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▲ Plan

1. Introduction/motivation for quantization

2. Geometry of the classical (cont/disc) Painlevé equations

3. Quantization through affine Weyl group

4. τ variables
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1. Introduction/motivation : Why quantize?

• Quantum IMD = conformal field theory. This relation has been known
for a long time.

• The Schlesinger system

n× n Lax form: Y = Y (z, t) ∈ Cn.

∂

∂z
Y = AY, A =

N∑
a=1

Aa(t)

z − ta
,

∂

∂ta
Y = BaY, Ba = −

Aa(t)

z − ta
.

Compatibility: [
∂

∂z
−A,

∂

∂ta
− Ba] = 0

→ Schlesinger system [Schlesinger (1912)]
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• Schlesinger system is a Hamiltonian system

∂

∂ta
Ab = {Ha, Ab}, Ha =

N∑
b(̸=a)=1

tr(AaAb)

ta − tb
,

{(Aa)ij, (Ab)kl} = δab

(
(Aa)ilδkj − (Aa)kjδil

)
.

• Quantization : {∗, ∗} → 1
ℏ[∗, ∗],

Ha → Gaudin Hamiltonian
Schlesinger system → KZ equation

ℏ
∂

∂ta
Ψ(t) =

N∑
b(̸=a)=1

Ωab

ta − tb
Ψ(t).

[Knizhnik (89)][Reshetkhin (92)] [Harnad (96)] . . . [Nekrasov-Tsymbaliuk, 2103.1261] [Saebyeok-Lee-

Nekrasov, 2103.17186].
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• Garnier system

Scalar Lax form for ψ = ψ(z, t):

ψzz + u(z, t)ψ = 0,

ψt = A(z, t)ψz − 1
2Az(z, t)ψ.

Their compatibility is given by

ut = {u,H}, H =
∫
uAdz,

{u(z), u(w)} =
(1
2
∂3z +2u(z)∂z + uz(z)

)
δ(z − w),

• This Poisson structure is the classical Virasoro algebra.
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• Fuchsian eq: P1 \ {(N +3)pts}

u(z) =
N+3∑
a=1

[ ca

(z − ta)2
−

Ha

z − ta

]
+

N∑
i=1

[ −3/4

(z − qi)2
+

pi
z − qi

]

The compatibility → N -Garnier system [Garnier (1912)] (PVI for N = 1)

∂qi
∂ta

=
∂Ha

∂pi
,

∂pi
∂ta

= −
∂Ha

∂qi
.

• Hamiltonians Ha = Ha(q, p, t) are determined by the conditions (i)
z = qi are apparent singularity and (ii) x = ∞ is non-singular.

• The quantization of the Lax pair for N -Garnier system is given by Vira-
soro CFT with N +3 primaries + (N +1) level 2 degenerate fields.
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▲ Relation to Gauge theory (AGT or BPS/CFT correspondence).

IMD ↔ CFT ↔ gauge theory

• Example. N × N Schlesinger system on P1 with k regular singular
points with the spectral type (=multiplicity of eigenvalues)

(1N), (1, N−1), . . . , (1, N−1)︸ ︷︷ ︸
k−2

, (1N).

→ FST system [Fuji-Suzuki (2010)](k = 4), [Tsuda (2010)] (k ≥ 4)

(N = 2, k = 4 → PVI, and N = 2, k ≥ 5 → Garnier system.)

• FST system corresponds to 4d gauge theory, G = SU(N)⊗k−3, Nf =

2N , Nbf = k − 4. [Gavrylenko, Iorgov, Lisovyy, 1806.08650].
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Motivation for the quantization of IMD

• Since IMD equations are Hamiltonian system, it is natural to consider
their quantization.

• They are related to CFT.

• The recent developments in gauge/string theories offer further motiva-
tion to quantize the IMD.

