Kyiv Formula and String Dualities

Alba Grassi

The Mathematics of Physics
National Centre of Competence in Research

FA CNF

Mostly based on work (done and in progress) in collaboration with

Introduction and Motivation

During the last decades string theory has provided several new results and applications in various fields. These results are often a consequence of dualities:
matrix models
geometry
gauge theory
operator theory

gravity
string theory

Introduction and Motivation

Example 1: Mirror symmetry [Candelas et al]

Underlying intuition: string propagation in both spaces is identical.
\rightarrow Application: difficult computations on one manifold can be mapped into simpler problems on its mirror partner.

Introduction and Motivation

Another interesting aspect:

Example 2: [Witten, Kontsevich]

Intersection theory on moduli space of Riemann surfaces

Matrix models
\rightarrow Geometry as emergent phenomena: guideline to study quantum modifications to classical geometrical structures

Introduction and Motivation

Example 3: String/Gauge dualities ['t Hooft].

A well known example is the AdS/CFT correspondence [Maldacena]

String Theory on
AdS background

Conformal Field Theory on lower dimensional background
\rightarrow (dual) non-perturbative definition of string theory

Today’s Talk: Kyiv Formula and String Dualities

String Model: Topological String Theory on Toric CY_{3}

Duality: Topological String / Spectral Theory of Quantum Curves

We will see: (1) Kyiv formula can be used to prove some aspects of this duality
(2) The interplays between these topics lead to new (conjectural but well tested) results in the context of q-difference Painlevé equations

Topological String Theory

In string theory point particles are replaced by strings. Formally this is modelled by considering maps from Riemann surfaces into a target manifold X .

Periodic trajectories

generate genus g
Riemann surfaces

The details of this process are encoded in the genus g free energies F_{g}

This is modelled by considering holomorphic maps from Riemann surfaces into a target manifold X .

$$
\phi: \quad \Sigma_{g} \quad \rightarrow \quad X
$$

Here X is a 3 dimensional complex manifold (Calabi-Yau manifold)

Topological string theory: the free energies encode the enumerative geometry of the target manifold X

$$
F_{g}(t)=\sum_{d \geq 1} N_{g}^{d} \mathrm{e}^{-d t}
$$

N_{g}^{d} are the Gromov-Witten (GW) invariants: "count" holomorphic maps $\phi: \Sigma_{g} \rightarrow X$

t: Kähler parameter of X

For the geometries X that we will be considering, these have been computed explicitly.
[Aganagic-Klemm-Mariño-Vafa, Bershadsky-Cecotti-Ooguri-Vafa, Bouchard-Klemm-Mariño-Pasquetti, Kontsevich, Pandharipande-Thomas, ...]

The (formal) partition function Z is obtained by summing over all genera

$$
\begin{equation*}
F=\log Z=\sum_{g \geq 0} g_{s}^{2 g-2} F_{g}(t) \tag{1}
\end{equation*}
$$

Problem: $\quad F_{g} \sim(2 g-2)!\quad g \gg 1$
$\longrightarrow \quad$ zero radius of convergence [Gross- Periwal, Shenker]
\longrightarrow We are missing some interesting (non-perturbative) phenomena

Question: is there a well-defined function $F=\log Z$ such that (1) is its series expansion?

Our answer : $\quad Z=$ spectral traces of suitably constructed quantum mechanical operators on the real line
AG, Hatsuda, Mariño

This gives a new and exact relation between the spectral theory of certain quantum mechanical operators and enumerative geometry/topological string
\rightarrow Topological String / Spectral Theory duality

Example:

Consider the target geometry X to be the canonical bundle over $\mathbb{C} \mathbb{P}_{1} \times \mathbb{C} \mathbb{P}_{1}$ also known as local $\mathbb{P}_{1} \times \mathbb{P}_{1}$

Using the mirror symmetry we can relate such geometry to [Batyrev, Hori-Vafa, Katz-KlemmVafa, Dijkgraaf et al, . . .].

$$
\begin{array}{cr}
m \mathrm{e}^{x}+\mathrm{e}^{p}+\mathrm{e}^{-p}+\mathrm{e}^{-x}+\kappa=0 & \text { (mirror curve to } \\
\uparrow & \text { local } \mathbb{P}_{1} \times \mathbb{P}_{1} \text {) }
\end{array}
$$

