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1. Introduction

Let X be a compact Riemann surface of genus g > 1 and π1 = π1(X). By
the uniformization theorem,

X ' Γ\H, where H = {z ∈ C : Im z > 0}

is the Lobachevsky plane, and Γ ' π1 is a Fuchsian group.
Let E be a stable vector bundle of degree 0 and rank n over X. By the

Narasimhan-Seshadri theorem, there is an irrep ρ : π1 → U(n) such that

E ' Eρ = π1\H× Cn,

where π1 acts on H × Cn by (z, v) 7→ (γz, ρ(γ)v). Moreover, Eρ1 ' Eρ2 iff
ρ1 ' ρ2.

Teichmüller space is

Tg = Hom0(π1, G)/G,

where G = PSL(2,R) and “0” stands
for Fuchsian representations; it is
connected component of Hom(π1, G)
with Euler class 2g−2. (W. Goldman
Ph.D.)

dimR Tg = 6g − 6.

The modular group is

Modg = Aut(π1)/Inn(π1).

Tg is a symplectic manifold with the
Goldman form ωG.

The moduli space N of rank n
and degree 0 stable vector bundles
over X is

N = Hom0(π1, G)/G,

where G = U(n) and “0” stands for
irreducible unitary representations of
π1.

dimR N = 2n2(g − 1) + 2.

There is no modular group in this
case! N is a symplectic manifold
with the Goldman form ωG.

In general, let G be a reductive Lie group. The character variety is

K = Hom0(π1, G)/G,

where “0” stands for stable points. K is smooth and

TρK = H1(π1, gAdρ).
1
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The Goldman symplectic form ωG is defined by

ωG(χ1, χ2) = 〈χ1 ∪ χ2〉([X]), where [X] ∈ H2(π1,Z).

Using R. Fox free differential calculus

D(ab) = D(a)ε(b) + aD(b)

we have for π1 = 〈a1, b1, . . . , ag, bg〉/Rg, where Rg =
∏g
k=1[ak, bk]:

[X] =

g∑
k=1

{(
∂Rg
∂ak

, ak

)
+

(
∂Rg
∂bk

, bk

)}
and

ωG(χ1, χ2) = −
g∑

k=1

{〈
χ1

(
#
∂R

∂ak

)
, χ2(ak)

〉
+

〈
χ1

(
#
∂R

∂bk

)
, χ2(bk)

〉}

2. Complex structure

Cauchy-Riemann operator is

∂̄ − µ∂
where µ is Beltrami differential,
a (−1, 1)-form on X. Holomorphic
functions satisfy Beltrami equation

∂f

∂z̄
− µ∂f

∂z
= 0.

Nontrivial deformations:

µ ∈H 0,1(X,TX),

harmonic (−1, 1)-forms with respect
to the hyperbolic metric on X.
Holomorphic tangent space

TXTg = H 0,1(X,TX),

holomorphic cotangent space

T ∗XTg = H 1,0(X,T ∗X),

holomorphic quadratic differentials.
Bers coordinates

∂fεµ

∂z̄
=

{
εµ(z) z ∈ H
εµ(z̄) z ∈ H

}
∂fεµ

∂z
,

f εµ ◦ γ = γεµ ◦ f εµ

where γεµ ∈ Γεµ, a Fuchsian group.

Cauchy-Riemann operator is

∂̄ −M

where M is EndE-valued (0, 1)-form
on X. Holomorphic functions satisfy

∂F

∂z̄
= F (z)M(z).

Nontrivial deformations:

M ∈H 0,1(X,EndE),

harmonic (0, 1)-forms.
Holomorphic tangent space

TXN = H 0,1(X,EndE),

holomorphic cotangent space

T ∗XN = H 1,0(X,EndE),

the space of Higgs fields. Bers coordi-
nates for bundles (L.T. & P. Zograf,
1989)

∂F ε

∂z̄
= εF ε(z)M(z), z ∈ H,

F ε ◦ γ = ρε(γ)F ερ(γ)

where ρε : π1 → U(n) is irreducible.

Important : families Γεµ and ρε are not holomorphic in ε.
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3. Kähler form

Hodge inner product on tangents spaces determines Kähler metrics on
moduli spaces.

Weil-Petersson metric on Tg with
the symplectic form ωWP .

Narasimhan-Atiyah-Bott metric
on N with the symplectic form
ωNAB.

Simple theorem (using Eichler-Shimura periods)

On the Teichmüller space Tg,

ωG = ωWP

(W. Goldman, 1984)

On the moduli space N ,

ωG = −4ωNAB

4. Affine bundles

Pg → Tg,

holomorphic affine bundle over T ∗Tg.
Fibres Pg(X) are holomorphic pro-
jective connections

d2

dz2
+

1

2
R

over {X} ∈ Tg.
Canonical section

sF : Tg →Pg,

given by the Fuchsian uniformiza-
tion.
The section sF is not holomorphic:

∂̄sF = −
√
−1ωWP

(L.T. & P. Zograf, 1985).
Fuchsian section gives a real-analytic
isomorphism

Pg ' T ∗Tg.
The monodromy map

Mon : Pg → Hom0(π1, GC)/GC,

where GC = PSL(2,C).

