<y + Gleagag=1}-
The dual optimization problem, is then given by

(3.73) W(z)£ inf {E(1-zHG)" +zz} = iggy(z; ),

2>0,HED (1)

where

(3.74)  y(z2)2V(2)4+ 22, 2>0,2>0

(3.75) V(z)2 inf E(1-:2HG)'= inf E(1-KG)", z>0.
He2'(1) Ke'(z)

Notice that this dual problem is common to both of the primal problems
(3.60) and (3.61).

The next theorem is the existence result for the optimization problems
(3.60) and (3.61). Since this result can be proved in much the same way as

Theorem 3.3.1, we present the proof in Appendix A.2.
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Theorem 3.5.1. Let G be a cash-settled contingent claim with G(0) < oo

and x be initial endowment with 0 < x < G(0). Then:

(i) There exist a number 2 > 0 and a random variable H € 2'(1) that
attain the infimum in (3.73);

(ii) There exists a random variable U € LY with U < G a.s. such that the
random variable
££ Glipgay T Ulzag=1y
given by the right-hand-side of (3.69) with (z,H) = (2, I:I), belongs to
Al

T )

satisfies E[ﬁg] =z, and thereby attains the supremum in (3.61).

(iii) Furthermore, if there exists a set E € % (T) such that U = Glg a.s.,
then the random variable € of (ii) attains the supremum in (3.60) as

well.
The next corollary easily follows once this theorem is proved.

Corollary 3.5.2. There exists a trading strategy L(-) € 2/((z,0,...,0))
that attains the supremum in (3.59). Furthermore, if the random variable
U of Theorem 3.5.1 can be written as U = G1lg almost surely for some set
E € #(T), then there exists a trading strategy L(-) € &/((z,0,...,0)) that

attains the supremum in (3.58).

Proof of Corollary 3.5.2. From the part (ii) of Theorem 3.5.1, we know that
the random variable ¢ € Al attains the infimum in (3.61). Since & be-

longs to AL, there exists a trading strategy L(:) € &7((x,0, ... ,0)) such that
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~

é(X(Lx,O,“_,O)(T—)) > ¢, a.s., and hence

Va(z) =K {1{@:} + él{s«;}
Xbo.. 0(T-)

{xL r-)>ay T G Lg<ay

(z,0,...,0)

IN

E|1l

= Va(z).

This shows that the trading strategy L attains the supremum in (3.59).
Furthermore, when the random variable U of Theorem 3.5.1 can be written

as U = G1g almost surely for some set E € #(T), we have
Vi(z) =P > G| <P XL, o(T-) > G| <Vi(w),

and hence the trading strategy L(-) attains the supremum in (3.58) as well.
U
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Chapter 4 Utility Maximization

4.1 Introduction

In this chapter, we consider utility maximization problems under the general
model with transaction costs, which we introduced in Chapter 2. In most of
the existing literature, it is assumed that an investor gains utility from the
liquidated value of the portfolio holdings vector; a typical formulation of the

optimization problem is
(4.1) Maximize E[U({(XL(T-)))] over L(-) € (),

where U: R — R is a pre-specified uni-variate utility function and z € R? is a
given initial endowment vector. Behind such a formulation is the assumption
that there exists a single consumption good, which can be purchased only
through the domestic currency. This is why utility depends on the portfolio
holdings vector only through the liquidation function /.

The paper [16] recently studied a utility maximization problem in the
case where the utility function depends on the terminal holdings in a rather
arbitrary way, not just through liquidation; the optimization problem there
is
(4.2) Maximize E[U(XZ(T-))] over L(-) € & (x),

where, this time, U: R? — R is a multi-variate utility function. This formu-

lation enables consideration of a situation, where several consumption goods
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are available and can be purchased with foreign currencies. The results ob-
tained in that paper, which inspired our investigation in this chapter, are
quite general but in our view not completely satisfactory: They are formu-
lated in terms of a utility function which depends on the terminal holdings
measured in monetary units, i.e., the domestic currency units; this causes the
so-called “money illusion”, meaning that utility changes if the prices change,
even when the physical amount of consumption goods actually consumed
stays the same. In fact, the standard microeconomics theory tells that an in-
direct or derived utility function (utility from wealth), when correctly derived
from a direct utility function (utility from consumption), has to depend on
the relative price of the consumption goods as well as wealth. Notice that the
money illusion can be avoided for the classical case (4.1), simply by taking
the consumption good to be the numeraire, which is why we usually consider
utility from wealth in mathematical finance.

Furthermore, in the presence of transaction costs, there remain several
difficulties in dealing with an indirect utility function even when it is money-
illusion free. First, unlike a market without transaction costs, it is essential
that the indirect utility function be non-smooth; thus, dealing with an in-
direct utility function, requires rather heavy tools (much heavier than what
we used in the previous chapter) from non-smooth convex analysis; see Sec-
tions 6 — 9 of [16]. This is because an indirect utility depends not only on
the consumer’s preference, but also on the market structure such as the sol-
vency region, which is naturally non-smooth. For example, as a function of
the portfolio holdings vector X*(7T—), the utility function U(¢(-)) in (4.1)
is non-smooth because of the non-smoothness of the function ¢. Secondly,
because of this dependence on the solvency region, it is rather difficult to

specify an indirect utility function. In fact, apart from the simplest case
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of utility from the liquidated wealth, it seems that the only way of giving
an appropriate indirect utility function is to derive it via (4.26) below, from
some direct utility function. However, as we shall see in Proposition 4.3.5,
the utility maximization problem with the indirect utility function given in
(4.26) is equivalent to that with the original direct utility function; thus it
makes good sense to deal with the direct utility function from the beginning.

The aim of this chapter is thus to propose an alternative approach to the
utility maximization problem under transaction costs. As we indicated above,
we deal with a direct utility function rather than an indirect utility function.
The advantage of dealing with direct utility in the context of markets with
transaction costs is that we can specify a utility function independently of
the solvency region. In particular, there is no essential reason to specify
a utility function as non-smooth. In fact, we shall define a direct utility
function as a smooth concave function on R?; see Definition 4.2.1. It seems
that this still covers nearly all interesting cases of utility functions, including
the utility from the liquidated terminal wealth studied by [9], [13] and [20].
Also, there are many obvious ways of producing examples of a direct utility
function (Example 4.2.6 below is one of them), whereas this is not the case
for indirect utility. Furthermore, thanks to the simple structure of direct
utility, we can prove the existence of an optimal terminal wealth by using
standard tools from convex analysis and the smooth calculus of variations,

without recourse to non-smooth analysis.

4.2 The Optimization Problem

Except for Section 4.5, we consider the problem of maximizing expected

utility from consumption at the terminal time 7. For simplicity, we assume
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that for each currency, there is one representative consumption good which
can be purchased with that currency only. It is clear that without loss of
generality, the price of each consumption good is equal to 1 unit of the
corresponding currency. For the investor we are concerned with, not all
consumption goods have to be actually consumed. In other words, there
may be some currencies which are purely investment instruments for the
investor. To take into account this possibility, we assume that the first d;
currencies, where 1 < d; < d, are relevant to the consumption goods which
are actually to be consumed; thus, the other dg(é d — dy) currencies are
purely investment instruments. We may formulate this idea by making the

utility function depend only on the first d; components of the consumption

vector c.

Definition 4.2.1 (Utility Function). A (direct) utility function is a func-

tion U : Ril X R‘f — R of the form
(43) U(Cl, Cz) = Ul(Cl), (Cl, 62) € Ril X Riz

with 1 < d; < d and d; + dy = d, where the function U; : Ril — R satisfies
the following conditions:

(i) U, is concave and continuous on R%" with the properties

(4.4a) sup Ui(e¢p) = o0
CleRil

(4.4b) inf Uy(c1) = U1(0) = 0;
CleRil

(ii) U, is “increasing” in the sense that

(4.5) Up(cy) <U(e) if ¢ <& foreachi=1,...,dy;
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(iii) U, is of class C! and strictly concave on (0,00)% with the gradient
oU- oU-
£ [ Z=Ly. Ll
VUI()_<001()7"'780d1()>
mapping (0, 00)% bijectively onto itself. We denote by I; the inverse function

of VUl

Remark 4.2.2. P. Lakner, in his dissertation [27], considered a market model
with several consumption goods but without transaction costs. Apart from
some slight differences about the smoothness condition and the behavior at
the boundary, the function U; is essentially the same as his utility function;

see Definition 2.1 of [27].

The main question we are concerned about is the problem of maximiz-
ing expected utility E[U(C)| over terminal consumption vectors C which can
be purchased with some admissible trading strategy for a given initial en-
dowment vector x € K. The precise definition for this “financeability” is
the following. For “admissibility” of a trading strategy L(-), look back to
Definition 2.3.3.

Definition 4.2.3. An R? -valued, .# (T)-measurable random vector C is sim-
ply called a terminal consumption vector. A terminal consumption vector C
is called financeable for an initial endowment vector x € K, if there exists an

admissible trading strategy L(-) € &/(z) such that
(4.6) XHT-) = diag[S(T)]C, as.

The condition (4.6) states that, starting from the initial endowment z, the
investor can purchase at time 7' the consumption vector C, by investing
according to the trading strategy L(-) over time period [0,7) and making
a final transfer at time T, if necessary. We denote by & (z) the set of all

financeable terminal consumption vectors.
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In terms of the notion of hedgeability, which we introduced in Defini-
tion 2.3.4, financeability of a terminal consumption vector C' is equivalent to
hedgeability of the corresponding contingent claim diag[S(7T)]C. Thus, we

have
(4.7) €(x)={C el (Ri) | diag[S(T)|C € A, }.
The utility maximization problem is now expressed by the value function

(4.8) V(z) £ sup E[U(C)], =€ K.
Ce?(x)

For our later analysis via convex duality, we define the convex conjugate

U of the utility function U by

(4.9) Uly) £ sup[U(c) —y-c], yeR],

ceRi
The function U has the following properties.