This is the classical version of the operator

$$
\mathcal{O}(\hat{x}, \hat{p})=m \mathrm{e}^{\hat{x}}+\mathrm{e}^{-\hat{x}}+\mathrm{e}^{\hat{p}}+\mathrm{e}^{-\hat{p}} \quad[\hat{\mathrm{x}}, \hat{\mathrm{p}}]=\mathrm{i} \hbar
$$

Terminology: \mathcal{O} is the quantum mirror curve to local $\mathbb{P}_{1} \times \mathbb{P}_{1}$

Theorem: The operator $\rho=\mathcal{O}^{-1}$ has a discrete spectrum $\left\{E_{n}^{-1}\right\}_{n \geq 0}$ and it is of trace class on $L^{2}(\mathbb{R})$
[AG-Hatsuda-Mariño
Kashaev-Mariño
Laptev-Schwimmer-Takhtajan]

$$
\operatorname{Tr} \rho^{N}=\sum_{n \geq 0} E_{n}^{-N}<\infty
$$

The kernel of the operator ρ is $\rho(x, y)=\frac{\mathrm{e}^{-u(x, m, \hbar)-u(y, m, \hbar)}}{4 \pi \cosh \left(\frac{x-y}{2}\right)}$
where $u(x, m, \hbar)$ is determined by the Faddeev quantum dilogarithm ϕ_{b} [Kashaev-Mariño-Zakany]

$$
u(x, m, \hbar)=\pi x \mathrm{~b} / 2+\log \left|\frac{\phi_{\mathrm{b}}\left(x-\frac{1}{4 \pi b} \log m+i b / 4\right)}{\phi_{\mathrm{b}}\left(x+\frac{1}{4 \pi b} \log m-i b / 4\right)}\right|+\frac{1}{8} \log m \quad \hbar=\pi b^{2}
$$

Some definitions:

Fredholm determinant: $\quad \operatorname{det}(1+\kappa \rho)=\prod_{n \geq 0}\left(1+\frac{\kappa}{E_{n}}\right)$

Fermionic spectral traces: $Z(N, \hbar)=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\operatorname{sgn}(\sigma)} \int_{\mathbb{R}^{N}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{N} \prod_{i=1}^{N} \rho\left(x_{i}, x_{\sigma(i)}\right)$
S_{N} : permutation of N elements

$$
\text { Example: } Z(1, \hbar)=\operatorname{Tr} \rho \text { or } Z(2, \hbar)=\frac{1}{2}\left((\operatorname{Tr} \rho)^{2}-\operatorname{Tr} \rho^{2}\right)
$$

We have: $\quad \operatorname{det}(1+\kappa \rho)=\sum_{N \geq 0} Z(N, \hbar) \kappa^{N}$
$\mathrm{X}=$ canonical bundle
over $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$$\quad \underset{\text { of mirror curve }}{\text { quantization }}$ quantum mechanical operator ρ

$$
\longrightarrow Z(N, \hbar)=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\operatorname{sgn}(\sigma)} \int_{\mathbb{R}^{N}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{N} \prod_{i=1}^{N} \rho\left(x_{i}, x_{\sigma(i)}\right)
$$

Claim: [AG-Hatsuda-Mariño]

$$
\log Z(N, \hbar)=\sum_{g \geq 0} \hbar^{2-2 g} F_{g}(t)+\mathcal{O}\left(\mathrm{e}^{-\hbar}\right) \quad \text { when } \hbar, N \rightarrow \infty \text { with } t=\frac{N}{\hbar} \text { fixed }
$$

Enumerative geometry / Topological string amplitudes on the target geometry $\mathrm{X}=$ canonical bundle over $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$

Note: $\hbar=g_{s}^{-1}$

Topological string/
Enumerative geometry
ϕ

string perturbation theory
$\equiv g_{s}$ small
non-pert effects
$\equiv g_{s}$ large

[AG-Hatsuda-Mariño]
[AG-Codesido-Mariño]

Spectral theory of a class of quantum mechanical operators called quantum mirror curves

non-pert effects in quantum mechanics $\equiv \hbar$ large

WKB method in quantum mechanics $\equiv \hbar$ small
\rightarrow Exact analytic solution for spectral theory of difference equations (relativistic integrale systems)

To make contact with Painlevé equations and Kyiv construction it is useful to formulate our duality at the level of the Fredholm determinant.

