Geometry of quantum discrete Painlevé equations

Isomonodromic Deformations, Painlevé Equations, and Integrable Systems

28 June 2022

Yasuhiko Yamada (Kobe Univ.)
\triangle Plan

1. Introduction/motivation for quantization
2. Geometry of the classical (cont/disc) Painlevé equations
3. Quantization through affine Weyl group
4. τ variables

1. Introduction/motivation : Why quantize?

- Quantum IMD = conformal field theory. This relation has been known for a long time.
- The Schlesinger system
$n \times n$ Lax form: $Y=Y(z, t) \in \mathbb{C}^{n}$.

$$
\begin{aligned}
\frac{\partial}{\partial z} Y & =\mathcal{A} Y, & \mathcal{A} & =\sum_{a=1}^{N} \frac{A_{a}(t)}{z-t_{a}} \\
\frac{\partial}{\partial t_{a}} Y & =\mathcal{B}_{a} Y, & \mathcal{B}_{a} & =-\frac{A_{a}(t)}{z-t_{a}}
\end{aligned}
$$

Compatibility: $\left[\frac{\partial}{\partial z}-\mathcal{A}, \frac{\partial}{\partial t_{a}}-\mathcal{B}_{a}\right]=0$
\rightarrow Schlesinger system [Schlesinger (1912)]

- Schlesinger system is a Hamiltonian system

$$
\begin{aligned}
& \frac{\partial}{\partial t_{a}} A_{b}=\left\{H_{a}, A_{b}\right\}, \quad H_{a}=\sum_{b(\neq a)=1}^{N} \frac{\operatorname{tr}\left(A_{a} A_{b}\right)}{t_{a}-t_{b}}, \\
& \left\{\left(A_{a}\right)_{i j},\left(A_{b}\right)_{k l}\right\}=\delta_{a b}\left(\left(A_{a}\right)_{i l} \delta_{k j}-\left(A_{a}\right)_{k j} \delta_{i l}\right)
\end{aligned}
$$

- Quantization: $\{*, *\} \rightarrow \frac{1}{\hbar}[*, *]$,
$H_{a} \rightarrow$ Gaudin Hamiltonian
Schlesinger system \rightarrow KZ equation

$$
\hbar \frac{\partial}{\partial t_{a}} \Psi(t)=\sum_{b(\neq a)=1}^{N} \frac{\Omega_{a b}}{t_{a}-t_{b}} \Psi(t)
$$

[Knizhnik (89)][Reshetkhin (92)] [Harnad (96)] ... [Nekrasov-Tsymbaliuk, 2103.1261] [Saebyeok-Lee-
Nekrasov, 2103.17186].

- Garnier system

Scalar Lax form for $\psi=\psi(z, t)$:

$$
\begin{aligned}
& \psi_{z z}+u(z, t) \psi=0 \\
& \psi_{t}=A(z, t) \psi_{z}-\frac{1}{2} A_{z}(z, t) \psi
\end{aligned}
$$

Their compatibility is given by

$$
\begin{aligned}
& u_{t}=\{u, H\}, \quad H=\int u A d z \\
& \{u(z), u(w)\}=\left(\frac{1}{2} \partial_{z}^{3}+2 u(z) \partial_{z}+u_{z}(z)\right) \delta(z-w)
\end{aligned}
$$

- This Poisson structure is the classical Virasoro algebra.
- Fuchsian eq: $\mathbb{P}^{1} \backslash\{(N+3)$ pts $\}$

$$
u(z)=\sum_{a=1}^{N+3}\left[\frac{c_{a}}{\left(z-t_{a}\right)^{2}}-\frac{H_{a}}{z-t_{a}}\right]+\sum_{i=1}^{N}\left[\frac{-3 / 4}{\left(z-q_{i}\right)^{2}}+\frac{p_{i}}{z-q_{i}}\right]
$$

The compatibility $\rightarrow N$-Garnier system [Garnier (1912)] ($P_{\mathrm{VI}_{\mathrm{I}}}$ for $N=1$)

$$
\frac{\partial q_{i}}{\partial t_{a}}=\frac{\partial H_{a}}{\partial p_{i}}, \quad \frac{\partial p_{i}}{\partial t_{a}}=-\frac{\partial H_{a}}{\partial q_{i}} .
$$

- Hamiltonians $H_{a}=H_{a}(q, p, t)$ are determined by the conditions (i) $z=q_{i}$ are apparent singularity and (ii) $x=\infty$ is non-singular.
- The quantization of the Lax pair for N-Garnier system is given by Virasoro CFT with $N+3$ primaries $+(N+1)$ level 2 degenerate fields.
Δ Relation to Gauge theory (AGT or BPS/CFT correspondence).
IMD \leftrightarrow CFT \leftrightarrow gauge theory
- Example. $N \times N$ Schlesinger system on \mathbb{P}^{1} with k regular singular points with the spectral type (=multiplicity of eigenvalues)

$$
\left(1^{N}\right), \underbrace{(1, N-1), \ldots,(1, N-1)}_{k-2},\left(1^{N}\right) .
$$

\rightarrow FST system [Fuji-Suzuki (2010)] $(k=4)$, [Tsuda (2010)] $(k \geq 4)$
($N=2, k=4 \rightarrow P_{\mathrm{VI}}$, and $N=2, k \geq 5 \rightarrow$ Garnier system.)