Lemma 4.2.4. (i) The function U, defined by (4.9), can also be written

as

(4.10) Uy, y2) =Ui(1), (y1,92) € R x RE,

where Uy is the convex conjugate of the function Uy, i.e.,

(4.11) Ui(y1) £ sup [Ui(e1) —yi-c1], i € RE;

c1 ERil

(ii) When y; € (0,00)%, the supremum in (4.11) is uniquely attained at

c1 = Ii(y1). In particular, we have

(4.12) Ui(y) = Ui(Li(y1)) — vi-Li(y), Y € (0,00)%;
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(iii) U, is lower semi-continuous and conver on R, and is related to the

function Uy via

(4.13) Ui(ar) = inf [Ti(1) + o], @ € RY,

1
y1ER

(iv) Uy is “decreasing” in the sense that
(4.14) Ur(y) = Ui(@n) if i <0 foreachi=1,... ,dy;

(v) Uy is of class C* on (0,00)% with VU, = —Iy;

(vi) The following equations are valid:

(4.15a) inf Uy(y;) =0
y1eR%

(4.15Db) sup U (1) = U1(0) = oo.
y1eR%

Proof. (i) From the equation (4.3), we have

U(y) = sup[U(c) — y-c]

ceRi
= sup [Ui(c1) —y1-c1] — inf [y-co]
(416) C1€Ril CQERiZ

= sup [Ui(e1) — y1-¢1]

c1 GR‘?

for every y = (y1,92) € R? x R? =R showing (4.10) with (4.11).

(ii) This follows immediately from the differential property and the strict

concavity of the function Uj.

(iii) This follows from Theorem 12.2 of [29].

(iv) Let 7 and y; be vectors in RY such that i < g for each i =

1,...,d;. Then, we have

Ur(cr) —yi-c1 > Uier) — fh-e1,  Vey € RE.
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Taking the supremum over ¢; € R‘_’lﬁ, we obtain U (y1) > (?1(131).

(v) From Theorem 23.5 of [29], the supremum in (4.11) is attained
at ¢ if and only if ¢; € —9U; (y1), where 8(71(y1) is the subdifferential at
y; of the convex function U;. This, in conjunction with (ii) above, gives
—0U, (1) = {Ii (1)}, Yy1 € (0,00)%, which yields the assertion.

(vi) By taking ¢; = 0 in (4.13) and using (4.4b), we obtain (4.15a).
Similarly, by taking y; = 0 in (4.11) and using (4.4a) and (4.14), we obtain
(4.15b). 0

Corollary 4.2.5. For y = (y1,%2) € (0,00)% x (0,00)% = (0,00)¢, the
supremum on the right-hand-side of (4.9) is uniquely attained by ¢ = 1(y),

where

(4.17) I(y) = (Li(y1),0).

In particular, U is of class C* on (0,00)% with

(4.18) VU(y) = —I(y), Vye (0,00)%

Proof. This immediately follows from (4.16) and (ii) of Lemma 4.2.4. [

Example 4.2.6 (Additive Utility). For i = 1,... ,d, let v;: R, — R be
a utility function on R, , i.e., v; is continuous, strictly concave and strictly
increasing on Ry with lim.ijo vi(c’) = oo and v;(0) = 0, and is of class C*
on (0,00) with v}(0+) £ limg o v}(c') = 0o and vi(00) = limgite, vi(cf) = 0.

Then the function U: R‘fr — R given by

(4.19) Ule) & Zvi(ci)
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is a utility function, according to the Definition 4.2.1, with d; = d. It is

readily seen that
(4.20) Uly) =Y _ 6y
i=1
with each 0;(y;) the convex conjugate of v;, i.e., G;(y) £ supgicp, [vi(c') —y'c]
and that

(4.21) Uy) = Z {vi(vi(y") — v'i(y')}, Yy € (0,00)%,

where 1); is the inverse function of u}. We thus have I(y) = (¢¥1(y'), ... , %a(y?)),
Vy € (0,00)% see also Example 2.3 of [27].

In addition to the defining properties in Definition 4.2.1, for our existence
theorem (Theorem 4.4.1 below) we shall make the following assumption about

the function U;.

Assumption 4.2.7. The function U; satisfies the following two conditions:

_ VU
(4.22a) AE(U) 2 Tm  sup {Ll(cl)] <1
b—o0 C]_E(O,oo)dl U]- (Cl)
m(cy)>b
(4.22b) lim inf m(L(y1)) = oo,
rl0 y1€((0,<;0<)d1

where we are denoting m(n) £ min<;<g4, 1° for any vector n € RY.

The quantity AE(U;) is called the asymptotic elasticity of the function
U;. When d; = 1, this notion coincides with that of Definition 2.2 of [22].
The equation (4.22b) states that “I;(y;) approaches to infinity as y; gets

small”, where we are measuring the magnitude of the vectors I1(y;) and y;
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in terms of their smallest component. When d; = 1, the equation (4.22b)
simply says I(0+) = oo, the assumption which is fairly standard in the
literature. If U is an additive utility function as in Example 4.2.6, and if the
asymptotic elasticity of each v; is less than 1, then U satisfies the conditions
in Assumption 4.2.7.

Exactly in the same way as Lemma 6.3 of [22], we can show that under

the assumption AE(U;) < 1, there exist constants b > 0 and 8 > 0 such that
(4.23) Ur(ay) < o PUr (1)

holds for every 0 < o < 1 and y € (0, 00)% with m(I;(y1)) > b; for a similar
argument, see the proof of Lemma 4.5.3, especially the derivation of (4.61),
below. With such a number b > 0 fixed, we may take, under (4.22b), a
number 7, > 0 such that
m(I1(y1)) > b

for every y; € (0,00)% with m(y;) < rp. This implies that we have m(y;) > 7y
for every y; € (0,00)% satisfying m(I1(y;)) < b. In conjunction with (4.14),
it follows then that

(4.24) Uy (o) < Uy(arp(1, ..., 1))

for every 0 < a < 1 and y; € (0,00)% with m(I;(y;)) < b. Note that
the right-hand-side of (4.24) defines a non-increasing function of a € (0, 1).
Combining the two inequalities (4.23) and (4.24), we obtain the following

lemma.

Lemma 4.2.8. Under Assumption 4.2.7, there exist a number 5 > 0 and a

non-increasing function C: (0,1) — R, such that the inequality
(4.25) Ur(ayn) < ¢(a) + a?Tr (nn)

is valid for every a € (0,1) and y; € (0, 00)%.
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4.3 Indirect Utility; Utility from Terminal Wealth

In mathematical finance, it is common to consider utility from money. In
other words, the utility function takes as the independent variable either
wealth or consumption measured in monetary units, rather than in the phys-
ical amount of consumption goods. Therefore, the utility function is not
directly connected to the consumption goods, which are actually consumed,
but to the total expenditure allocated to the consumption. Such utility is
called the “derived utility” or the “indirect utility”, in mathematical eco-
nomics. In this section, we compare our direct utility approach with the
indirect utility approach, and prove that the two are equivalent when the
indirect utility function is correctly derived from the direct utility function.
However, as we shall illustrate in Example 4.3.4 below, the indirect utility
function is typically non-smooth in the presence of transaction costs, which
is the reason that we stick to the direct utility function rather than passing

through the indirect utility function.

Definition 4.3.1. For a utility function U as in Definition 4.2.1, we define
the indirect utility function U: R? x (0,00)% — [—00,0) by

(4.26)
(_j(xap) = Sup{U(clch) | (cla 02) € Ril X Riza T dia‘g[p](cla 02)}
=sup{Us(c1) | 1 € RY, @ = diaglp](e1,0)},  (2,p) € K x (0,00)%.

Here, for the physical meaning of ¢; and cs, recall the first paragraph of

Section 4.2.

By definition, U(z,p) is the maximal utility that can be derived from
some consumption vector ¢, financeable with the portfolio holdings = under

the currency price p. Notice that the indirect utility function depends on the
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currency price as well as the portfolio holdings vector, which corresponds to
the total wealth in the usual setting. If there is only one consumption good,
we can avoid this dependence simply by taking the consumption good as
the numeraire. However, if there are several consumption goods, we cannot
eliminate this dependence and therefore, formulating a utility maximization
problem with a utility function depending only on wealth, causes the so-called

“money illusion”.

Remark 4.3.2. The indirect utility function U corresponds to the function U
in the equation (2.10) of [27]. Without transaction costs, the indirect utility
function depends on the total wealth Z?:l z® allocated to consumption and

the price vector p of the consumption goods.

Given (z,p) € K x (0,00)? the set of all ¢; € R% satisfying = —
diag[p](c1,0) € K, as in (4.26), is compact. Thus, from the continuity of
the function U; on R‘frl, we see that the supremum in (4.26) is always at-
tained at some ¢; € Ril. Furthermore, since U; is strictly concave, such a
maximizer is unique. For each (z,p) € K x (0, 00)¢, we denote by ¢(z,p) the
unique maximizer ¢; € R? for (4.26). The function ¢ is called the Marshal-

lian demand function in microeconomics.

Lemma 4.3.3. The “Marshallian demand” function ¢: K x (0,00)¢ — R‘fj

18 Borel measurable.

Proof. Define a multifunction G: K x (0,00)¢ — R% by
G(z,p) = {c; € R | z = diag[p](c1,0)}.

We claim that G is Borel-measurable, i.e., for every open set O C R%, the

set G71(0) = {(z,p) € K x (0,00)¢ | G(z,p) N O # 0} is a Borel set.
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Once this claim is proved, then, noting that the multifunction G is compact-
valued and the function U; is continuous, we can conclude from the Dubins-
Savage selection theorem (see, for example, Theorem 5.3.1 of [34]) that the
multifunction (z,p) — {¢(z,p)} admits a Borel-measurable selection, which
simply reduces to the Borel measurability of the function ¢.

It thus suffices to prove the Borel-measurability of the multifunction G.
To this end, consider the Borel-measurable function h: K x(0,00)?xR% — R
given by

h(z,p, e1) = Uz — diag[p](c1,0)),

where /¢ is the liquidation function given by (2.14), so that h~'(]0,0)) is
equal to the graph of G, i.e.,

h=([0,00)) = {(z,p,c1) € K x (0,00)* x R™ | ¢; € G(z,p)}.