Claim: [AG-Hatsuda-Mariño]

We can compute the Fredholm determinant of ρ using topological string/enumerative geometry

Example: consider $\rho(x, y)=\frac{\mathrm{e}^{-u(x, m, \hbar)-u(y, m, \hbar)}}{4 \pi \cosh \left(\frac{x-y}{2}\right)}$ and set $\hbar=2 \pi, m=1$. Then we have

$$
\operatorname{det}(1+\kappa \rho) \sim \theta_{3}\left(\xi-\frac{1}{12}, \tau\right)
$$

where $\xi=\frac{1}{2 \pi^{2}}\left(t \partial_{t}^{2} F_{0}-\partial_{t} F_{0}\right) \quad$ and $\tau=\frac{2 \mathrm{i}}{\pi} \partial_{t}^{2} F_{0} \quad$ with $t=t(\kappa)=$ (quantum) mirror map
$F_{0}:$ genus zero GW
invariants on local $\mathbb{P}_{1} \times \mathbb{P}_{1}$

More generically the expression has the following form

$$
\begin{array}{r}
\operatorname{det}(1+\kappa \rho)=\sum_{n \in \mathbb{N}} \exp [J(\mu+2 \pi \mathrm{i} n, \hbar, m)], \quad \kappa=\mathrm{e}^{\mu} \\
J: \text { topological string grand potential } \\
\text { This is a particular combination of } \\
\text { topological string free energy and } \\
\text { "refined" topological string free energy } \\
\text { in the Nekrasov-Shatashvili limit }
\end{array}
$$

Next: it exists a particular limit where our duality makes contact with well known statements in theory of Painlevé equations $\rightarrow>$ proof in this particular limit.

Painlevé equations

$$
\begin{aligned}
& \mathrm{VI}: \quad \frac{d^{2} q}{d t^{2}}=\frac{1}{2}\left(\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-t}\right)\left(\frac{d q}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{q-t}\right) \frac{d q}{d t}+\frac{2 q(q-1)(q-t)}{t^{2}(t-1)^{2}}\left(\alpha+\frac{\beta t}{q^{2}}+\frac{\gamma(t-1)}{(q-1)^{2}}+\frac{\delta t(t-1)}{(q-t)^{2}}\right) \\
& \mathrm{V}: \quad \frac{d^{2} q}{d t^{2}}=\left(\frac{1}{2 q}+\frac{1}{q-1}\right)\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t} \frac{d q}{d t}+\frac{(q-1)^{2}}{t^{2}}\left(\alpha q+\frac{\beta}{q}\right)+\frac{\gamma q}{t}-\frac{1}{2} \frac{q(q+1)}{q-1} \\
& \mathrm{IV}: \quad \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}{ }^{2}}=\frac{1}{2 \mathrm{q}}\left(\frac{\mathrm{dq}}{\mathrm{dt}}\right)^{2}+\frac{3}{2} \mathrm{q}^{3}+4 \mathrm{tq}^{2}+2\left(\mathrm{t}^{2}-\alpha\right) \mathrm{q}+\frac{\beta}{\mathrm{q}} \\
& \mathrm{IIII}_{1}: \quad \frac{d^{2} q}{d t^{2}}=\frac{1}{q}\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t} \frac{d q}{d t}+\frac{q^{2}(\alpha+4 q)}{4 t^{2}}+\frac{\beta}{4 t}-\frac{1}{q} \\
& \mathrm{III}_{2}: \quad \frac{d^{2} q}{d t^{2}}=\frac{1}{q}\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t} \frac{d q}{d t}+\frac{2 q^{2}}{t^{2}}+\frac{\alpha}{4 t}-\frac{1}{q} \\
& \mathrm{III}, \quad \frac{d^{2} q}{d t^{2}}=\frac{1}{q}\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t} \frac{d q}{d t}+\frac{2 q^{2}}{t^{2}}-\frac{2}{t} \\
& \mathrm{II}: \quad \frac{d^{2} q}{d t^{2}}=2 q^{3}+t q+\alpha \\
& \mathrm{I}: \quad \frac{d^{2} q}{d t^{2}}=6 q^{2}+t
\end{aligned}
$$

Painlevé equations can be organised into a confluence diagram

Example:

$$
\begin{aligned}
& \mathrm{III}_{2}: \quad \frac{d^{2} q}{d t^{2}}=\frac{1}{q}\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t} \frac{d q}{d t}+\frac{2 q^{2}}{t^{2}}+\frac{\alpha}{4 t}-\frac{1}{q} \\
& \mathrm{III}_{3}: \quad \frac{d^{2} q}{d s^{2}}=\frac{1}{q}\left(\frac{d q}{d s}\right)^{2}-\frac{1}{s} \frac{d q}{d s}+\frac{2 q^{2}}{s^{2}}-\frac{2}{s}
\end{aligned}
$$

$$
\begin{aligned}
& t=s \epsilon \\
& \alpha=-4 / \epsilon \\
& \epsilon \rightarrow 0
\end{aligned}
$$