The aim of this talk

• To consider the quantization of discrete Painlevé equations.
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2. Geometry of the classical (cont/disc) Painlevé equa-
tions

▲ The original six (or eight) Painlevé equations

PVI → PV → PIII1 → (PIII2) → (PIII3)
↘ ↘

PIV → PII → PI

.

are non-autonomous Hamiltonian systems

q′ =
∂H

∂p
, p′ = −

∂H

∂q
, t′ = ϵ.

• In the autonomous limt (ϵ→ 0), H(q, p, t) is conserved.
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▲ Hamiltonian HJ for PJ (ϵ = 1)

HVI =
q(q − 1)(q − t)

t(t− 1)

{
p2 −

( a

q − t
+

b

q − 1
+
c

q

)
p
}
+
d(q − t)

t(t− 1)
,

HV = t−1
{
q(q − 1)p(p+ t)− (α1 + α3)qp+ α1p+ α2tq

}
,

HIII1 = t−1
{
p(p− 1)q2 + (α1 + α2)qp+ tp− α2q

}
,

HIII2 = t−1
(
p2q2 + q+ pt+ α1pq

)
,

HIII3 = t−1
(
p2q2 + pq+ q+

t

q

)
,

HIV = qp(p− q − t)− α1p− α2q,

HII =
p2

2
−

(
q2 +

t

2

)
p− aq, HI =

p2

2
− 2q3 − tq.

[Ohyama-Kawamuko-Sakai-Okamoto (2006)]
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▲ Correspondence to gauge theory

▲ The Painlevé equations

PVI → PV → PIII1 → PIII2 → PIII3
↘ ↘

PIV → PII → PI

correspond to the 4d, N = 2, SU(2) gauge theory

SW4 → SW3 → SW2 → SW1 → SW0
↘ ↘

AD2 → AD1 → AD0

.

• SWNf
: [Seiberg-Witten (1995)]. ADn: [Argyres-Douglas (1995)].

▲ An easy way to see the correspondence is to compare the geometry.
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Example. PVI ↔ SW4 case: In variables (x, y) = (q, pq), the equation
for the level set HVI = u is written as

x(y− b1)(y− b2)− ((1+ t)y2+ b5y+ b6)+
t

x
(y− b3)(y− b4) = u.

This is a family of elliptic curves known as the Seiberg-Witten curve for
SW4:

w

w
w
w

uiij uiij

x = 0 x = ∞

y = ∞

• For all the equations PJ, similar geometry is known [Okamoto (70’s)][Sakai

(2001)][Kajiwara et al, nlin/0403009]. They are 8-points blow up of P1 × P1.
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▲ The geometric structures in discrete cases.

• Example. Discrete Painlevé equation with A(1)
1 -symmetry

T : (a;x, y) 7→
(
pa; a

x+ y

x+ ay
y,
x+ ay

x+ y

1

x

)

• For an initial data (a, x, y) ∈ R3
>0, the orbits in (logx, log y) coordi-

nates are

p = 1.01 p = 1.001 p = 1
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• In the autonomous limit (p → 1), the system admits an algebraic
integral:

H(x, y) := x+
a

x
+ y+

1

y
= u (constant).

• For complex initial values x, y ∈ C, the level set H(x, y) = u is a
Riemann surface of g = 1: amoeba

The previous real orbit is the inside boundary of this amoeba.

6

log |y|

- log |x|
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• Example. D(1)
5 case: q-PVI [Jimbo-Sakai (1996)]

T : (
a1, a2, a3, a4
a5, a6, a7, a8

;x, y) 7→ (
a1, a2, pa3, pa4
a5, a6, pa7, pa8

;x, y), p =
a1a2a7a8
a3a4a5a6

,

y =
a5a6
y

(x+ a3)(x+ a4)

(x+ a1)(x+ a2)
, x =

a1a2
x

(y+ pa7)(y+ pa8)

(y+ a5)(y+ a6)
.

• The orbit for autonomous case: p = 1

v
v

v
v

v v

v v
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• Conserved curve H(x, y) = u for autonomous q-PVI (p = 1):

H =
(x+a1)(x+a2)

x
y+{(a5+a6)x+

a1a2(a7+a8)

x
}+

(x+a3)(x+a4)

x

a5a6
y

=
(y+a5)(y+a6)

y
x+{(a1+a2)y+

a5a6(a3+a4)

y
}+

(y+a7)(y+a8)

y

a1a2
x

.