A → N ,

holomorphic affine bundle over T ∗N .
Fibres A (E) are (1, 0)-type zero cur-
vature connections

∇ = d+A

in {E} ∈ N .
Canonical section

sNS : N → A ,

given by the Narasimhan-Seshadri
theorem.
The section sNS is not holomorphic:

∂̄sNS = −2
√
−1ωNAB

(L.T. & P. Zograf, 1986).
Narasimhan-Seshadri section gives a
real-analytic isomorphism

A ' T ∗N .

The Riemann-Hilbert correspon-
dence

RH : A → Hom0(π1, GC)/GC,

where GC = GL(n,C).
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5. Holomorphic sections

Here is the main difference between Teichmüller spaces and moduli spaces
of stable vector bundles.

Affiine bundle Pg → Tg has a fam-
ily of global holomorphic sections,
parametrized by Tg and given by
the Bers simultaneous uniformiza-
tion theorem: the quasi-Fuchsian
sections sqF : Tg →Pg.

Local construction from pair X, X̄
by keeping X̄ fixed and varying X:

∂fεµ
∂z̄

=

{
εµ(z) z ∈ H
0 z ∈ H

}
∂fεµ
∂z

,

fεµ ◦ γ = γεµ ◦ fεµ

where γεµ ∈ Γεµ, a quasi-Fuchsian
group, it depends holomorphically on
ε. In general, start with the pair X, Ȳ
by keeping Ȳ fixed and varying X,

Xεµ = Γεµ\Ωεµ, Y = Γεµ\Ω∗εµ;

quasi-Fuchsian projection connection
(parametrized by Y ):

sqF = S (π−1), π : Ω→ X,

S is the Schwarzian derivative.

Affine bundle A → N has no
global holomorphic sections. Namely,
such s : N → A gives

∂̄(sNS − s) = −2
√
−1ωNAB

— a contradiction since [ωNAB] 6= 0.
Local holomorphic sections.
For {E} ∈ N and ∇ = d + A ∈

A (E), realize E as a local system Eσ,
where σ is a holonomy of ∇.

For M ∈ H0,1
dR(X,EndEσ) the nor-

malized solution F (z) of

dF

dz̄
(z) = F (z)M(z)

satisfies

F ◦ γ = σµ(γ)Fσ(γ)−1

and for small enough µ determines a
family σµ : π1 → GL(n,C) of irreps,
holomorphic in Bers coordinates.

In coordinate chart U at E ' Eσ
realize each bundle as a quotient bun-
dle Eσµ .

Let d+Aσµ be a connection in Eσµ ,
associated with the connection d+ 0
in H× Cn → H.

The family {d + Aσµ} determines
a holomorphic section Sσ of A → N
over U ⊂ N .

In analogy with the Teichmüller
theory, we call connections {d+Aσµ}
quasi-unitary.

Global holomorphic section s : Tg →Pg allow to identify

Pg ' T ∗Tg by Pg 3 R 7→ R− s ∈ T ∗Tg,

and to pull back holomorphic Liouville symplectic form ωL on T ∗Tg to Pg.
Q. When the pullback of ωL by two holomorphic sections s1 and s2 give the
same symplectic form on Pg?
A. When the sections s1 and s2 satisfy ∂(s1 − s2) = 0.
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Likewise, for each coordinate chart U local holomorphic section sσ pulls
back the holomorphic Liouville symplectic form ωL on T ∗N to U ⊂ A .
Q. When these local pullbacks of ωL define a global (2, 0)-form on A ?
A. When on U1 ∩ U2 the sections sσ1 and sσ2 satisfy ∂(sσ1 − sσ2) = 0.

6. The reciprocity

The quasi-Fuchsian reciprocity (C.
McMullen 2000, L.T. & L.P. Teo,
2003)

∂(sF − sqF ) = 0,

∂̄(sF − sqF ) = −2
√
−1ωWP .

The proof uses q.c. mappings and
Poincaré series for automorphic
forms of weight 4.

The quasi-unitary reciprocity for
vector bundles (L.T., 2021)

∂(sNS − sσ) = 0,

∂̄(sNS − sσ) = −2
√
−1ωNAB.

The proof uses Hodge theory (for
forms of weight 2 the series is diver-
gent).

7. Pullback of the Goldman form

Put G = PSL(2,C). The following statement, made by S. Kawai and
proved in [3], is often called “Kawai theorem” (see [4] for extra remarks).

Theorem 1. The pullback to Pg of the holomorphic Goldman form ωG on
the character variety Hom0(π1, G)/G by the monodromy map Mon is

√
−1

times the pullback of the holomorphic Liouville form ωL on T ∗Tg by the
quasi-Fuchsian section.

Put G = GL(n,C). The following result is proved in [4].

Theorem 2. The pullback to A of the holomorphic Goldman form ωG
on the character variety Hom0(π1, G)/G by the Riemann-Hilbert correspon-
dence is −2

√
−1 times the pullback of the holomorphic Liouville form ωL on

T ∗N by the quasi-unitary sections.
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