Recently there has been an important progress in constructing generic solutions to such equations in an explicit form by using the Nekrasov partition function of a corresponding Seiberg-Witten theory [Gamayun-lorgov-Lisovyy]

Painlevé equations

Painlevé free parameters ~

$$
\text { time } \sim \text { gauge coupling } \mathrm{e}^{-1 / g_{Y M}^{2}}
$$

four dimensional Seiberg-Witten theory

masses of hypermultiplets/mass deformations

Kyiv Formula: an example PIII_{3}

Theorem: [Gamayun,lorgov,Lisovyy - Its, Lisovyy, Tykhyy- Iorgov, Lisovyy, Teschner- Bershtein,Shchechkin Gavrylenko,Lisovyy]

$$
q(t, \sigma, \eta)=\sqrt{t} \mathrm{e}^{-2 \pi i \eta}\left(\frac{\tau^{\mathrm{GIL}}(t, \sigma, \eta)}{\tau^{\mathrm{GIL}}\left(t, \sigma+\frac{1}{2}, \eta\right)}\right)^{2}
$$

solves Painlevé III_{3}

$$
\mathrm{III}_{3}: \quad \frac{d^{2} q}{d t^{2}}=\frac{1}{q}\left(\frac{d q}{d t}\right)^{2}-\frac{1}{t} \frac{d q}{d t}+\frac{2 q^{2}}{t^{2}}-\frac{2}{t}
$$

with initial conditions specified by σ and η.

Kyiv Formula: an example PIII_{3}

$$
\tau^{\mathrm{GIL}}(t, \sigma, \eta)=\sum_{n \in \mathbb{N}} \mathrm{e}^{2 \pi \mathrm{i} n \eta} Z(\sigma+n, t)
$$

where $\quad Z(\sigma, t)=t^{\sigma^{2}} \frac{\mathscr{B}(\sigma, t)}{G(1+2 \sigma) G(1-2 \sigma)}$
with $\quad \mathscr{B}(\sigma, t)=$ Nekrasov instanton function for the pure $4 \operatorname{dim} S U(2) \mathcal{N}=2$ SYM theory (in the self-dual phase $\epsilon_{1}=-\epsilon_{2}=\epsilon$)- also called $N_{f}=0$ theory

$$
\mathscr{B}(\sigma, t)=1+\sum_{n \geq 1} c_{n}(\sigma) t^{n}=1+\frac{t}{2 \sigma^{2}}+\frac{8 \sigma^{2}+1}{4 \sigma^{2}\left(4 \sigma^{2}-1\right)} t^{2}+\cdots
$$

gauge theory language: $\sigma=a / \epsilon$: vev of scalars in vector multiplet

$$
t=\Lambda^{4} / \epsilon^{4}: \text { instanton counting parameter }
$$

What does this have to do with topological string and spectral theory?

Reminder:

enumerative
geometry / <............... \rightarrow
GW invariants
spectral theory of quantum mechanical operators on $L^{2}(\mathbb{R})$

J : topological string grand potential (GW invariants)

$$
\sum_{n \in \mathbb{N}} \exp [J(\mu+2 \pi \mathrm{i} n, b, m)]=\operatorname{det}(1+\kappa \rho), \quad \kappa=\mathrm{e}^{\mu}
$$

On the spectral theory side:

$$
\rho(x, y)=\frac{\mathrm{e}^{-u(x, b, m)-u(y, b, m)}}{4 \pi \cosh \left(\frac{x-y}{2}\right)} \quad u(x, b, m)=-\frac{x b^{2}}{4}-\log \left|\frac{\phi_{\mathrm{b}}\left(\frac{b x}{2 \pi}-\frac{1}{4 \pi b} \log m+i b / 4\right)}{\phi_{\mathrm{b}}\left(\frac{b x}{2 \pi}+\frac{1}{4 \pi b} \log m-i b / 4\right)}\right|+\frac{1}{8} \log m
$$