↔ 5d SU(2) Seiberg-Witten curve e.g. [Bao,Mitev,Pomoni,Taki,Yagi (1310.3841)]

• The parameters a1, a2, . . . , a8
↔ Positions of the “tentacles” of the amoeba.
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▲ Sakai’s classification [Sakai (2001)]

� �
ell E8

A′
1↗ ↘

q E8→E7→E6→D5→A4 →A2+1→A1+1→A1 A0

add E8→E7→E6 → D4→ A3 →A1+1→A1→A0
↘ ↘

A2 →A1→A0� �
• The (additive, q, elliptic)-difference cases correspond to (4d, 5d, 6d)
gauge theories on (R4, R4 × S1, R4 × T2).

• Only the cases in red admit continuous (differential) deformation.

• The equations in the list are of genus 1 which correspond to rank 1
gauge theory.
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3. Quantization through Affine Weyl group

• To quantize the (cont/disc) Painlevé equations, we will use the affine
Weyl group approach.

Construct a birational representation of an affine Weyl group,
and study a translation T as a discrete flow.

• Standard methods to find suitable birational representation are

(i) Lie theory: classical [Noumi-Y. (2000)]. quantum [G.Kuroki 1206.3419].

(ii) Rational surface: [Coble (1929)] [Sakai (2001)].

(iii) Cluster algebra: [Berstein-Gavrylenko-Marshakov, 1711.02063] [Masuda-Okubo-Tsuda, (2021)],...

• The quantization of the method (ii) is the main subject of this talk.
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• Example.

Let X be a blow up of P1 × P1

at the 8 points. Picard group
Pic(X) is generated byH1,H2,
E1, . . ., E8. (→ associated pa-
rameters: h1, h2, e1, . . . , e8)

x = 0 x = ∞

y = 0

y = ∞

w−e−1
6

w−e−1
5

w−e1
h2

w−e2
h2

w
−h1
e7

w
−h2
e8

w−e4 w−e3

• The affine Weyl group W (D(1)
5 ).

s0 s4
| |

s1− s2− s3− s5

∣∣∣∣∣∣∣
s2i = 1,

sisj = sjsi, (si sj),

sisjsi = sjsisj, (si − sj).

W (D(1)
5 ) acts on X (birationally on P1 × P1).
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• The explicit actions si on K = C(h1, h2, e1, . . . , e8, x, y):

s0 = {e7 ↔ e8}, s1 = {e3 ↔ e4},

s2 = {e3 →
h1
e7
, e7 →

h1
e3
, h2 →

h1h2
e3e7

, y →
1+ e7

h1
x

1+ x
e3

y},

s3 = {e1 →
h2
e5
, e5 →

h2
e1
, h1 →

h1h2
e1e5

, x→ x
1+ h2

e1
y

1+ e5y
},

s4 = {e1 ↔ e2}, s5 = {e5 ↔ e6}.

• Actions on {hi, ei} are the standard ‘linear’ reflections on Pic(X) (writ-

ten in multiplicative variables: hi ∼ eHi, ei ∼ eEi).
→ The actions on x,y are their natural birational lift to P1 × P1.
• The Weyl group relations hold true also when x, y are non-commutative:
yx = qxy [Hasegawa(2007)]
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▲ A standard realization for E(1)
n :

q-D(1)
5 q-E(1)

6

q-E(1)
7 q-E(1)

8

• For D(1)
5 , we have ω = dx∧dy

xy → Poisson bracket {logx, log y} = 1.