- FST system corresponds to $4 d$ gauge theory, $G=S U(N)^{\otimes k-3}, N_{\mathrm{f}}=$ $2 N, N_{\mathrm{bf}}=k-4$. [Gavrylenko, lorgov, Lisovyy, 1806.08650].

Motivation for the quantization of IMD

- Since IMD equations are Hamiltonian system, it is natural to consider their quantization.
- They are related to CFT.
- The recent developments in gauge/string theories offer further motivation to quantize the IMD.

The aim of this talk

- To consider the quantization of discrete Painlevé equations.

2. Geometry of the classical (cont/disc) Painlevé equations

«The original six (or eight) Painlevé equations

$$
\begin{aligned}
& P_{\mathrm{VI}} \rightarrow P \vee \rightarrow P_{\mathrm{III}_{1}} \rightarrow\left(P_{\mathrm{III}_{2}}\right) \rightarrow\left(P_{\mathrm{III}_{3}}\right) \\
& \searrow \\
& P_{\mathrm{IV}} \rightarrow \\
& \hline
\end{aligned} P_{\mathrm{II}} \rightarrow P_{\mathrm{I}} .
$$

are non-autonomous Hamiltonian systems

$$
q^{\prime}=\frac{\partial H}{\partial p}, \quad p^{\prime}=-\frac{\partial H}{\partial q}, \quad t^{\prime}=\epsilon
$$

- In the autonomous limt $(\epsilon \rightarrow 0), H(q, p, t)$ is conserved.
^ Hamiltonian H_{\jmath} for $P_{\jmath}(\epsilon=1)$

$$
\begin{aligned}
& H_{\mathrm{VI}}=\frac{q(q-1)(q-t)}{t(t-1)}\left\{p^{2}-\left(\frac{a}{q-t}+\frac{b}{q-1}+\frac{c}{q}\right) p\right\}+\frac{d(q-t)}{t(t-1)}, \\
& H_{\vee}=t^{-1}\left\{q(q-1) p(p+t)-\left(\alpha_{1}+\alpha_{3}\right) q p+\alpha_{1} p+\alpha_{2} t q\right\}, \\
& H_{\mathrm{III}}^{1} 10=t^{-1}\left\{p(p-1) q^{2}+\left(\alpha_{1}+\alpha_{2}\right) q p+t p-\alpha_{2} q\right\}, \\
& H_{\mathrm{III}_{2}}=t^{-1}\left(p^{2} q^{2}+q+p t+\alpha_{1} p q\right), \\
& H_{\mathrm{III}_{3}}=t^{-1}\left(p^{2} q^{2}+p q+q+\frac{t}{q}\right), \\
& H_{\mathrm{IV}}=q p(p-q-t)-\alpha_{1} p-\alpha_{2} q \text {, } \\
& H_{\mathrm{II}}=\frac{p^{2}}{2}-\left(q^{2}+\frac{t}{2}\right) p-a q, \quad H_{\mathrm{I}}=\frac{p^{2}}{2}-2 q^{3}-t q .
\end{aligned}
$$

[Ohyama-Kawamuko-Sakai-Okamoto (2006)]

\triangle Correspondence to gauge theory

』The Painlevé equations

$$
\begin{aligned}
P_{\mathrm{VI}} \rightarrow P \mathrm{~V} & \rightarrow P_{\mathrm{III}_{1}} \\
& \rightarrow P_{\mathrm{III}_{2}} \rightarrow P_{\mathrm{III}_{3}} \\
& P_{\mathrm{IV}}
\end{aligned} \rightarrow P_{\mathrm{II}} \rightarrow P_{\mathrm{I}}
$$

correspond to the $4 d, \mathcal{N}=2, S U(2)$ gauge theory

$$
\begin{aligned}
S W_{4} \rightarrow S W_{3} & \rightarrow S W_{2} \rightarrow S W_{1} \rightarrow S W_{0} \\
& \searrow \\
& A D_{2} \rightarrow A D_{1} \rightarrow A D_{0}
\end{aligned}
$$

- $S W_{N_{f}}$: [Seiberg-Witten (1995)]. $A D_{n}$: [Argyres-Douglas (1995)].
Δ An easy way to see the correspondence is to compare the geometry.