Set $\log m=\frac{\mathrm{i} \sigma}{2 \pi}+b^{2} \log \left(b^{2} / t\right), \log \kappa=\frac{b^{2}}{2} \log \left(b^{2} / t\right)+\log \left(1+\mathrm{e}^{\frac{\mathrm{i} \sigma}{2 \pi}}\right) \quad \quad \hbar=\pi b^{2}$

Take $b \rightarrow \infty$

$$
\operatorname{det}(1+\kappa \rho) \quad \xrightarrow{b \rightarrow \infty} \quad \operatorname{det}\left(1+\cos (\sigma) \rho_{\mathrm{III}}\right)
$$

On the spectral theory side:

$$
\rho(x, y)=\frac{\mathrm{e}^{-u(x, b, m)-u(y, b, m)}}{4 \pi \cosh \left(\frac{x-y}{2}\right)} \quad u(x, b, m)=-\frac{x b^{2}}{4}-\log \left|\frac{\phi_{\mathrm{b}}\left(\frac{b x}{2 \pi}-\frac{1}{4 \pi b} \log m+i b / 4\right)}{\phi_{\mathrm{b}}\left(\frac{b x}{2 \pi}+\frac{1}{4 \pi b} \log m-i b / 4\right)}\right|+\frac{1}{8} \log m
$$

We have: $\operatorname{det}(1+\kappa \rho) \quad \xrightarrow{b \rightarrow \infty} \operatorname{det}\left(1+\cos (\sigma) \rho_{\mathrm{III}}\right)$

$$
\text { where } \quad \rho_{\mathrm{III}}(x, y)=\frac{\mathrm{e}^{-t^{1 / 4} \cosh x-t^{1 / 4} \cosh y}}{4 \pi \cosh \left(\frac{x-y}{2}\right)}
$$

It was proven by $[\mathrm{McCoy}$ et al, Widom, $\ldots]$ that $\operatorname{det}\left(1+\cos (\sigma) \rho_{\mathrm{III}}\right)$ solves Painlevé III_{3} with a particular choice of initial conditions.

What does this have to do with topological string and spectral theory?

Reminder:

enumerative
geometry / <............... \rightarrow
GW invariants
spectral theory of quantum mechanical operators on $L^{2}(\mathbb{R})$

J : topological string grand potential (GW invariants)

$$
\sum_{n \in \mathbb{N}} \exp [J(\mu+2 \pi \mathrm{i} n, b, m)]=\operatorname{det}(1+\kappa \rho), \quad \kappa=\mathrm{e}^{\mu}
$$

$$
\sum \exp [J(\mu+2 \pi \mathrm{i} n, b, m)] \quad \rightarrow \quad \tau^{\mathrm{GIL}}(t, \sigma, \eta=0)
$$

By using recent results of [Lisovyy et al, Its et al, Bershtein et al] it follows that τ solves Painlevé III_{3} with same initial conditions.
topological string on target geometry $\mathrm{X}=$ canonical bundle over $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$
spectral theory of
$\rho(x, y)=\frac{\mathrm{e}^{-u(x, m, b)-u(y, m, b)}}{4 \pi \cosh \left(\frac{x-y}{2}\right)}$

This is a small piece of a bigger picture....
q - difference Painlevé equations
$\cdots \rightarrow \mathrm{qP}_{\mathrm{VI}} \rightarrow \mathrm{qPV}_{\mathrm{V}} \rightarrow \mathrm{qP}_{\mathrm{III}_{1}} \rightarrow \mathrm{qP}_{\mathrm{III}_{2}} \rightarrow \mathrm{qP}_{\mathrm{III}_{3}}$

Painlevé equations

Topological string on toric geometries

Today's Plan

String Model: Topological String Theory on Toric CY_{3} fold

Duality: Topological String / Spectral Theory Duality

We will see: (1) Kyiv formula can be used to prove some aspects of this duality
(2) This interplays lead to new (conjectural but well tested) results in the context of q-difference Painlevé equations

Claim: Fredholm determinant of quantum mirror curves to such geometries solves a corresponding q-Painlevé equation
[Bonelli, AG, Tanzini]

Example:

local $\mathbb{P}_{1} \times \mathbb{P}_{1}$
In the example of local P1xP1 the relevant operator ρ is

$$
\begin{array}{r}
\rho(x, y)=\frac{\mathrm{e}^{-u(x, m, \hbar)-u(y, m, \hbar)}}{4 \pi \cosh \left(\frac{x-y}{2}\right)} \quad u(x, b, m)=-\frac{x b^{2}}{4}-\log \left|\frac{\phi_{\mathrm{b}}\left(\frac{b x}{2 \pi}-\frac{1}{4 \pi b} \log m+i b / 4\right)}{\phi_{\mathrm{b}}\left(\frac{b x}{2 \pi}+\frac{1}{4 \pi b} \log m-i b / 4\right)}\right|+\frac{1}{8} \log m \\
\hbar=\pi b^{2}
\end{array}
$$