But for E(1)
n → quantization is not so easy.

e.g. {x, y} = xy(xy − 1), (for E(1)
6 ).
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▲ We will take another realization.

uu uu
u u

u u

y = 0

y = ∞

x = 0 x = ∞

q-D(1)
5

uu uikj
uu u

uu u

q-E(1)
6

uuikj uuikj
uuuu

uuuu

q-E(1)
7

usiiimmn usiiimmn
uuuuuu

uikjuikjuikj

q-E(1)
8

• These curves for q-E(1)
n are of high degree but still g = 1 due to the

multiple singularities.

• We will consider the case q-E(1)
8 . [Moriyama-Y. (arXiv:2104.06661)]
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� �
• Thm. Let k = C(h1, h2, e1, . . . , e11). On a skew field K = k(x, y)

with yx = qxy, we have the following representation of W (E(1)
8 ).

s0 = {e10 →
h2
e11

, e11 →
h2
e10

, h1 →
h1h2
e10e11

, x→ x
1+ y h2e10
1+ ye11

},

s1 = {e8 ↔ e9}, s2 = {e7 ↔ e8},

s3 = {e1 →
h1
e7
, e7 →

h1
e1
, h2 →

h1h2
e1e7

, y →
1+ xe7h1
1+ x

e1

y},

s4 = {e1 ↔ e2}, s5 = {e2 ↔ e3}, s6 = {e3 ↔ e4},
s7 = {e4 ↔ e5}, s8 = {e5 ↔ e6}.� �

s0
|

s1− s2− s3− s4− s5− s6− s7− s8.
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• To apply the representation to Painlevé equation, we want to compute
the action of translations.

For E(1)
8 case, we have (2×)120 directions. Each of them is given by 58

simple reflections → too big! - How can we understand them?

• In commutative case, we have the following factorization

w(x) =
A

B
, w(y) =

C1C2 · · ·C6

D1D2D3
, w ∈W (E(1)

8 ).

Here A,B,Ci, Di are some polynomials in x, y. They are complicated
for general w, but have a simple geometric characterization. [Kajiwara et.al

(2003)]

• To understand these polynomials, a lift of the rep. including tau-
variables is essential. Its quantization is our main problem.
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4. τ variables

• In addition to {hi, ei, x, y}, we introduce variables (τ -variables)

σ1, σ2, τ1, . . . , τ11.

• We put the following q-commutation relations:

yx = qxy

σihj = qHi.Hj hjσi, τiej = qEi.Ej ejτi,

H1.H2 = H2.H1 = 1, Ei.Ej = −δij. Other cases are commutative.

• The variables σi, τi and the parameters hi, ei are non-commutative.
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� �
• Thm. One can extend the representation of W (E(1)

8 ) on variables

hi, ei, x, y including σi, τi as

s0 = {τ10 → (1+ye11)
σ2
τ11

, τ11 →
σ2
τ10

(1+y
h2
e10

), σ1 → (1+ye11)
σ1σ2
τ10τ11

},

s1 = {τ8 ↔ τ9}, s2 = {τ7 ↔ τ8},

s3 = {τ1 → (1+x
e7
h1

)
σ1
τ7
, τ7 →

σ1
τ1

(1+
x

e1
), σ2 →

σ1σ2
τ1τ7

(1+
x

e1
)},

s4 = {τ1 ↔ τ2}, s5 = {τ2 ↔ τ3}, s6 = {τ3 ↔ τ4},

s7 = {τ4 ↔ τ5}, s8 = {τ5 ↔ τ6}.

(The actions on {hi, ei, x, y} are the same as before.)� �
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• Reduced actions ri

ri(u) = si(u), u = hj, ej
ri(u) = u, u = x, y,
ri(u) = si(u)|x=y=0, u = σj, τj

The actions ri on {σj, τj} are just a copy of the ’linear’ actions on {hj, ej}.