Example. $P_{\mathrm{VI}} \leftrightarrow S W_{4}$ case: In variables $(x, y)=(q, p q)$, the equation for the level set $H_{\mathrm{VI}}=u$ is written as

$$
x\left(y-b_{1}\right)\left(y-b_{2}\right)-\left((1+t) y^{2}+b_{5} y+b_{6}\right)+\frac{t}{x}\left(y-b_{3}\right)\left(y-b_{4}\right)=u .
$$

This is a family of elliptic curves known as the Seiberg-Witten curve for $S W_{4}$:

- For all the equations P_{J}, similar geometry is known [Okamoto (70's)][Sakai ${ }^{(2001)}$)[Kajiwara et al, nlin/0403009]. They are 8-points blow up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
Δ The geometric structures in discrete cases.
- Example. Discrete Painlevé equation with $A_{1}^{(1)}$-symmetry

$$
T:(a ; x, y) \mapsto\left(p a ; a \frac{x+y}{x+a y} y, \frac{x+a y}{x+y} \frac{1}{x}\right)
$$

- For an initial data $(a, x, y) \in \mathbb{R}_{>0}^{3}$, the orbits in $(\log x, \log y)$ coordinates are

$$
p=1.01
$$

$$
p=1.001
$$

$$
p=1
$$

- In the autonomous limit ($p \rightarrow 1$), the system admits an algebraic integral:

$$
H(x, y):=x+\frac{a}{x}+y+\frac{1}{y}=u \quad(\text { constant })
$$

- For complex initial values $x, y \in \mathbb{C}$, the level set $H(x, y)=u$ is a Riemann surface of $g=1$: amoeba

The previous real orbit is the inside boundary of this amoeba.

- Example. $D_{5}^{(1)}$ case: $q-P_{\text {VI }}$ [Jimbo-Sakai (1996)]

$$
\begin{aligned}
& T:\left(\begin{array}{c}
a_{1}, a_{2}, a_{3}, a_{4} \\
a_{5}, a_{6}, a_{7}, a_{8}
\end{array} ; x, y\right) \mapsto\left(\begin{array}{c}
a_{1}, a_{2}, p a_{3}, p a_{4} \\
a_{5}, a_{6}, p a_{7}, p a_{8}
\end{array} \bar{x}, \bar{y}\right), p=\frac{a_{1} a_{2} a_{7} a_{8}}{a_{3} a_{4} a_{5} a_{6}}, \\
& \bar{y}=\frac{a_{5} a_{6}}{y} \frac{\left(x+a_{3}\right)\left(x+a_{4}\right)}{\left(x+a_{1}\right)\left(x+a_{2}\right)}, \quad \bar{x}=\frac{a_{1} a_{2}}{x} \frac{\left(\bar{y}+p a_{7}\right)\left(\bar{y}+p a_{8}\right)}{\left(\bar{y}+a_{5}\right)\left(\bar{y}+a_{6}\right)} .
\end{aligned}
$$

- The orbit for autonomous case: $p=1$

- Conserved curve $H(x, y)=u$ for autonomous $q-P_{\mathrm{VI}^{\prime}}(p=1)$:

$$
\begin{aligned}
H & =\frac{\left(x+a_{1}\right)\left(x+a_{2}\right)}{x} y+\left\{\left(a_{5}+a_{6}\right) x+\frac{a_{1} a_{2}\left(a_{7}+a_{8}\right)}{x}\right\}+\frac{\left(x+a_{3}\right)\left(x+a_{4}\right) a_{5} a_{6}}{x} \\
& =\frac{\left(y+a_{5}\right)\left(y+a_{6}\right)}{y} x+\left\{\left(a_{1}+a_{2}\right) y+\frac{a_{5} a_{6}\left(a_{3}+a_{4}\right)}{y}\right\}+\frac{\left(y+a_{7}\right)\left(y+a_{8}\right)}{y} \frac{a_{1} a_{2}}{x}
\end{aligned}
$$

$\leftrightarrow 5 \mathrm{~d}$ SU(2) Seiberg-Witten curve e.g. [Bao,Mitev,Pomoni, Taki, Yagi (1310.3841)]

- The parameters $a_{1}, a_{2}, \ldots, a_{8}$
\leftrightarrow Positions of the "tentacles" of the amoeba.

«Sakai's classification [Sakai (2001)]

$$
\begin{aligned}
& \text { ell } \quad E_{8} \\
& q \quad E_{8} \rightarrow E_{7} \rightarrow E_{6} \rightarrow D_{5} \rightarrow A_{4} \rightarrow A_{2+1} \rightarrow A_{1+1} \stackrel{\nearrow}{\rightarrow} A_{1}^{\prime} A_{1} A_{0} \\
& \begin{aligned}
\text { add } \quad E_{8} \rightarrow E_{7} \rightarrow E_{6} \quad \rightarrow \quad D_{4} \rightarrow A_{3} & \rightarrow A_{1+1} \\
& \\
& \\
& \\
& \\
& \\
& A_{2}
\end{aligned}>A_{1} \rightarrow A_{1} \rightarrow A_{0}
\end{aligned}
$$

- The (additive, q, elliptic)-difference cases correspond to (4d, 5d, 6d) gauge theories on $\left(\mathbb{R}^{4}, \mathbb{R}^{4} \times S^{1}, \mathbb{R}^{4} \times T^{2}\right)$.
- Only the cases in red admit continuous (differential) deformation.
- The equations in the list are of genus 1 which correspond to rank 1 gauge theory.