We then have
Gil(O) = proij(O,oo)d (E)7

where projy, (p.)¢ is the canonical projection of K x (0,00)% x RY onto

K x (0,00)% and E is the Borel set given by
E 2 h71([0,00)) N [K x (0,00)¢ x O].
Now, for each (z,p) € K x (0,00)¢, the section
Egp) 2 [(2,p) x RT] N E = h7'([0,00)) N[(z,p) x O]

is clearly o-compact. Therefore, from the Arsenin-Kunugui theorem (see, for
example, Theorem 5.12.1 of [34]), we see that G~'(O) is a Borel set, which

shows the Borel-measurability of the multifunction GG, as claimed. U
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Example 4.3.4 (Utility from the Liquidated Terminal Wealth).
Consider the case where only the consumption of the domestic consumption

good affects the utility, in other words, d; = 1. From direct computation, we

U(z,p) = Uy <@> :

Pt
which goes back to utility from the liquidated terminal wealth considered

by [9], [13] and [20]. Notice that despite the smoothness of Uy, the indirect

can see

utility U is not necessarily smooth, which makes the analysis based on U

rather involved; see [16].

Now, we show the equivalence of our utility maximization problem from
terminal consumption and the indirect utility maximization from terminal
wealth. Note that, in conjunction with (4.26), the equation (4.27) can be
interpreted as the dynamic programming principle at time 7'—.
Proposition 4.3.5. The value function V' defined by (4.8) satisfies
(4.27) V(z) = sup E[U(XE(T-),S(T))], VzeK.

L()ed (z)
Proof. Tt is clear by the definition (4.26) that we have U(C) < U(XE(T-), S(T))
for every C' € ¥(x), and thus,
V(z) < sup E[U(X;(T-),S(T))
L(-)ed (x)
To prove the reverse inequality, let L(-) € &7 (z) be given. Define the random
variable C' by

d
C XZL _|_ Z a]l 1+ )\Z])aw], 7 = ]_, .. ,d
j=1

with a = «a(§); here ¢ = XE(T-) — diag[S(T)]p(XE(T—-),S(T)), and the

T

function a(-) is a continuous selection of A(-) given by Proposition 2.2.5.
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Since ¢(x,p) € G(z,p), we have X (T—) = diag[S(T)|¢p(XE(T-),S(T)) and
thus a is well-defined. From the definition of a(-), we have C' = ¢(XX(T-), S(T))
and thus, in particular, C is #(T')-measurable. Finally, from the definition

of ¢(-), we obtain

This shows

4.4 Existence via a Dual Optimization Problem

In this section, we state and prove the existence theorem to our optimization
problem (4.8). Because of the simple differentiability assumption of the direct
utility function, we can prove the existence theorem by the standard tools
from convex analysis and the smooth calculus of variations.

As a conjugate of the set € (z) of financeable terminal consumption vec-

tors (see Definition 4.2.3), we take the set Z(z) defined by

(4.28)

R diag[S(T)]"'H € L*(K*), and
()2 { He Lo ®) |
E[H-C] < z-diag[S(0)] 'z, Vz € K, VC € €(z)

for each z € diag[S(0)]K*. From (4.7) and Theorem 2.3.7, we have
(4.29) D(z) C D(z), Vzediag[S(0)]K*\ {0}.
We also set

(4.30) G £ {(2, H) € diag[S(0)|K* x L°(R%) | H € 2(z)}.
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Notice that if z € R?, then X?(t) = diag[S(t)] diag[S(0)]™'z € RL C K for
all ¢t € [0,T), which implies that the constant function L(-) = 0 belongs to
(z) and that C = diag[S(0)] 'z € €(z). It follows from the definition
(4.28) of Z(z) that

E[H] - diag[S(0)] 'z < 2 - diag[S(0)] 'z, VH € 2(z), Yz € RL.

In particular, by taking x to be the i-th unit vector for each i =1,... ,d, we
obtain
(4.31) 0<EH]<Z Vi=1,...,d,

which implies that the set Z(z) of (4.28) is bounded in L!(R?) for each
fixed z € diag[S(0)]K*. Notice also that the set & is a convex cone in
R? x LY(R?) and is closed with respect to a.s.-convergence. More precisely,
if {(2x, Hp)}renw € & with 2, — 2 in R? and H, — H a.s., then we have
(2, H) € ¢4. This follows easily form Fatou’s lemma.

Now, from (4.9), (4.28) and (4.30), we have

(4.32)  E[U(C)] <E[U(H)| +E[H-C] <E[U(H)] + z-diag[S(0)] 'z

for every z € K, C € €(z) and (2,H) € 4. Furthermore, from Corol-
lary 4.2.5, the two inequalities in (4.32) hold as equalities if we have

(4.33) C=1I(H) and E[H-I(H)]= z-diag[S(0)] ',

as well as H € (0,00)? a.s. Finally, for each * € K, we define the dual

optimization problem by

(4.34) W(z) 2 inf (E[ﬁ(H)]+z-diag[5(0)]*1x).

(2,H)eY

Here is our basic existence result for the optimization problem (4.8).
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Theorem 4.4.1. Let x € int K be an initial endowment vector and assume

4). Fur-

W(z) < co. Then there exists a pair (3,H) € 94 satisfying H € (0, 00)*
a.s. that attains the infimum for the dual optimization problem (4.3
(H

thermore, under Assumption 4.2.7, the random variable = ) s a So-

lution to the original utility mazimization problem (4.8), that is, we have
C e €(z) and
(4.35) E[U(C)] = sup E[U(C)].

Ce¥(x)

The rest of this section consists of the proof of Theorem 4.4.1.

Lemma 4.4.2. Let x € int K and assume W (z) < co. Then there exists a
pair (2,H) € 4 that attains the infimum in (4.34). Furthermore, we have
H € (0,00)% almost surely.

Proof. Let {(zk, Hi) }ken be a minimizing sequence for (4.34), i.e.,

(4.36) lim | ( (H)| + 24 dlag[S(O)]*lx) — W (z).

k—00

Suppose that there exists a subsequence {(2x(), Hr()) }ien which converges to
(0,0) as I — oo, almost surely. Then, from the lower semi-continuity of U and
(4.15b), we have limy ., U(Hy) > U(0) = oo, almost surely. But since the
function U is non-negative because of (4.15a) and since z(y-diag[S(0)] 2 >
0, Fatou’s lemma gives

lim ([T (Hiw)] + 210 diag[S(0)] ¢ ) = oo,

00

and thus W(z) = oo, a contradiction. This shows that the sequence {z }ren
is away from 0 for large k; otherwise, there would exist a subsequence
{2k }ien such that z;) — 0, which would imply from (4.31) that Hyg — 0
in !, and thus, along a further subsequence, we would have (zey, Hry) —

(0,0) a.s., a contradiction.
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Next, from (4.36) and W (z) < oo, we have E[U (Hj)]+ 2 -diag[S(0)] "'z <
W (z) + 1 for large k, which implies from (4.15a) that

z,-diag[S(0)] tz < —E[U(H)]| + W (z) + 1< W(z)+1= M < o0

for large k. Note also that since z; € diag[S(0)]K* and = € K, we have
2 - diag[S(0)] "z > 0. Therefore,

0 < z-diag[S(0)] 'z < M

for large k. Furthermore, since z;, € diag[S(0)]K* \ {0} C (0,00)? for large

k, we may divide by 2} to obtain

0

: ~1
 daglSO) 1 M
2 2,

for large k. This, in conjunction with (2.16), implies

. -1
%k %k

and thus
0<zl(z) <M

for large k. Now, since z € int K, we have {(z) > 0 from Lemma 3.1 of [16],
and therefore,

L M
0< 2 < —— <00,

{(x)
which implies that the sequence {z} }xen is bounded. Since z; € z} A and the
set A is compact in R? (see (2.15) and and Lemma 2.2.6), the boundedness
of the sequence {2} }xen in R implies the boundedness the sequence {zj }ren
in R?. Then, by passing through a subsequence, we may assume that z, — 2
for some 2 € R? as k — oo. Since K* is closed and {zj }ren is away from 0

for large k, we obtain 2 € diag[S(0)]K™* \ {0}.
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Now, from (4.31) and the boundedness of {zj}ren, it follows that the
sequence { Hy }ren is bounded in L' (R?). Then, by Komlds’ theorem (see, for

example, [30]), there exists a subsequence {Hy)}ien such that the sequence
k
Oy, £ Z Hk(j); keN
7=1
converges almost surely to some random variable H € L (R?). Set

k
1
(kéEsz(j), ke N
j=1

so that (C, Ox) — (2, H) a.s. Since ¢ is convex, (Cx, ©) € 4, Vk € N. Since
¢ is closed under a.s.-convergence, it follows that (2, H) € ¢. Fatou’s lemma

and the convexity of U now give

E[U (H)] + 2-diag[S(0)] "z
< lim (E[(64)] + u-diag[S(0)) x)

k—oo

< lim + > (B[ (Hyg)] + 215) dinglS (0)] "}

— lim (E[ﬁ(Hk)] n zk-diag[S(O)]*1x> — W(z).

k—oo

Therefore, (2, H) attains the infimum in (4.34).
Finally, if P(H = 0) > 0, then P(U(H) = o0) > 0, which gives W (z) =
00, a contradiction. In conjunction with Corollary 2.2.3 and the fact diag[S(T)]*H €

K* a.s., we obtain He (0,00)? a.s. This completes the proof. O

Proof of Theorem 4.4.1: Let (E,I:I) € ¢ be a pair given in Lemma 4.4.2
above and set C' 2 I(H). We first claim that

A

(4.37) E[C-(H — H)] < (z — 2)-diag[S(0)] 'z, V(z, H) e ¥.
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To see this, fix (z, H) € & arbitrarily, and set

(2o, H.) 2 (1 —¢)(3, H) + (2, H)

(4.38)
C. = I(H,)
for each 0 < & < 1. Then the optimality of (2, ﬁ) implies

(4.39)
0> (E[U(H)] + 2-diag[5(0)]’1x> - (E[(j(Ha)] + zs-diag[S(O)]*lx)

E[U(H) — U(H.)] + (2 — z.)-diag[S(0)] 'z

On the other hand, from the convexity of the function U, the fact that
H. € (0,00)? a.s., and the equality (4.18), we have

(4.40) E[U (H) - U(H.)] > —E[[(H.)-(H — H.)].