Its Fredholm determinant

$$
\operatorname{det}(1+\kappa \rho)
$$

solves q-Painlevé III_{3}

Example:

The Fredholm determinant $\tau_{q}(\kappa, \xi) \sim \operatorname{det}(1+\kappa \rho)$
where $q=\mathrm{e}^{\frac{4 \pi^{2}}{\hbar}}, \xi=\log m$, solves q-Painlevé III_{3}

$$
\tau_{q}\left(-\kappa, \xi-\frac{4 \pi^{2} \mathrm{i}}{\hbar}\right) \tau_{q}\left(-\kappa, \xi+\frac{4 \pi^{2} \mathrm{i}}{\hbar}\right)\left(1+\mathrm{e}^{-\xi / 2}\right)=\tau_{q}(\kappa, \xi)^{2}+\mathrm{e}^{-\xi / 2} \tau_{q}(-\kappa, \xi)^{2}
$$

$\longrightarrow \operatorname{det}(1+\kappa \rho)$ provides a generalisation of the PIII_{3} McCoy et at solution for q-Painleve III3
\longrightarrow Using the interplay between the topological string/spectral theory duality and Kyiv formula we can construct geometrically new Fredholm determinant solutions to q-difference Painlevé equations

Another problem in which this connection is useful is in the study of longdistance expansion of q-Painlevé equations

WIP with P.Gavrylenko and Q. Hao
. . . let us make one step back to Painlevé equation . . .

PIII3 tau function at short-distance (small t)

$$
\tau^{\mathrm{GIL}}(t, \sigma, \eta)=\sum_{n \in \mathbb{N}} \mathrm{e}^{2 \pi \mathrm{i} n \eta} Z(\sigma+n, t)
$$

Gamayun,lorgov,Lisovyy

$$
Z(\sigma, t)=t^{\sigma^{2}} \frac{\mathscr{B}(\sigma, t)}{G(1+2 \sigma) G(1-2 \sigma)}
$$

$\mathscr{B}(\sigma, t)=$ Nekrasov instanton function for the pure $4 \operatorname{dim} S U(2) \mathcal{N}=2$ SYM theory (in the self-dual phase $\epsilon_{1}=-\epsilon_{2}=\epsilon$)- also called $N_{f}=0$ theory

$$
\mathscr{B}(\sigma, t)=1+\sum_{n \geq 1} c_{n}(\sigma) t^{n}=1+\frac{t}{2 \sigma^{2}}+\frac{8 \sigma^{2}+1}{4 \sigma^{2}\left(4 \sigma^{2}-1\right)} t^{2}+\cdots
$$

This construction was generalised to q-Painleve first by Bershtein and Shchechkin

$$
\begin{gathered}
\tau^{\infty}(\rho, \nu, r)=e^{\frac{r^{2}}{16}} r^{\frac{1}{4}} \sum_{n \in \mathbb{Z}} C(\nu+i n) e^{4 \pi i n \rho} e^{(\nu+i n) r} r^{\frac{1}{2}(\nu+i n)^{2}} \mathscr{B}^{\infty}(\nu+i n, r) \\
C(\nu)=G(1+i \nu) 2^{\nu^{2}} e^{\frac{i \pi \nu^{2}}{4}}(2 \pi)^{-\frac{i \nu}{2}}, \quad t=2^{-12} r^{4} \\
\mathscr{B}^{\infty}(\nu, r)=1+\frac{\nu\left(2 \nu^{2}+1\right)}{8 r}+\frac{\nu^{2}\left(4 \nu^{4}-16 \nu^{2}-11\right)}{128 r^{2}}+\ldots
\end{gathered}
$$

Its, Lisovyy, Tykhyy- Bonelli, Lisovyy, Maruyoshi, Sciarappa, Tanzini Gavrylenko, Marshakov,Stoyan - ...

Can we generalise this to q-Painleve? Yes, on the topological string this is related to the expansion around the conifold point

Summary \& Conclusions

We have three main players

\ldots and many connections among them leading to new and interesting results

Thank you!