3. Quantization through Affine Weyl group

- To quantize the (cont/disc) Painlevé equations, we will use the affine Weyl group approach.

Construct a birational representation of an affine Weyl group, and study a translation T as a discrete flow.

- Standard methods to find suitable birational representation are
(i) Lie theory: classical [Noumi-Y. (2000)]. quantum [G.Kuroki 1206.3419].
(ii) Rational surface: [Coble (1929)] [Sakai (2001)].
(iii) Cluster algebra: [Berstein-Gavrylenko-Marshakov, 1711.02063] [Masuda-Okubo-Tsuda, (2021)],
- The quantization of the method (ii) is the main subject of this talk.

- Example.

Let X be a blow up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the 8 points. Picard group $\operatorname{Pic}(X)$ is generated by H_{1}, H_{2}, $E_{1}, \ldots, E_{8} .(\rightarrow$ associated parameters: $\left.h_{1}, h_{2}, e_{1}, \ldots, e_{8}\right)$

- The affine Weyl group $W\left(D_{5}^{(1)}\right)$.

$$
\begin{array}{c|c}
s_{0} \quad s_{4} & s_{i}^{2}=1 \\
\mid & \mid \\
s_{1}-s_{2}-s_{3}-s_{5} & s_{i} s_{j}=s_{j} s_{i}, \quad\left(\begin{array}{ll}
s_{i} & \left.s_{j}\right) \\
s_{i} s_{j} s_{i} & =s_{j} s_{i} s_{j}, \\
,\left(s_{i}-s_{j}\right)
\end{array}\right.
\end{array}
$$

$W\left(D_{5}^{(1)}\right)$ acts on X (birationally on $\mathbb{P}^{1} \times \mathbb{P}^{1}$).

- The explicit actions s_{i} on $K=\mathbb{C}\left(h_{1}, h_{2}, e_{1}, \ldots, e_{8}, x, y\right)$:

$$
\begin{aligned}
& s_{0}=\left\{e_{7} \leftrightarrow e_{8}\right\}, \quad s_{1}=\left\{e_{3} \leftrightarrow e_{4}\right\}, \\
& s_{2}=\left\{e_{3} \rightarrow \frac{h_{1}}{e_{7}}, e_{7} \rightarrow \frac{h_{1}}{e_{3}}, h_{2} \rightarrow \frac{h_{1} h_{2}}{e_{3} e_{7}}, y \rightarrow \frac{1+\frac{e_{7}}{h_{1}} x}{1+\frac{x}{e_{3}}} y\right\}, \\
& s_{3}=\left\{e_{1} \rightarrow \frac{h_{2}}{e_{5}}, e_{5} \rightarrow \frac{h_{2}}{e_{1}}, h_{1} \rightarrow \frac{h_{1} h_{2}}{e_{1} e_{5}}, x \rightarrow x \frac{1+\frac{h_{2}}{e_{1}} y}{1+e_{5} y}\right\}, \\
& s_{4}=\left\{e_{1} \leftrightarrow e_{2}\right\}, \quad s_{5}=\left\{e_{5} \leftrightarrow e_{6}\right\} .
\end{aligned}
$$

- Actions on $\left\{h_{i}, e_{i}\right\}$ are the standard 'linear' reflections on $\operatorname{Pic}(X)$ (written in multiplicative variables: $h_{i} \sim e^{H_{i}}, e_{i} \sim e^{E_{i}}$).
\rightarrow The actions on x, y are their natural birational lift to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- The Weyl group relations hold true also when x , y are non-commutative:
$y x=q x y[$ Hasegawa(2007)]
$\Delta \mathrm{A}$ standard realization for $E_{n}^{(1)}$:

- For $D_{5}^{(1)}$, we have $\omega=\frac{d x \wedge d y}{x y} \rightarrow$ Poisson bracket $\{\log x, \log y\}=1$. But for $E_{n}^{(1)} \rightarrow$ quantization is not so easy.
e.g. $\{x, y\}=x y(x y-1)$, (for $\left.E_{6}^{(1)}\right)$.
Δ We will take another realization.