Combining the inequalities (4.39) and (4.40) and then substituting (4.38),

we obtain

0> —E[I(H.)-(H — H)| + (2 — z)-diag[S(0)] 'z

—c {E[CE-(H —H) - (2 - 2)-diag[5(0)]_1x} .
Dividing by ¢, we obtain

(4.41) E[C.-(H — H)] < (z — 2)-diag[S(0)] *z.

~

Now, let € | 0. Then by continuity of I, we have C. = I[(H.) — I[(H) =
C. We would like to apply Fatou’s lemma to (4.41) to obtain
E[C-(H — H)] < imE[C. -(H — H)] < (= — 2)-diag[S(0)] 'z,
el0
which will provide (4.37). To justify the applicability of Fatou’s lemma, we

claim that the random variable C.-(H — H ) is bounded from below by some
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integrable random variable, uniformly in ¢ € (0,ep) for some gy > 0. Let

0 < a < 1 be a parameter. Then, for ¢ € (0,1 — a), we have
Ho+oaH-—H) =(1—-(e+a)H+(c+a)H € (0,00)%, as.

as well as H, € (0,00)% a.s. Thus, the convexity of the function U with the

equation (4.18) gives

(4.42) U((1—¢—a)H) > U(H. + a(H — H))
—I(H.+a(H-H))-|(1—e—a)H - (H. + a(H — H))

A

UH. +o(H—-H)+(e+a)[(H. +a(H-H))-H

> U(H. + o(H — H))

as well as

(443) U(H. +a(H — H)) > U(H.) — I(H.) - (HE ta(H - H)— HE)

= U(H.) — al(H.)- (H — H).

In conjunction with (4.15a), the inequality (4.43) implies that

~ A ~

(4.44) U(H. +a(H — H)) > —al(H.) - (H — H).

Combining (4.42) and (4.44), we obtain

A

I(H.) - (H - H) > —~0((1 - = — a) ).

LI+

Therefore, if we take 0 < a < 1/4, then for each € € (0,1 — 2¢], it follows
from Lemma 4.2.8 together the equation (4.10) that

W CORCE ) > [c(l-c—a) + (1— = a) *T(A)
| > —é [C(a)+a*ﬁﬁ(ﬁ> :
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Since the right-hand-side is integrable and independent of ¢ € (0,1 — 2q/],
application of Fatou’s lemma in (4.41) is now justified, which establishes the
inequality (4.37).

Now, by taking (z, H) = (0,0) in (4.37), we get

E[H -C] > 2-diag[S(0)] 'z

Also, by taking (z, H) = (1+¢)(2, H) in (4.37) for some small ¢ > 0, we get

o

E[H-C] < 2-diag[S(0)] 'a;
recall that the set & is a cone and thus (1 +¢)(2, H) € 4. We thus obtain
(4.46) E[H -C] = 2-diag[S(0)] 'z
Finally, (4.37) and (4.46) imply
(4.47) E[H-C] < z-diag[S(0)] 'z, Y(z,H) € ¥,
which in particular gives
E[Z-C] < z-diag[S(0)] 'z, VYZ € Dy(z) and Vz € diag[S(0)]K* \ {0}
because of (4.29). Theorem 2.3.7 then gives C € €(z). In conjunction with

(4.32) and (4.33), the equation (4.46) now gives (4.35). O

4.5 A Generalization; Utility from Inter-Temporal and

Terminal Consumption

In this section, we sketch a generalization of the results in the previous sec-
tion to the case where consumption over the time period [0,7) is allowed as

well as at the terminal time T. An inter-temporal consumption process is an
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R% -valued, progressively measurable process c(-) defined on [0,T) such that
fOT le(t)|dt < oo. For each t € [0,T) and ¢ = 1,...,d, the random variable
c'(t) is the rate of consumption of the i-th consumption good at time ¢t. A
terminal consumption vector is simply an Ri—valued, Z (T')-measurable ran-
dom variable as in Definition 4.2.3. A pair (C, ¢) of terminal/inter-temporal

consumption is then an element of the space £ defined by
(448) £ =2LN((Q,Z(1),P);RY) x L°(([0,T) x Q, 2, p @ P); RE),

where p is the Lebesgue measure on the interval [0,7") and X, is the o-
field on [0,T") x Q generated by the progressively measurable processes. We
identify an element (Y,y) € £ with the progressively measurable process
j(t,w) = Lpor(t)y(t,w) + L7y (t)Y (w) defined on [0,T] x €. Note that we

have

Yi(w) =Yz(w), P-ae.we and
yi(t,w) = pa(t,w), (L®P)ae. (t,w)e€[0,T)xQ

if and only if
gl(ta UJ) = g2(ta w)a (la ® ]P)_a“e' (ta w) S [07 T] X Qa

where the measure fi is the sum of the Lebesgue measure on [0, 7] and the
point mass measure on {7'}. Note that under the identification (Y, y) = ¢, the
space & is identified with the space L°(([0,T] x Q, 3., it ® P); R?), where
>, is the o-field on [0,7] x Q generated by the progressively measurable
processes. This identification allows us to prove Theorem 4.5.4 below, by
line-by-line change of Theorem 4.4.1.

Given an initial endowment vector z € R¢, a trading strategy L(-) and

an inter-temporal consumption process ¢(+), we define the portfolio holdings
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process X ¢(-) by the formula

(4.49)

X;Lc(t) B .’L‘i
Si(t) — S4(0) /Ot S(u

M&

{dL“ — (L4 AY)dLY (u) }— /

€0,7),i=1,...,d

Noting that X0(-) = XL(.), we see easily from (4.49) that

(4.50) XEe(t) = XE(t) — diag[S(t)] /Ot c(u)du, ¥te[0,T).

Let z € K be an initial endowment vector and ¢(-) be an inter-temporal
consumption process. With analogy of Definition 4.2.3, we call a trading

strategy L(-) admissible for (x,c) if the “no-bankruptcy” condition
Xty e K, Vtelo,T),

is satisfied almost surely. Also, a pair (C, ¢) of terminal /inter-temporal con-
sumption is said to be financeable for x € K, if there exists an admissible

trading strategy L(-) for (z,c) such that
XE(T-) = diag[S(T)]C, a.s.

We denote by &7 (z, ¢) the set of all admissible trading strategies for (z, ¢) and
by € (x) the set of all financeable terminal /inter-temporal consumption pairs
for . The next lemma states that a terminal/inter-temporal consumption
pair (C,c) is financeable if and only if the total consumption C' + fo t)dt
is financeable in the sense of Definition 4.2.3, or equivalently, if and only
if the random vector diag[S(T)] (C’ + fOT c(t)dt) defines a contingent claim
hedgeable for z.
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Lemma 4.5.1. A terminal/inter-temporal consumption pair (C,c) € £ is
financeable for x, if and only if the contingent claim C’+f0T c(t)dt is hedgeable

for x. In other words, we have
T
(C,c) € €(x) if and only if diag[S(T)] (C’ —|—/ c(t)dt) €A,.
0

Proof (Sufficiency): Suppose that C' + fOT c(t)dt is hedgeable for z. Then,
there exists a trading strategy L(-) € & (x) such that

T
XE(T—-) = diag[S(T)] <C+ / c(t)dt)
0
holds almost surely. This implies from (4.50) that
XEe(T-) = diag[S(T)]C,

almost surely. We need to show that L(-) € &/(z,c), or equivalently that
XZLe(t) = 0, Vt € [0,T) holds almost surely. To see this, fix an equivalent
martingale measure Q for the process S(-) and let z € diag[S(0)]K* \ {0}
be an arbitrary constant vector. Let p(-) be the Radon-Nikodym density
process of Q with respect to PP, given by (2.18), so that the process Z(-) =
p(+) diag[S()] diag[S(0)] 'z belongs to .#y; see the first paragraph of Sec-
tion 2.3. Then, since L(-) € &/(z), it follows from Lemma 2.3.2 that the

process Z(-) diag[S(-)]7' X% (-) is a supermartingale. This implies that
Z(t) - diaglS(t)] ' X (t) > E[Z(T) - diag[S(T)] " X7 (T—) | Z (1))

>E [Z(T)- (C+/0T c(u)du> ‘ ﬁ(t)]
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from (4.50). Since Z(-) = p(-)diag[S(-)]diag[S(0)]7*2 and p(-) is strictly
positive, we obtain

diag[S(0)] 'z - X;°(t) > 0, Vte[0,T),

almost surely, which implies that XZ¢(¢t) = 0, V¢t € [0,7T) almost surely
because z € diag[S(0)]K* \ {0} is arbitrary. Thus, L(-) € &/ (z.c), and (C, ¢)

is financeable for z. O

Proof (Necessity): Suppose that (C, c) is financeable for z. Then, there exists
a trading strategy L(-) € &/ (x,c) such that

X1e(T—) = diag[S(T)]C
holds almost surely, which implies from (4.50) that

XE(T—) = XP(T—) + diag|S(T)| /0 o(t)dt

> diag[S(T)] (C’ + /OT c(t)dt) ,
almost surely. Since L(-) € &7(z, c), the equation (4.50) also gives
XE(t) = XEe(t) + diag[S(t)] /0 t c(u)du =0, Vte[0,T),
almost surely, which implies that L(-) € o (x). Therefore, the random vector
diag[S(T)] (C’ + fOT c(t)dt) is hedgeable. O

A preference structure is a pair of functions U : R‘i — Rand u: [0,T)x ]R‘i —
R, where U(-) and u(t,-) are utility functions as in Definition 4.2.1 such
that the function u(-,) is #([0,T)) ® Z(R%)-measurable. For simplicity, we
assume that the dimension d;, appearing Definition 4.2.1, does not depend

on t, that is, the functions U and u are of the form

(4.51)  U(cr,e2) =Ui(er) and  w(t,cr,co) = ui(t, 1), Vtel[0,T),
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where (¢, ;) € R® x R® and d; + dy = d.
Given a preference structure (U, u), we consider the following utility max-

imization problem.