r0 = {τ10 →
σ2
τ11

, τ11 →
σ2
τ10

, σ1 →
σ1σ2
τ10τ11

},

r1 = {τ8 ↔ τ9}, r2 = {τ7 ↔ τ8},

r3 = {τ1 →
σ1
τ7
, τ7 →

σ1
τ1
, σ2 →

σ1σ2
τ1τ7

},

r4 = {τ1 ↔ τ2}, r5 = {τ2 ↔ τ3}, r6 = {τ3 ↔ τ4},

r7 = {τ4 ↔ τ5}, r8 = {τ5 ↔ τ6}.
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• The actions si can be realized as the adjoint actions.
� �
• Thm. On variables ei, hi, τi, σi, x, y, we have

si = Ad(Gi) ◦ ri,

G0 =
( h2e10

y; q)+∞

(e11y; q)
+
∞
, G3 =

( 1
e1
x; q)+∞

(e7h1
x; q)+∞

, Gi = 1 (i ̸= 0,3), (1)

where (z; q)+∞ =
∏∞
i=0(1 + qiz) is the q-factorial.� �

• The braid relations for si follow from the quantum dilogarithm identity for
the q-factorial.
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• The representation has a remarkable regularity.
� �
• Thm. For any w ∈W (E(1)

8 ), we have

w(τi) = Fi,w(x, y)× (monomial of {σj, τj}),

where Fi,w(x, y) is a non-commutative polynomial in x, y (cf. “Laurent

phenomena”, “singularity confinement”).� �
• When q = 1, the polynomial Fi,w can be determined by its bidegree
(d1, d2) and multiplicity mk at pk.

• We will formulate the analog of such characterization for quantum case
(q ̸= 1).
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Example. For w = s0s3s4s0s2s3s2s1s0s2s4s3, we have

w(e11) =
h21h

2
2

e1e2e7e8e
2
10e11

,

w(τ11) = F (x, y)
σ21σ

2
2

τ1τ2τ7τ8τ
2
10τ11

,

and

F (x, y) = (1+ x
e1q

)(1 + x
e2q

) + (∗+ ∗x+ ∗x2) y

+ ∗ (1 + e7
h1
x)(1 + e8

h1
x) y2

= (1+ e11y)(1 + w(e11)y) + x (1 + h2
e10
y)(∗+ ∗y)

+ ∗ x2 (1 + h2
e10
y)(1 + qh2

e10
y).

Note that (d1, d2) = (2,2), (mi) = (1,1, . . . ,0,2,1).
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• Def. For a data λ = (di,mi), we define a q-difference operator Fλ(x, y)
by the following two expressions:

Fλ =
d1∑
i=0

xi
m11−1∏
t=i

(1+qte11y)
i−1∏

t=d1−m10

(1+qt
h2
e10

y) Ui(y),

=
d2∑
i=0

6∏
k=1

−1∏
t=i−mk

(1+qt
1

ek
x)

9∏
k=7

i−d2+mk−1∏
t=0

(1+qt
ek
h1
x) Vi(x) y

i,

Here Ui, Vi are polynomials with suitable degrees specified by the condi-
tion: degxF = d1 and degyF = d2.

• The 1st [or 2nd] expression for Fλ shows the non-logarithmic singu-
larities around x = 0,∞ [or y = 0,∞], as the q-difference operator:
yψ(x) = ψ(qx) [or xψ(y) = ψ(q−1y)].
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� �
• Thm. For λ = (d,m) s.t. w(ei) = h

d1
1 h

d2
2 /(e

m1
1 · · · em11

11 ), the

quantum polynomial Fλ is unique (under the normalization Fλ(0,0) = 1).

Moreover, we have

w(τi) = Fi,w(x, y)× (monomial of {σj, τj}).� �
This shows the regularity of Fi,w and its geometric characterization.

• From this, the birational action on x, y can also be computed as

w(x) = w(
τ11
τ10

), w(y) = w(
τ1τ2τ3τ4τ5τ6

τ7τ8τ9
).