- These curves for $q-E_{n}^{(1)}$ are of high degree but still $g=1$ due to the multiple singularities.
- We will consider the case $q-E_{8}^{(1)}$. [Moriyama-Y. (arXiv:2104.06661)]
- Thm. Let $k=\mathbb{C}\left(h_{1}, h_{2}, e_{1}, \ldots, e_{11}\right)$. On a skew field $K=k(x, y)$ with $y x=q x y$, we have the following representation of $W\left(E_{8}^{(1)}\right)$.

$$
\begin{aligned}
& s_{0}=\left\{e_{10} \rightarrow \frac{h_{2}}{e_{11}}, \quad e_{11} \rightarrow \frac{h_{2}}{e_{10}}, h_{1} \rightarrow \frac{h_{1} h_{2}}{e_{10} e_{11}}, x \rightarrow x \frac{1+y \frac{h_{2}}{e_{10}}}{1+y e_{11}}\right\}, \\
& s_{1}=\left\{e_{8} \leftrightarrow e_{9}\right\}, \quad s_{2}=\left\{e_{7} \leftrightarrow e_{8}\right\}, \\
& \left.s_{3}=\left\{e_{1} \rightarrow \frac{h_{1}}{e_{7}}, e_{7} \rightarrow \frac{h_{1}}{e_{1}}, h_{2} \rightarrow \frac{h_{1} h_{2}}{e_{1} e_{7}}, y \rightarrow \frac{1+x \frac{e_{7}}{h_{1}}}{1+\frac{x}{e_{1}}}\right\}\right\}, \\
& s_{4}=\left\{e_{1} \leftrightarrow e_{2}\right\}, \quad s_{5}=\left\{e_{2} \leftrightarrow e_{3}\right\}, \quad s_{6}=\left\{e_{3} \leftrightarrow e_{4}\right\}, \\
& s_{7}=\left\{e_{4} \leftrightarrow e_{5}\right\}, \quad s_{8}=\left\{e_{5} \leftrightarrow e_{6}\right\} .
\end{aligned}
$$

- To apply the representation to Painlevé equation, we want to compute the action of translations.
For $E_{8}^{(1)}$ case, we have $(2 \times) 120$ directions. Each of them is given by 58 simple reflections \rightarrow too big! - How can we understand them?
- In commutative case, we have the following factorization

$$
w(x)=\frac{A}{B}, \quad w(y)=\frac{C_{1} C_{2} \cdots C_{6}}{D_{1} D_{2} D_{3}}, \quad w \in W\left(E_{8}^{(1)}\right)
$$

Here A, B, C_{i}, D_{i} are some polynomials in x, y. They are complicated for general w, but have a simple geometric characterization. [Kajiwara et.al (2003)]

- To understand these polynomials, a lift of the rep. including tauvariables is essential. Its quantization is our main problem.

4. τ variables

- In addition to $\left\{h_{i}, e_{i}, x, y\right\}$, we introduce variables (τ-variables)

$$
\sigma_{1}, \sigma_{2}, \tau_{1}, \ldots, \tau_{11}
$$

- We put the following q-commutation relations:

$$
\begin{gathered}
y x=q x y \\
\sigma_{i} h_{j}=q^{H_{i} \cdot H_{j}} h_{j} \sigma_{i}, \quad \tau_{i} e_{j}=q^{E_{i} \cdot E_{j}} e_{j} \tau_{i},
\end{gathered}
$$

$H_{1} \cdot H_{2}=H_{2} \cdot H_{1}=1, E_{i} \cdot E_{j}=-\delta_{i j}$. Other cases are commutative.

- The variables σ_{i}, τ_{i} and the parameters h_{i}, e_{i} are non-commutative.
- Thm. One can extend the representation of $W\left(E_{8}^{(1)}\right)$ on variables h_{i}, e_{i}, x, y including σ_{i}, τ_{i} as

$$
\begin{aligned}
& s_{0}=\left\{\tau_{10} \rightarrow\left(1+y e_{11}\right) \frac{\sigma_{2}}{\tau_{11}}, \tau_{11} \rightarrow \frac{\sigma_{2}}{\tau_{10}}\left(1+y \frac{h_{2}}{e_{10}}\right), \sigma_{1} \rightarrow\left(1+y e_{11}\right) \frac{\sigma_{1} \sigma_{2}}{\tau_{10} \tau_{11}}\right\}, \\
& s_{1}=\left\{\tau_{8} \leftrightarrow \tau_{9}\right\}, \quad s_{2}=\left\{\tau_{7} \leftrightarrow \tau_{8}\right\}, \\
& s_{3}=\left\{\tau_{1} \rightarrow\left(1+x \frac{e_{7}}{h_{1}}\right) \frac{\sigma_{1}}{\tau_{7}}, \tau_{7} \rightarrow \frac{\sigma_{1}}{\tau_{1}}\left(1+\frac{x}{e_{1}}\right), \sigma_{2} \rightarrow \frac{\sigma_{1} \sigma_{2}}{\tau_{1} \tau_{7}}\left(1+\frac{x}{e_{1}}\right)\right\}, \\
& s_{4}=\left\{\tau_{1} \leftrightarrow \tau_{2}\right\}, \quad s_{5}=\left\{\tau_{2} \leftrightarrow \tau_{3}\right\}, \quad s_{6}=\left\{\tau_{3} \leftrightarrow \tau_{4}\right\}, \\
& s_{7}=\left\{\tau_{4} \leftrightarrow \tau_{5}\right\}, \quad s_{8}=\left\{\tau_{5} \leftrightarrow \tau_{6}\right\} .
\end{aligned}
$$

(The actions on $\left\{h_{i}, e_{i}, x, y\right\}$ are the same as before.)