(4.52) V(z) 2 sup E [U(C’) + /Tu(t,c(t))dt} , r€K.
(Cye)e? () 0

As a conjugate of the set %(z) of all terminal/inter-temporal consumption
pairs (C, ¢) that are financeable for z, we take for each z € diag[S(0)]K* the
set 9(z) of all pairs (H,h) € £ such that

(i) diag[S(T,w)]'H(w) € K* for P-a.e. w € Q;
(ii) diag[S(t,w)]'h(t,w) € K* for (u ® P)-a.e. (t,w) € [0,T) x Q;
(iii) E [H-C’ + fOT h(t)-c(t)dt] < z-diag[S(0)] 'z, Vz € K, V(C,¢) € €(x).

Under the identification h = (H,h), which we mentioned right after the

equation (4.48), these three conditions can be written simply as
diag[S(t,w)] *h(t,w) € K*, (i ® P)-ae. (t,w) €[0,T] x Q,

/ Rt w)-5(t, w) (i @ P)(dt, dw) < z-diaglS(0)] 'z, Va € K, Vé € €(x).
[0,T]xQ

With analogy of (4.30), we set
(4.53) G 2 {(z,(H,h)) € diag[S(0)]K* x 2 | (H,h) € 9(=)}.

It is easy to see that & is a convex cone in R? x £ and is closed under
a.e.-convergence with respect to (i ® P), that is, if {(z, (Hg, i)} een € 9
is a sequence such that z; — z in R?, H, — H P-a.s. and that hy — h
(1 ® P)-a.e., then we have (z,(H,h)) € 4. Let ¢ € RY C K and consider
the pair

(C,c) & %diag[S(O)]_l (=.2).
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Then for this pair (C,c¢) and the constant function L(-) = 0, we see from

(4.49) that

Xie(t) =

Si(t) t\ :
—— |2 > =1,...
50) (1 2T> >0, Vtel0,T),Vi=1,...,d,

which implies that L(-) = 0 € &(z, ¢). Since we also have diag[S(T)| ' X1¢(T—) =
1/2diag[S(0)] "'z = C, we obtain (C,¢) € €(z). Therefore, for every pair
(H,h) € 9(z), we must have

2 - diag[S(0)] 'z > E [H C+ / ' h(t) - c(t)dt]

[H diag[S x+; (/T h(t )dt> -diag[S(O)]lx}

[ / dt] diag]S(0)] "'z
el |

bt - diaglS(0)]

Lo
2
1
2
1
=)

'ﬂl
\_/ 'ﬂl

(17

E [H + /0 ' h(t)dt] . diag[$(0)] "'z < 2(1V T)z - diag[S(0)] 'z

and thus

By taking = to be the i-th unit vector, we obtain
T
(4.54) 0<E {Hi +/ hi(t)dt] <2(1VvT)7, Vi=1,...,d
0

Thus, the set 2(2) is bounded in ! £ L' (([0,T] x Q, &, i ® P); RY).
Now, denote by U(+) and @(t,-) the convex conjugates of the utility func-
tions U(:) and wu(t,-), respectively, and define the function I(-) and a(t,-)

accordingly as in (4.17), so that we have
T

(4.55) E {U(C) +/ u(t, c(t))dt]
0

<E [(7‘(1{) + /OT ﬁ(t,h(t))dt] + z-diag[S(0)] 'z,
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with equality if we have
(4.56)

and

T
E {H-C’ +/ h(t)-c(t)dt} = 2-diag[S(0)] ',
0
as well as H € (0,00)? a.s. and h € (0,00)? (1 ®@P)-a.e. Given z € K, we set

(4.57)
W(z) 2 inf {E {ﬁ(H)+/OTa(t, h(t))dt] +z-diag[5(0)]_1x}.

(2,(H y))e¥
As in the case of the utility maximization from terminal consumption, for
the function U;, we make the same assumption as Assumption 4.2.7. For
the inter-temporal part u;, we assume that the function u;(¢,-) satisfies the
same conditions as Uy, “uniformly in ¢ € [0,7)”. More precisely, we make

the following assumption.

Assumption 4.5.2. The function u; satisfies the following conditions:

(4.58a) AE(w)2 Iim sup {Sup [cl(t).Vul(t,cl(t))]} <1

b—oo 1 : [0,T)—(0,00)%1 te[0,T) Ul(ta C1 (t))
infte[O,T) m(cy (t))>b

(4.58Db) lim inf inf m(zl(t,yl(t)))} = 00,
710 wi:[0,T)= (000091 [ t€[0,T)
i“%e[oj‘) m(yy (¢))<r

T
(4.58¢) / (£, y1)dt < 00, Y € (0, 00).
0

Here, as in Assumption 4.2.7, we are denoting m(n) £ min;<;<q, n° for any

d
vector n € RY.
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As an example, let u; be “separable”, i.e., uy(t,c1) = 5(t) Yi(c1), where
the function £: [0.7) — (0, 00) is bounded, continuous and uniformly away
from 0, and the function Y; satisfies the conditions for U; in Definition 4.2.1
as well as Assumption 4.2.7. Then, it is easy to check that u; satisfies the
conditions (4.58a) — (4.58c).

We have an analogy of Lemma 4.2.8.

Lemma 4.5.3. Under Assumption 4.5.2, there exist a number 5 > 0 and
a function ¢: [0,T) x (0,1) — Ry such that for every fized t € [0,T), the
function ((t,-) is non-increasing on (0,1), for every fired o € (0,1) the
function ((-, a) is integrable on [0,T"), and that the inequality
(4.59) iy (t, 01 (t) < ((t ) + P (t yi(t))
is valid for every t € [0,T), a € (0,1) and y,: [0,T) — (0, 00)%.
Proof. From (4.58a), there exists numbers v € (0,1) and b > 0 such that
(4.60) c1(t)-Vuy(t,e1(t)) < yui(t, er(t)), Vtel[0,T),
whenever inf;co7)m(ci(t)) > b. Then, for every function y;: [0,7) —
(0, 00)*® satisfying infiero,r) m(u (¢, y1(t)) > b, we have
u(t,y1(t)-v1(t) = ult, yi(t)-Vua(t, u(t, 11 (t)))
<yui(t,ult, vi(t)))
=@ (t,y1(t)) — va(t)-ult, i (t))],

and thus

it (1) <~ (0) utu(0),
for every t € [0,7). We claim that for every such function y;: [0,T) —
(0, 00)* with the property infsejo7) m (21 (¢, y1(t)) > b, the inequality

(461) Uy (t, Olyl(t)) < 04_7/(1_7)’&1 (t, U1 (t))
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holds for every number a € (0,1). To see this, fix arbitrary ¢t € [0,7"), and
define functions f and g on (0,00) by

fla) =y (t, ayi(t))
NGy (8, 3 (8).

[1>
e

g(a)

Then f and g are of class C' with f(1) = g(1) and

fl(a) = =yu(t) - u(t, ayi(t)) <0
g(@) = — T 7w/(lfﬂflal(t, (t)) <0,

and thus, in particular, f’(1) > ¢’(1). This implies that there exists a number
§ > 0 such that f(a) < g(a), Ya € (1 —4§,1). Let & = sup{a € (0,1) |
f(a) = g(a)} and assume that & > 0. Then, by continuity, we would have
f(&@) = g(&). We would also have f'(&) < ¢'(&) because f(a) < g(a) for
a € (&,1). But this is impossible because
§(&) = —— L& NG (¢, 40 (1))
l—y

< a0 ) (1)

- _dfv/(lfv)*lyl(t) cu(t,y1(t))

— _@—7/(1—7)—1]&'(@)

< f'(&).

Thus, f(a) < g(a), Va € (0,1), which provides (4.61).

Next, notice that from (4.58b), there exists a number r > 0 such that
the inequality infico ) m(21 (¢, %1 (¢)) > b holds for every function y,: [0,T) —
(0, 00)® with infyeo ) m(y1(t)) < r. This implies that if infyefo ) m (1 (¢, y1(t)) <
b, then we must have inficjory m(y1(t)) > 7, and thus, m(y(t)) > r, Vt €
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[0,T). In conjunction with (4.14), we obtain
(462) al(t’ ayl(t)) < al(ta 017‘(1, T 1)) = C(tv Oé), AS [07 T);

for every such function y;: [0,T) — (0,00)" with infyeqo ) m(ei(t, 11(t)) <
b. Note that ((¢,-) is non-increasing. Furthermore, from (4.58¢c), we have
fo ((t,a)dt < oo, Va € (0,00). Combining the two inequalities (4.61) and
(4.62), we obtain the assertion. O

The existence theorem under this setting is the following.

Theorem 4.5.4. Let x € int K be a given initial endowment vector and
assume W (x) < oo. Then there exists a triplet (2,(H,h)) € & with H €
(0,00)* P-a.e. and h € (0,00)* (u ® P)-a.e. that attains the infimum in
(4.57). Furthermore, under Assumptions 4.2.7 and 4.5.2, the pair (C,é(-)) £
(I(H),2(-,h(-)) is a solution to the original utility mazimization problem
(

4.52), that is, we have (C,¢) € €(z) and
(4.63) IE::{U(C)JF/0 u(t,é(t))dt] :(c,f)?;(w)E{U(CH/o u(t,c(t))dt].

We can prove Theorem 4.5.4 in the same manner as Theorem 4.4.1 and

shall present the proof in Appendix B.1.
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A Appendix for Chapter 3

A.1 On the Bipolar Theorem on the Space L%

In Section 3.2, we defined the dual space 2'(1) of the set Al by taking the
bipolar of the set 23 (1) of (3.3). The reason for considering the bipolar set
was that we needed closedness to ensure the existence of a solution to the

dual optimization problem. There, we used the following bipolar theorem of

[5].

Theorem A.1.1 (Bipolar Theorem). For any subset A C LY, its bipolar
set A®° = (A°)° in the notation of (3.6), coincides with the smallest convez,
solid, closed (under the topology of convergence in probability) subset A of

LY , that contains A.