• A key fact for the proof: The non-logarithmic property of Fi,w is pre-
served under the Weyl group actions.
This fact follows from a realization of the Weyl group actions as the adjoint
actions. [Moriyama-Y, 2104.06661]
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• Bilinear equations. Consider the 4+ 5+ 2 “seed” equations

τ(e10)τ(
h2
e10

) = h2
e10
τ(h2ei

)τ(ei) + τ(h2ej
)τ(ej),

τ( h2e11
)τ(e11) = e11τ(

h2
ei
)τ(ei) + τ(h2ej

)τ(ej),

τ(ei)τ(
h1
ei
) = 1

ei
τ( h1e11

)τ(e11) + τ( h1e10
)τ(e10),

τ(h1ej
)τ(ej) =

ej
h1
τ( h1e11

)τ(e11) + τ( h1e10
)τ(e10),

τ(h2e1
)τ(e1) = . . . = τ(h2e6

)τ(e6),

τ(h2e7
)τ(e7) = . . . = τ(h2e9

)τ(e9).

By taking copies of these relations by the action w ∈ W (E(1)
8 ) such as

w(τ(λ)) := τ(w · λ), we obtain infinite system of bilinear equations
for the τ -variables on E8 lattice.
� �
• Thm. The overdetermined system defined above is consistent and

has a solution given by τ(λ) = Fλ(x, y)τ
λ.� �
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▲ Quantum mirror curve.
• For generic parameters (hi, ei), the curve
C of bi-degree (6,3) with multiplicities mi =

(162332) = (1, . . . ,1,2,2,2,3,3) is unique
(multiple lines: g(x, y) = x30x

3
1y

2
0y1 = 0).

usiiimmn usiiimmn
uuuuuu

uikjuikjuikj

• For special parameters:

p :=
h61h

3
2

(e1 · · · e6)(e7e8e9)2(e10e11)3
= 1,

→ the curve C form a pencil λf(x, y) + µg(x, y) = 0.
→ The quantum discreteE(1)

8 Painlevé equation reduces to an autonomous
integrable system where the pencil gives the algebraic integral.
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• From W (E(1)
8 ) symmetry, one can determine the curve explicitly.

λ(
3∑
i=0

Ci(x)y
i) + µx3y = 0 .

C3(x) = q3e311
9∏
i=7

(1+
ei
h1
x)(1+q

ei
h1
x),

C2(x) = qe211
9∏
i=7

(1+
ei
h1
x){[3]q+qxA−1+qκA1x

2+[3]qκx
3},

C1(x) = e11{[3]q+[2]qA−1x+(κA1+A−2)x
2+

κ

q
(κA2+A−1)x

4

+
[2]qκ2A1

q2
x5+

[3]qκ2

q3
x6}, C0(x) =

6∏
i=1

(1+
1

qei
x),

[k]q =
1− qk

1− q
, A±1 =

9∑
i=1

a±1
i , A±2 =

∑
1≤i<j≤9

(aiaj)
±1,

ai = ei (1 ≤ i ≤ 6), ai =
h1

ei
(7 ≤ i ≤ 9) κ =

e7e8e9e10e11

h21h2
.
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wtkll������������ wtkll������������

wwwwww

wlnmwlnmwlnm

• The curve C was first obtained by S.Moriyama [arXix:2007.05148] as a quan-
tization of the classical 5d E8 SW curve [Kim-Yagi (2015)].

• As a q-difference operator, the curve should be related to the trigono-
metric Ruijsenaars van-Diejen operator of type E8 [Takemura (2018)] [Noumi-

Ruijsenaars-Y (2020)][Chen-Haghighat-Kim-Sperling-Wang (2021)].

• There appear a good application of IMD to quantum spectral problems
[Berstein-Gavrylenko-Grassi, (2105.00985)]. It will be useful also for the discrete cases.
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▲ Summary

• Geometry of classical and quantum Painlevé equations are reviewed in
relation with the gauge theory.

• We constructed a quantum birational rep. of affine Weyl groupW (E(1)
8 ).

• A lift of the rep. including the tau variables is also obtained.

• Regularity and the geometric characterization of the polynomial F
(quantum τ quotient) is proved.

• Bilinear form of the qp-E(1)
8 (q-quantum p-difference) Painlevé equa-

tion is given.

• The quantum mirror curve of type q-E(1)
8 is derived from its symmetry.
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Thank you!
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