- Reduced actions r_{i}

$$
\begin{array}{ll}
r_{i}(u)=s_{i}(u), & u=h_{j}, e_{j} \\
r_{i}(u)=u, & u=x, y \\
r_{i}(u)=\left.s_{i}(u)\right|_{x=y=0,} & u=\sigma_{j}, \tau_{j}
\end{array}
$$

The actions r_{i} on $\left\{\sigma_{j}, \tau_{j}\right\}$ are just a copy of the 'linear' actions on $\left\{h_{j}, e_{j}\right\}$.

$$
\begin{aligned}
& r_{0}=\left\{\tau_{10} \rightarrow \frac{\sigma_{2}}{\tau_{11}}, \tau_{11} \rightarrow \frac{\sigma_{2}}{\tau_{10}}, \sigma_{1} \rightarrow \frac{\sigma_{1} \sigma_{2}}{\tau_{10} \tau_{11}}\right\}, \\
& r_{1}=\left\{\tau_{8} \leftrightarrow \tau_{9}\right\}, \quad r_{2}=\left\{\tau_{7} \leftrightarrow \tau_{8}\right\}, \\
& r_{3}=\left\{\tau_{1} \rightarrow \frac{\sigma_{1}}{\tau_{7}}, \tau_{7} \rightarrow \frac{\sigma_{1}}{\tau_{1}}, \sigma_{2} \rightarrow \frac{\sigma_{1} \sigma_{2}}{\tau_{1} \tau_{7}}\right\}, \\
& r_{4}=\left\{\tau_{1} \leftrightarrow \tau_{2}\right\}, \quad r_{5}=\left\{\tau_{2} \leftrightarrow \tau_{3}\right\}, \quad r_{6}=\left\{\tau_{3} \leftrightarrow \tau_{4}\right\}, \\
& r_{7}=\left\{\tau_{4} \leftrightarrow \tau_{5}\right\}, \quad r_{8}=\left\{\tau_{5} \leftrightarrow \tau_{6}\right\} .
\end{aligned}
$$

- The actions s_{i} can be realized as the adjoint actions.
- Thm. On variables $e_{i}, h_{i}, \tau_{i}, \sigma_{i}, x, y$, we have

$$
\begin{gather*}
s_{i}=\operatorname{Ad}\left(G_{i}\right) \circ r_{i} \\
G_{0}=\frac{\left(\frac{h_{2}}{e_{10}} y ; q\right)_{\infty}^{+}}{\left(e_{11} y ; q\right)_{\infty}^{+}}, \quad G_{3}=\frac{\left(\frac{1}{e_{1}} x ; q\right)_{\infty}^{+}}{\left(\frac{e_{7}}{h_{1}} x ; q\right)_{\infty}^{+}}, \quad G_{i}=1 \quad(i \neq 0,3), \tag{1}
\end{gather*}
$$

where $(z ; q)_{\infty}^{+}=\prod_{i=0}^{\infty}\left(1+q^{i} z\right)$ is the q-factorial.

- The braid relations for s_{i} follow from the quantum dilogarithm identity for the q-factorial.
- The representation has a remarkable regularity.
- Thm. For any $w \in W\left(E_{8}^{(1)}\right)$, we have

$$
w\left(\tau_{i}\right)=F_{i, w}(x, y) \times\left(\text { monomial of }\left\{\sigma_{j}, \tau_{j}\right\}\right)
$$

where $F_{i, w}(x, y)$ is a non-commutative polynomial in x, y (cf. "Laurent phenomena", "singularity confinement").

- When $q=1$, the polynomial $F_{i, w}$ can be determined by its bidegree (d_{1}, d_{2}) and multiplicity m_{k} at p_{k}.
- We will formulate the analog of such characterization for quantum case $(q \neq 1)$.

Example. For $w=s_{0} s_{3} s_{4} s_{0} s_{2} s_{3} s_{2} s_{1} s_{0} s_{2} s_{4} s_{3}$, we have

$$
\begin{gathered}
w\left(e_{11}\right)=\frac{h_{1}^{2} h_{2}^{2}}{e_{1} e_{2} e_{7} e_{8} e_{10}^{2} e_{11}}, \\
w\left(\tau_{11}\right)=F(x, y) \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\tau_{1} \tau_{2} \tau_{7} \tau_{8} \tau_{10}^{2} \tau_{11}},
\end{gathered}
$$

and

$$
\begin{aligned}
F(x, y)= & \left(1+\frac{x}{e_{1} q}\right)\left(1+\frac{x}{e_{2} q}\right)+\left(*+* x+* x^{2}\right) y \\
& +*\left(1+\frac{e_{7}}{h_{1}} x\right)\left(1+\frac{e_{8}}{h_{1}} x\right) y^{2} \\
= & \left(1+e_{11} y\right)\left(1+w\left(e_{11}\right) y\right)+x\left(1+\frac{h_{2}}{e_{10}} y\right)(*+* y) \\
& +* x^{2}\left(1+\frac{h_{2}}{e_{10}} y\right)\left(1+\frac{q h_{2}}{e_{10}} y\right) .
\end{aligned}
$$

Note that $\left(d_{1}, d_{2}\right)=(2,2),\left(m_{i}\right)=(1,1, \ldots, 0,2,1)$.