While the bipolar theorem quoted above gives a duality characterization
of the set A, the next proposition gives an “inner” description of it. We used
this result in the proof of Proposition 3.2.4. For functions f, g € ILBr, we
write f < g if f(w) < g(w) for almost every w € . Also, for a subset A of
LY , we define the solid hull S(A) of A by

(A.1) S(A) £ {ge L) |g< fforsome f € A}.

We denote by cl[A] and co[A] the closure (under the topology of convergence
in probability) and the convex hull, respectively, of the set A.
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Proposition A.1.2. Let A C IL&. Then the smallest convex, solid, closed
(under the topology of convergence in probability) subset A of L(«)w that con-

tains A, is given by

(A.2) A = cl[co[S(A)]].

Proof. Since the set A is convex and contains S(A), we have co[S(A)] C A.
But then, since A is also closed, it follows that cljco[S(A)]] € A. On the other
hand, it is clear that the set cl[co[S(A)]] is convex, closed and contains A.
Thus, in order to prove cljco[S(A)]] D A, it suffices to show that cl[co[S(A)]]
is solid. But since S(A) is solid, this follows from Lemmas A.1.3 — A.1.5
below. 0

The first two lemmas are essentially the same as Theorems 1.2 — 1.3 of [1].

Lemma A.1.3. If g < fi+---+ f, holds for g, f1,..., fn € L%, then there
exist gi,... ,gn € LY such that g; < fi fori=1,... ,nand g = g1+ -+gn.

Proof. For n = 1, the assertion is trivial. For n > 2, we prove it by induction.
First, assume g < f; + fo and put ¢; = g A f; and go = g — g;. Then by
definition, we have 0 < ¢g; < f; and g; + g2 = g. Also, we have

G2=9—g1>9g—g=0

and
g=9-—n=9—(9Nf)=(9—fLi)lgsny < fo

Therefore, g; and go satisfy the required conditions. This prove the assertion
for n = 2. Next, let n > 3 and assume that the assertion is true for n—1. Let
g< fit - +fa=fit+(fo+--+fn). From the previous case for n = 2, there
exist g1, h € LY such that g1 < fi, h < fo+---+ f, and g1 + h = g. Now,
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by the induction assumption, there exist go,...,g, € LY such that g; < f;
fort=2,... ,n,and go+---+¢9,=h. But then g1 +---+g, = g1 + h =g,

and we are done. O
Lemma A.1.4. If S is a solid subset of LY., then so is its convex hull co[S].

Proof. Let f € co[S], g € L% and g < f. There exist fi,...,fn € S,
Ay An € (0,1] with D77 | A; = 1 such that

F=Y_\fi
=1

From the previous lemma, there exist g, ... , g, € L% such that g; < A, f; for
i=1,...,nand g +--+g, =g. Put h; = g;/\; for i = 1,... ,n. Then
since

h; < )\li)\ifi =fi €S,

we have h; € S because of the solidity of the set S. Now, we have

g=> _gi=Y Nhi€colS].
i=1 i=1
Therefore, co[S] is solid. O

Lemma A.1.5. If S is a solid subset of L%, then so is its closure cl[S].

Proof. Let f € cl[S], g € L% and g < f. There exists a sequence {f,}>>; C S
such that f, — f in probability. Let

G =gA fny, meN

Then g, < f, and hence g, € S, Vn € N. Also, for every ¢ > 0, we have

Pllg—gnl > €] = P[(9— fa)lgg=t} > €]
S ]P’[f—fnZ€]
< PlIf — ful > €]

1

0, as n — oo.
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Therefore, g € cl[S], which proves the assertion. O

A.2 Proof of Theorem 3.5.1

We first prove, in Lemma A.2.1, the existence of an optimal H for the dual

problem (3.75).

Lemma A.2.1. For each z > 0, there exists a random variable H = ﬁ(z) €

P'(1) that attains the infimum in (3.75).

Proof. Take a sequence {H,}2; C 2'(1) such that lim, . | E(1—2H,G)* =
V(z). As in the proof of Lemma 3.4.1, from Komlés’ theorem, there exists
a subsequence {H,, }%, of {H,}>, such that the sequence {©}°, defined
by

converges, almost surely, to some random variable He 2'(1). The convexity

of the functional
(A.3) 2'(1) > H— E(1 — 2zHG)" € ]0,00)

and the fact ©; € 2'(1) imply that

k
~ 1
(A.4) V(z) SE(1 - 264G)" < - Y EQ - zH,G)*, VkeN.
i=1
Let k& — oco. Then, being the Cesaro average of the set of numbers {E(1 —
zH, G)T}¥_,, the right-most-side of (A.4) converges to V(z), which gives
V(z) = lim E(1 — 20,G)*.

k—o00
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On the other hand, since 0 < (1 — 20;G)" < 1, Vk € N, the bounded

convergence theorem gives

E(1 — zHG)* = lim E(1 — 20,G)*.

k—o0
We thus obtain
V(z) =E(1 — zHG)".

This shows that H attains the infimum in (3.75). O
Next, we investigate the behavior of the function (- ;) of (3.74).

Lemma A.2.2. The function ¥(-;z) is continuous and convex on [0,00),

and satisfies

cx) — 1
(A.5) limM =-G0)+z<0
z]0 z
as well as
(A.6) lim A(z2) =1 =2z.
2—+00 2z

Proof of the convezity of y(-;x): It suffices to prove the convexity of V(-).
Let 21, 20 > 0, K1 € 212%(1), Ky € 2202%(1) and 0 < a < 1. Then, from
(3.30), we have aK; + (1 —a)K; € 2'(az; + (1 — a)zs), which, together with
the convexity of the map K — (1 — KG)*, gives
Viaz + (1 —a)z) <E(1 — (aK; + (1 — 0)K2)G)*t
<aF(l - K1G)" + (1 — o)E(1 — K,G)™.

Taking the infimum of the right-hand-side over K; € 2,2'(1) and K, €
222" (1), we obtain

V(azl + (1 —a)z) < aV(zl) +(1- a)V(zz).
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Proof of the continuity of ~(-;x): It suffices to prove that lim, o V(z) = 1.
For given ¢ > 0, take H, € 2'(1) such that

1>V(z2) = Heiglf(l)E(l —2HG)" > E(1 — zH.G)" —¢.
From the bounded convergence theorem, we have lim, o E(1 — zH.G)" =1,
which implies

1> mf/(z) > h_mV(z) >1—-c.
z]0 210

By letting ¢ | 0, we obtain lim, o V(z) = 1. O

Proof of (A.5): By definition, for every z > 0 we have

sr) — 1
Nze) =11 inf E[(1-zHG)"-1]+z
z Z He'(1)
1
=—— sup E(1AzHG)+=
% HeP(1)
> — sup E[HG|+=x
He'(1)
= —-G(0) + z,
and hence
() -1
(A.7) lim ————— > —G(0) + z.
20 z

To show that the reverse inequality for the limit-superior, we take, for

each ¢ > 0, a random variable H, € 2*(1) such that

E[H.G] > sup E[HG]—e¢=G(0)—e.
He1(1)
Then, for each z > 0, we have
rr)—1 1
(ze) — 1 =—— sup E(1AzHG)+=z
z % He2'(1)

< — sup E[HGlgme<y|+=
He9'(1)

S —E[HEGl{zHEGgl}] + .
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Letting z | 0, we obtain from Fatou’s lemma

— ~N(zz)—1
liﬁ]lM < —limE[H.Glgp.g<y)+2 < —EH.Gl4+z < —G(0)+e+z.
z z 2|0 N

Since € > 0 was arbitrary, we conclude that

— ~(zz)—1
(A.8) A G T S
2]0 V4
In conjunction with (A.7), the inequality (A.8) now gives (A.5). O

Proof of (A.6): By definition, we have
sz) — 1 1 T
Wew) =L E(——HG) — -t
z Heot(l) \ z z
But for an arbitrarily fixed H' € 2'(1), we have by the dominated conver-
gence theorem,

1 + 1 +
0< inf()E(——HG) gE(——H'G) —0, as 2z — oo.
1

He9? z z

Therefore,

) —1
lim 77(@ ?) = 7.
Z—r 00 A

O

Based on the previous lemma, we show that (- ; x) assumes the infimum

at some Z > 0.

Lemma A.2.3. The function ¥(-;z) attains its infimum at some 0 < 2 <

Q.

Proof. Because of (A.6), we cannot have info <o 7((; 2) = limeroo ¥((5 ) <
v(z; ), Vz € (0,00). Therefore, the convex function 7(-;z) either attains its
infimum at some 0 < 2 < oo, or else y(z; ) > v(0+;x) = 1, Vz > 0. Suppose
the latter is true. Then (z;z)/z > 1, Vz > 0; but this is again impossible,
because of (A.5). Therefore, the function (- ;x) must attain its infimum at

some 0 < Z < 00. O
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With the help of Lemmas A.2.1 — A.2.3, we now proceed to prove Theo-
rem 3.5.1.

Proof of Theorem 38.5.1: Let 0 < Z < oo be the number given in Lemma A.2.3,
and denote by H = H(%) € 2'(1) the random variable given in Lemma A.2.1.
Then it is clear that the pair (2, H) attains the first infimum in (3.73). This
proves (i). Once (ii) is proved, (iii) immediately follows from (3.72). It thus
remains to prove (ii).

In order to prove (ii), we introduce the space L given by (3.33), and
consider its subset ¢! given by (3.35). Recall that the set ¢! C L is convex
and closed in L under the norm topology. We also consider the functional

U: L — R given by
(A.9) Uz, K)2E(1 - KG)" + 2z, (2,K) €L

It is easy to check that this functional is convex, proper and lower semi-
continuous in the norm topology L. Moreover, from Lemma A.2.1 and
Lemma A.2.3, we know that U attains the infimum over &' at the point
(2,2H) € 9"\{(0,0)}. Notice also that the dual space of L is given by
L* = R x L, and that the subdifferential of U and the normal cone of ¢!