- Def. For a data $\lambda=\left(d_{i}, m_{i}\right)$, we define a q-difference operator $F_{\lambda}(x, y)$ by the following two expressions:

$$
\begin{aligned}
F_{\lambda} & =\sum_{i=0}^{d_{1}} x^{i} \prod_{t=i}^{m_{11}-1}\left(1+q^{t} e_{11} y\right) \prod_{t=d_{1}-m_{10}}^{i-1}\left(1+q^{t} \frac{h_{2}}{e_{10}} y\right) U_{i}(y), \\
& =\sum_{i=0}^{d_{2}} \prod_{k=1}^{6} \prod_{t=i-m_{k}}^{-1}\left(1+q^{t} \frac{1}{e_{k}} x\right) \prod_{k=7}^{i-d_{2}+m_{k}-1} \prod_{t=0}^{i}\left(1+q^{\left.\frac{e_{k}}{h_{1}} x\right) V_{i}(x) y^{i},}\right.
\end{aligned}
$$

Here U_{i}, V_{i} are polynomials with suitable degrees specified by the condition: $\operatorname{deg}_{x} F=d_{1}$ and $\operatorname{deg}_{y} F=d_{2}$.

- The 1st [or 2nd] expression for F_{λ} shows the non-logarithmic singularities around $x=0, \infty$ [or $y=0, \infty]$, as the q-difference operator: $y \psi(x)=\psi(q x)\left[\right.$ or $\left.x \psi(y)=\psi\left(q^{-1} y\right)\right]$.
- Thm. For $\lambda=(d, m)$ s.t. $w\left(e_{i}\right)=h_{1}^{d_{1}} h_{2}^{d_{2}} /\left(e_{1}^{m_{1}} \cdots e_{11}^{m_{11}}\right)$, the quantum polynomial F_{λ} is unique (under the normalization $F_{\lambda}(0,0)=1$).
Moreover, we have

$$
w\left(\tau_{i}\right)=F_{i, w}(x, y) \times\left(\text { monomial of }\left\{\sigma_{j}, \tau_{j}\right\}\right)
$$

This shows the regularity of $F_{i, w}$ and its geometric characterization.

- From this, the birational action on x, y can also be computed as

$$
w(x)=w\left(\frac{\tau_{11}}{\tau_{10}}\right), \quad w(y)=w\left(\frac{\tau_{1} \tau_{2} \tau_{3} \tau_{4} \tau_{5} \tau_{6}}{\tau_{7} \tau_{8} \tau_{9}}\right)
$$

- A key fact for the proof: The non-logarithmic property of $F_{i, w}$ is preserved under the Weyl group actions.
This fact follows from a realization of the Weyl group actions as the adjoint actions. [Moriyama-Y, 2104.06661]
- Bilinear equations. Consider the $4+5+2$ "seed" equations

$$
\begin{aligned}
& \tau\left(e_{10}\right) \tau\left(\frac{h_{2}}{e_{10}}\right)=\frac{h_{2}}{e_{10}} \tau\left(\frac{h_{2}}{e_{i}}\right) \tau\left(e_{i}\right)+\tau\left(\frac{h_{2}}{e_{j}}\right) \tau\left(e_{j}\right), \\
& \tau\left(\frac{h_{2}}{e_{11}}\right) \tau\left(e_{11}\right)=e_{11} \tau\left(\frac{h_{2}}{e_{i}}\right) \tau\left(e_{i}\right)+\tau\left(\frac{h_{2}}{e_{j}}\right) \tau\left(e_{j}\right), \\
& \tau\left(e_{i}\right) \tau\left(\frac{h_{1}}{e_{i}}\right)=\frac{1}{e_{i}} \tau\left(\frac{h_{1}}{e_{11}}\right) \tau\left(e_{11}\right)+\tau\left(\frac{h_{1}}{e_{10}}\right) \tau\left(e_{10}\right), \\
& \tau\left(\frac{h_{1}}{e_{j}}\right) \tau\left(e_{j}\right)=\frac{e_{j}}{h_{1}} \tau\left(\frac{h_{1}}{e_{11}}\right) \tau\left(e_{11}\right)+\tau\left(\frac{h_{1}}{e_{10}}\right) \tau\left(e_{10}\right), \\
& \tau\left(\frac{h_{2}}{e_{1}}\right) \tau\left(e_{1}\right)=\ldots=\tau\left(\frac{h_{2}}{e_{6}}\right) \tau\left(e_{6}\right), \\
& \tau\left(\frac{h_{2}}{e_{7}}\right) \tau\left(e_{7}\right)=\ldots=\tau\left(\frac{h_{2}}{e_{9}}\right) \tau\left(e_{9}\right) .
\end{aligned}
$$

By taking copies of these relations by the action $w \in W\left(E_{8}^{(1)}\right)$ such as $w(\tau(\lambda)):=\tau(w \cdot \lambda)$, we obtain infinite system of bilinear equations for the τ-variables on E_{8} lattice.