A

at the point (£, 2H) are given by
(A.10)

. E(1 - KG)* — [E(1 - 2HG)* + 2
00z, 2l 2 d vy elr | X )"+ ze] = [BL - 2HG)" + Za]
>

(z — 2+ E[(K — 2H)Y], ¥(2,K) € L

N(z,:H) = {(y, Y)eL* | (z—2)y+E[zH — 2H)Y] <0, ¥(z,2H) € 541},
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respectively; see Propositions 4.4.4 and 4.3.3 of [2]. The optimality of (2, EI:I)

implies the existence of a pair (¢,Y) € L* such that

~ ~

(A.12) —(9,Y) € dU (2, 2H),
and
(A.13) (9,Y) € N(2,2H);

see Corollary 4.6.3 of [2]. From (A.10) and (A.11), these are equivalent to

(A.14) E(1 — KG)* —E(1 — 2HG)" + (2 — %)z
> —(z—2)§—E[(K —2H)Y], V(z,K)el,

and
(A.15) (z—2)g+E[(zH — :H)Y] <0, Y(z,zH) € 9,

respectively.

First, we note that § = —z. Indeed, observe from (A.14) that
(z—2)(z+7) > EQ1-2HG) —E1-KG)" —E[(K —2H)Y], V(2 K) e L.

If x + g # 0 then, letting z — +oo with K fixed, we could make the left-
hand-side go to —oo, a contradiction. Therefore, we have y = —x, which

implies from (A.15) that
—x(z — 2)+E[(zH — 2H)Y] <0, Y(z,2H) € 9"
Taking z = 0 and dividing by Z > 0, we obtain
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Also, from (A.15) with y = —z, H = H and z = 2+¢ for some ¢ > 0, we get
—ex +eE[HY] <0,

and hence E[HY] < z. Therefore,

(A.16) E[HY] = z.

Also, (A.15) with z = 2 implies E[HY] < E[HY], VH € 2'(1). This,
together with (A.16) gives E[HY| < E[HY] = z, VH € 2'(1), and proves
Y e Al

Now, we show that ¥ can be written as in the right-hand-side of (3.69),
so that it can serve as an optimal solution ¢ to the original problem (3.61).

First, we define the random variable A by
(A.17) Y = Glppgoy + A
Then, (A.14) with § = —z implies
E(1 - KG)* —E(1 — 2HG)" > —E[(Gl, ygqy + A)(K — 2H)),
and hence,

(A.18)

BIAK — 2H)] > E(1 - 2HG)" — (1 — KG)* — Bl(K — )G 161, 0-0)
=E [(I{KG<1} - 1{21§rG<1}> (KG — 1)]

for every K € IL'. In particular, for any K € L' with {KG < 1} = {HG <

1}, the right-hand-side of (A.18) vanishes, and the inequality (A.18) reduces

to

(A.19) E[A(K — 2H)] > 0.
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In the rest of the proof, we shall show that the random variable A must
vanish outside the event {#HG = 1} and satisfy 0 < A < G on {#HG =1}.
First, let us suppose P[ﬁI:IG <1, A>0]>0. Take

K = _1{zﬁG<1, A>0} + éHl{ZﬁGZI or A<0}
Then, K € L! and {KG < 1} = {éﬁG < 1}. But we also have
E[A(K — éﬁ)] = —E[A(1 + éﬁ)l{A>0, 215[G<1}] < _E[Al{A>0, 215[G<1}] <0,
which contradicts (A.19). Therefore,
(A.20) A<0 on {2HG <1}.
Next, suppose that IP[QI:IG >1, A<0]>0. Then
A

E [El{zﬁa>1,A<0}] <O0.

Take

K= 2H1{zﬁc¢<1 or A>0} + %Hl{zﬁazL A<0}
Then, K € L' and {KG < 1} = {#HG < 1}. But we also have
N g A
E[A(K — 2H)] = E[AzHl{ngZL A<0}] <E al{zﬁczl, a<oy| < 0,
which contradicts (A.19). Therefore,
(A.21) A>0 on {2HG>1}.
Next, suppose P[A >0, G = 0] > 0. Then E[Al{g—0, a>0}] > 0. Take
K 2 3H — 1{6_0, a>0}-
Then, K € L' and {KG < 1} = {2HG < 1}. From (A.19), we obtain

A

0 < EJA(K — 2H)] = ~E[Al{6—0, aq}] < 0,
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a contradiction. Therefore, P[A > 0, G = 0] = 0, which together with (A.20)

implies
(A.22) A=0 on {G=0}.

Now, suppose P[A < 0, 2HG < 1] > 0. Then, there exist a real number
0 > 0 and an integer ng € N such that

A N
(A.23) E {5 (3G 1) 100, GZ%}] >4, ¥n > n.

Otherwise, for any 0 > 0 there would exist infinitely many integers n such

that
A/ .
By taking the limit-inferior as n — oo and then letting § | 0, we would

obtain

A N
lim E {5 (280G - 1) 1{2gG<1,G>i}} <0.

n—o0

But since we know from (A.20) that A < 0 on the set {ZHG < 1}, the

integrand is nonnegative, and Fatou’s lemma would yield

A/ - A/ -
O<E {E (EHG - 1) 1{2ﬁG<1,G>0}] < lim E {E (EHG - 1) 1{21?G<1,G>}L}} <0,

n—o0

which would imply that A =0 on {EI:IG <1, G > 0}, a contradiction. This
gives the implication P[A < 0, 2HG < 1] > 0 = (A.23). Now, for given
e >0and n € N, take

1
A
K= G (1 —e)lzpea, a1y T lepesy| -

This K € L' satisfies {KG < 1} = {2HG < 1}, and the equations (A.19),
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(A.21) and (A.23) yield
(A.24) 0> —E[A(K — 2H)]
1—¢ 1 A
=—E {A ( q 1{2ﬁG<1, G>1} + al{zﬁczu - ZH>]
A, = A
=E {E(ZHG - 1)1{zﬁG<1, GZ%}} +¢E {al{mca, GZ%}}
A/ .
+E {E (ZHG - 1) 1{2ﬁG21}] +E [ZHAI{EHG<L G<%}]
A A
>0 +¢cE El{zHGa, a>1y| + E [ZHAI{szGq, G<%}] ’
Yn > nyg.
As for the last expectation in (A.24), we have
|2HA1{21?G<1,G<%}| < |2HA1{21?G<1,G>0}|
= |5HY1{zﬁG<1} - 2HG1{2fJG<1, G>0}|
< [EHY 1]+ [EHGL ;g 0]
<EH||V||lo+1 € L
and, from the dominated convergence theorem, (A.21) and (A.22), we obtain
0> E[éﬁAl{zﬁG<1,G<l}] — E[,%I-:TAI{GZO}] =0, as n— oo.

This implies that there exists an integer n; > 1 with

. J
(A25) OZE[QHA]‘{EI:IG<1,G<%}] > —5, Vnan

It then follows from (A.24) and (A.25) that

A

o 0
55" el {él{mca, GZ%}} ;

A
0>60+cE {61{2I§G<1, GZ%}] -

Vn > max(ng, ny),
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a contradiction, since € > 0 is arbitrary. Therefore, P[A < 0, HG < 1] =0,

and hence from (A.20), we obtain
(A.26) A=0 on {2HG <1}.
In conjunction with (A.26), the inequality (A.19) becomes

A

(A.27) EIAK — 2H)1go1] > 0,

which is to hold for every K € L! satisfying { KG < 1} = {#HG < 1}. Take

1A~
& _zHG21}
G

Then, since E|K| = E |:1{2ﬁG21}/G] < E[ﬁlﬁ[l{ﬂmzn] < oo and since

{KG <1} = {#HG < 1}, we may apply (A.27) to obtain

E {g (1-z2606) 1{ma>1}} > 0.

Now, the integrand is nonpositive because of (A.21). It is strictly negative

on the set {4 < 0, 2HG > 1}. Since the integral is nonnegative, it follows

that
(A.28) A=0 on {2HG >1}.
The inequalities (A.26) and (A.28) together with (A.18) then imply
A
(A29) E E(KG —Dlgaeey| = E [(1{KG<1} - 1{zﬁG<1}) (KG - 1)]

It remains to show that A < G on the set {2HG = 1}. Suppose P[4
G, SHG = 1] > 0. Then, there exists a number ¢ > 0 such that

A
(A.30) I {51{2130:1, A>G}] >0+ Elg e, asqyl-

>
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For any ¢ > 0 and n € N, take

1
K £ G Liggor, acey T (1= &) lman, G>1y -

Then we can easily see that

KG-1= _1{21”1G:1,A>G} - 1{215{G;é1, G<iy ™ Sl{zﬁG;ﬂ, G>1y
and
1{KG<1} - 1{zﬁc<1} = 1{21?@:1, A>GY + 1{zﬁc>1}-

Using these inequalities, we now compute the both sides of (A.29) as

A
(A.31) LHS of (A.29) = -E [El{éﬁG:I,A>G}] < —0- E[l{EﬁGzl, A>G}]

and
(A.32) RHS of (A.29)
=K I (1{zﬁG:1, Asay T 1{zﬁa¢1, G<1} + 51{21&6:;&1, GZ%})

X (1{21§rG:1, Asay T 1{zﬁa>1}>]

=K _1{zﬁG:1, Asay T 1{zﬁG>1, G<1} + 51{21§rG>1, GZ%}]

It follows from (A.29), (A.31) and (A.32) that
0 < LHS of (A.29)—RHS of (A.29) < _5+5E[1{21§rG>1, Gz%}]+E[1{2ﬁG>1,G<%}]'
By letting n — oo, we obtain

0< =0+ ¢cE[l;o.y] +PEHG > 1, G =01 = =6 + B[l o))

Finally, by letting ¢ | 0, we obtain § < 0, a contradiction. Therefore,
P[A > G, 2HG = 1] = 0, and hence, in conjunction with (A.21), we obtain

(A.33) 0<A<G on {(HG=1}.

This completes the proof. O
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B Appendix for Chapter 4

B.1 Proof of Theorem 4.5.4

We begin with the existence result of the dual optimization problem (4.57).

Lemma B.1.1. Let z € int K and assume W (z) < oco. Then there ezists a
triplet (2, (H,h)) € & that attains the infimum in (4.57). Furthermore, we
have H € (0,00)%, P-a.e. and h(t,w) € (0,00)?, (1 ® P)-a.e.

Proof. Let {(zk, (Hg, ht)) }ken be a minimizing sequence for (4.57), i.e.,

(B.1) lim | (E {(?(Hk) +/0T12(t, hk(t))dt] +zk-diag[5(0)]lx> = W(z).

k—o0

Suppose that there exists a subsequence {(zxuy, (Hk(), hrq))) }ien which con-
verges to (0, (0,0)), (2®P)-a.e., that is, z;q) — 0 in RY, Hy) — 0 P-a.e. and
hia) — 0 (1 ® P)-a.e. Then, from the lower semi-continuity of the functions
U(-) and @(t,-) and from the equation (4.15b), we have limy o, U(Hyqy) >
U(0) = oo P-ae. and limy o @(t, hiy(t)) > i(t,0) = oo, (1 ® P)-ae.
But since U and 4 are non-negative because of (4.15a) and since 2r(1) -
diag[S(0)] 'z > 0, Fatou’s lemma gives
T
lﬁ%o <IE {U(Hk(l)) + /0 a(t, hk(l))dt] +zk(l)-diag[5(0)]lx> = o0,

and thus W(z) = oo, a contradiction. This shows that the sequence {zj }ren

is away from 0 for large k; otherwise, there would exist a subsequence
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{2k }iew such that zy) — 0, which would imply from (4.54) that (Hyqy, he@y) —
(0,0) in £", and thus, along a further subsequence, we would have (2, (Hrqy, he@))) —
(0,(0,0)) (i ® P)-a.e., a contradiction.
Next, from (B.1) and W (z) < 0o, we have E [0(Hk) + [Tt he(t))dt | +
2, -diag[S(0)] 'z < W(z) + 1 for large k, which implies from (4.15a) that

T
2,-diag[S(0)] 'z < - {Z?(Hk) —i—/ alt, hk(t))dt} +Wiz)+1
0
<W(z)+1=:M < 0.
Note also that since z;, € diag[S(0)]K* and z € K, we have z;diag[S(0)] 'z >

0. Therefore,

0 < z,-diag[S(0)] 'z < M
for large k. Furthermore, since z;, € diag[S(0)]K* \ {0} C (0,00)? for large
k, we may divide by 2} to obtain

o< diag[S(0)]""zx

M
r << —
1 1
2L, 2,

for large k. This, in conjunction with (2.16), implies

diag[S(0)] 2 .
% “k

0<{(z) <

and thus
0< zl(z) <M

for large k. Now, since = € int K, we have ¢(z) > 0 from Lemma 3.1 of [16],
and therefore,

M
0<z, < <00,

{(z)
which implies that the sequence {z} }ren is bounded. Since z; € 2jA and the

set A is compact in R?, the boundedness of the sequence {2} }1cn in R implies
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the boundedness of the sequence {2;}ren in R, Then, by passing through a
subsequence, we may assume that z, — 2 for some 2 € R¢ as k — co. Since
K* is closed and {zj}ren is away from O for large k, we obtain z € K* \ {0}.

Now, from (4.54) and the boundedness of {zj}ren, it follows that the
sequence {(Hp, hy)}ren is bounded in £!. Then, by Komlés’ theorem (see,
for example, [30]), there exists a subsequence {(Hy), hr)) bien such that the

sequence
k

1
(O, 0k) = z > (Hig i), keN

j=1
converges to some (H,h) € & for (i ® P)-a.e., that is, O, — H, P-a.e. and
Or — h, (1@ P)-a.e. Set

so that (Cx, (O, 6;)) — (2, (H, h)) (it ® P)-a.e. Since ¢ is convex, we have
(¢, (O, 6;) € 9, Yk € N. Since ¢ is closed under a.e.-convergence with
respect to (i ® P), it follows that (2, (H,h)) € &. Fatou’s lemma and the

convexity of the functions U and @ now give

E [ff(ﬁ) /0 ' alt, ﬁ)dt] + 2-diag[S(0)] "'z
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Finally, if P(H = 0) > 0 or (1 ® P)(h = 0) > 0, then PU(H) +
fOT a(t,y(t))dt = oo] > 0 which gives W(x) = oo, a contradiction. In
conjunction with Corollary 2.2.3 and the fact diag[S(T)] 'H € K* and
diag[S(t)] *h € K* we obtain H € (0,00)% P-a.e. and h € (0, 00)* (1®P)-a.e.
This completes the proof. O

Proof of Theorem 4.5.4: Let (2, (H,h)) € 4 be a triplet given in Lemma B.1.1
above and set C' 2 I(H) and é(t) £ o(t, h(t )) t € [0,T). We first claim that
~ A~ T ~
(B.2) E {C’-(H — H) + / &(t)-(h(t) — h(t))dt| < (z — 2)-diag[S(0)] ',
0
V(z, (H,h)) € 9.
To see this, fix (2, (H, h)) € ¢ arbitrarily, and set

(2e, (He, he)) £ (1= €)(2, (H, h)) + (2, (H, b))
(B.3) C. = I(H.)
c.(t) £ u(t, he(t)), te€]0,T).

for each 0 < & < 1. Then the optimality of (2, (I:I, ﬁ)) implies
~ ~ T ~
0> {E {U(H) +/ a(t, h(t ))dt] +z- diag[S(O)]_lx}

- —{ [ /0 alt, h dt] + 2. -diag[S(0)] 13:}

T
- [U(H) {u (t, h(t)) — a(t, ho(t ))}dt]
0
+ (2 — 2.)-diag[S(0)] 'z.
Note that as in Corollary 4.2.5, the functions I(-) and (¢, -) satisfy

I(y) = —VU(y) and t,y) = —Va(t,y)
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for every t € [0,00) and y € (0,00)?, where Vi(t,y) denotes the partial
derivative with respect to y. It then follows from the convexity of the func-

tions U(+) and @(t,-) that
(B.5) B[0(H) - U(H.)| > —E[1(H.)-(# - H.)
E UOT {a(t, h(t)) — alt, hg(t))} dt] > _E [/OTz(t, he(£))-(h(t) — hs(t))dt} .

Combining the inequalities (B.4) and (B.5) and then substituting (B.3), we

obtain
0> -E [I(Hg)-(lfl — H.)+ /Tz(t, he(t))-(h(t) — hg(t))dt]
+ (2 — z.)-diag[S(0)] 'z
=¢ {E [C’g-(H — H) —|—/0 ce(t)-(h(t) — ﬁ(t))dt] —(z— 2)-diag[5(0)]1x} :

Dividing by e, we obtain
(B.6) E {C’g-(H — I:I) +/0 ce(t)-(h(t) — ﬁ(t))dt] < (2 — 2)-diag[S(0)] 'z.

Now, let € | 0. Then by continuity of I and (¢, -), we have C, = I (H,) —
L(H) = C and c.(t) = L(t he(t)) — L(t h(t)) = ét). We would like to
apply Fatou’s lemma to (B.6) to obtain

E [C‘-(H —H)+ /OT é(t)- (h(t) — A(t))dt]

< lmE {OE«H— i)+ / (1) (h(t) - h(t))dt] <z 2),

which will provide (B.2). To justify the applicability of Fatou’s lemma, we

may proceed as in the argument around (4.42) — (4.45) and use Lemmas 4.2.8
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and 4.5.3 to obtain the inequalities

I(H,) - (H ~ B) >~ [6(0) + o= 0(8)]
(B.7) ) 7 A
ot he(8)) - ((0) = h(0) 2 = [Gat,0) + a Palt, D)

which are valid for every ¢ € (0,1 — 2a] and t € [0,T), where « is any fixed
constant in (0,1/4], and the function ¢; and the number (; (respectively,
(2 and () are given in Lemma 4.2.8 (respectively, Lemma 4.5.3). Notice
that the right-hand-side of (B.7) is independent of ¢ € (0,1 — 2a]. It is
(i ® P)-integrable as well because

E [Cl(a) + a—ﬂlﬁ(ﬁ)] +E [ /0 ' {(2(75, a) + a2t ﬁ(t))} dt]
<E [(1(0z) +/0T Gt a)dt] +E [ﬁ(ﬁ) +/0T12(t, ﬁ(t))dt] < 0.

Application of Fatou’s lemma in (B.6) is now justified, which establishes the
inequality (B.2).
Now, by taking (z,(H,h)) = (0,(0,0)) in (B.2), we get

E [ﬁ-é+ /0 ' B(t)-é(t)dt} > 2-diag[S(0)] .

Also, by taking (z, (H, h)) = (1+¢)(2, (H,k)) in (B.2) for some small ¢ > 0,
we get

E [ﬁz-é+ /0 ' B(t)-é(t)dt} < 2-diag[S(0)]'a;

recall that the set & is a cone and thus (1 + ¢)(2,(H,h)) € 4. We thus

obtain

(B.8) E {Hc + /0 ' B(t)-a(t)dt] = %-diag[S(0)] .
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Now, it follows from (B.2) and (B.8) that

A T e
(B.9) E [H-C+/ h(t)-é(t)dt] < z-diag[S(0)] 'z, VY(z,(H,h)) €Y,

0
which in particular gives
. T
E [Z(T)-C’+ / Z(t)-é(t)dt] < Z(0)-diag[S(0)] 'z
0

for every Z(-) € .#,. From the martingale property of Z(-), we can rewrite

the second integral in the left-hand-side as
E [ /0 " 20) -é(t)dt] _E /0 B2 0) -é(t)dt}
_E :IE [ /0 " 2T -ap)at ‘ y(t)”

_g|z(1)- /OT é(t)dt] ,
which yields _
E [Z(T)- <é+ /0 ' e(t)dtﬂ < Z(0)-diag[S(0)] 'z

for every Z(-) € . 1t then follows from Theorem 2.3.7 that the random vec-
tor diag[S(T')] (C’ + fOT é(t)dt) is a contingent claim which is super-hedgeable
for 2. We thus obtain (C,¢) € €(z) from Lemma 4.5.1. In conjunction with
(4.55) and (4.56), the equation (B.8) now gives (4.63). O
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