- Thm. The overdetermined system defined above is consistent and has a solution given by $\tau(\lambda)=F_{\lambda}(x, y) \tau^{\lambda}$.
\triangle Quantum mirror curve.
- For generic parameters $\left(h_{i}, e_{i}\right)$, the curve C of bi-degree $(6,3)$ with multiplicities $m_{i}=$ $\left(1^{6} 2^{3} 3^{2}\right)=(1, \ldots, 1,2,2,2,3,3)$ is unique (multiple lines: $g(x, y)=x_{0}^{3} x_{1}^{3} y_{0}^{2} y_{1}=0$).

- For special parameters:

$$
p:=\frac{h_{1}^{6} h_{2}^{3}}{\left(e_{1} \cdots e_{6}\right)\left(e_{7} e_{8} e_{9}\right)^{2}\left(e_{10} e_{11}\right)^{3}}=1
$$

\rightarrow the curve C form a pencil $\lambda f(x, y)+\mu g(x, y)=0$.
\rightarrow The quantum discrete $E_{8}^{(1)}$ Painlevé equation reduces to an autonomous integrable system where the pencil gives the algebraic integral.

- From $W\left(E_{8}^{(1)}\right)$ symmetry, one can determine the curve explicitly.

$$
\lambda\left(\sum_{i=0}^{3} C_{i}(x) y^{i}\right)+\mu x^{3} y=0
$$

$$
\begin{aligned}
& C_{3}(x)=q^{3} e_{11}^{3} \prod_{i=7}^{9}\left(1+\frac{e_{i}}{h_{1}} x\right)\left(1+q \frac{e_{i}}{h_{1}} x\right), \\
& C_{2}(x)=q e_{11}^{2} \prod_{i=7}^{9}\left(1+\frac{e_{i}}{h_{1}} x\right)\left\{[3]_{q}+q x A_{-1}+q \kappa A_{1} x^{2}+[3]_{q} \kappa x^{3}\right\}, \\
& C_{1}(x)=e_{11}\left\{[3]_{q}+[2]_{q} A_{-1} x+\left(\kappa A_{1}+A_{-2}\right) x^{2}+\frac{\kappa}{q}\left(\kappa A_{2}+A_{-1}\right) x^{4}\right. \\
& \left.\quad+\frac{[2]_{q} \kappa^{2} A_{1}}{q^{2}} x^{5}+\frac{[3]_{q} \kappa^{2}}{q^{3}} x^{6}\right\}, \quad C_{0}(x)=\prod_{i=1}^{6}\left(1+\frac{1}{q e_{i}} x\right),
\end{aligned}
$$

$$
[k]_{q}=\frac{1-q^{k}}{1-q}, \quad A_{ \pm 1}=\sum_{i=1}^{9} a_{i}^{ \pm 1}, \quad A_{ \pm 2}=\sum_{1 \leq i<j \leq 9}\left(a_{i} a_{j}\right)^{ \pm 1},
$$

$$
a_{i}=e_{i}(1 \leq i \leq 6), \quad a_{i}=\frac{h_{1}}{e_{i}}(7 \leq i \leq 9) \quad \kappa=\frac{1 \leq i<j \leq 9}{\kappa} \frac{e_{7} e_{8} e_{9} e_{10} e_{11}}{h_{1}^{2} h_{2}} .
$$

- The curve C was first obtained by S.Moriyama [arXix:2007.05148] as a quantization of the classical $5 d E_{8}$ SW curve [Kim-Yagi (2015)].
- As a q-difference operator, the curve should be related to the trigonometric Ruijsenaars van-Diejen operator of type E_{8} [Takemura (2018)] [Noumi-
Ruijsenaars-Y (2020)][Chen-Haghighat-Kim-Sperling-Wang (2021)].
- There appear a good application of IMD to quantum spectral problems [Berstein-Gavrylenko-Grassi, (2105.00985)]. It will be useful also for the discrete cases.

\triangle Summary

- Geometry of classical and quantum Painlevé equations are reviewed in relation with the gauge theory.
- We constructed a quantum birational rep. of affine Weyl group $W\left(E_{8}^{(1)}\right)$.
- A lift of the rep. including the tau variables is also obtained.
- Regularity and the geometric characterization of the polynomial F (quantum τ quotient) is proved.
- Bilinear form of the $q p-E_{8}^{(1)}$ (q-quantum p-difference) Painlevé equation is given.
- The quantum mirror curve of type $q-E_{8}^{(1)}$ is derived from its symmetry.

Thank you!

