The complex elliptic Ginibre ensemble at weak non-Hermiticity

Thomas Bothner
School of Mathematics
University of Bristol
Virtual ICM-2022 Satellite Conference - Columbia University June 30th, 2022

In collaboration with

Figure 1: Alex Little.
and based on the forthcoming arXiv:220?.?????

What's the problem?

Random matrices without any symmetry constraints often appear in natural phenomenological models. For instance, the time evolution of a system of interacting agents $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ may be described by a linear ODE system of the form

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{u}(t)=\mathbf{X} \mathbf{u}(t)
$$

where we assume the coefficient matrix \mathbf{X} to be random (May 1972). Such models have been studied extensively in neuroscience and ecology and they often appear in the form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{u}(t)=(-\mathbf{I}+g \mathbf{X}) \mathbf{u}(t) \tag{1}
\end{equation*}
$$

where the identity matrix represents an exponential decay at unit rate and the coupling constant $g>0$ expresses the strength of the random couplings in the model. The main task is to tune g so that the resulting system is stable. However, the maximal growth rate of the solution of (1) is determined by the maximal real part of the spectrum of $-\mathbf{I}+g \mathbf{X}$, thus we wish to
understand accurately the real part of the rightmost eigenvalue of a large non-Hermitian random matrix

We will achieve this for an interpolating random matrix ensemble.

One side of the coin

Consider the Gaussian Unitary Ensemble (GUE), i.e. matrices

$$
\mathbf{X}=\frac{1}{2}\left(\mathbf{Y}+\mathbf{Y}^{\dagger}\right) \in \mathbb{C}^{n \times n}: \quad Y_{j k} \stackrel{\mathrm{iid}}{\sim} N\left(0, \frac{1}{\sqrt{2}}\right)+\mathrm{i} N\left(0, \frac{1}{\sqrt{2}}\right)
$$

as in (Porter 1965). Equivalently think of a log-gas system $\left\{x_{j}\right\}_{j=1}^{n}$
$\subset \mathbb{R}$ with joint pdf for the particles' locations equal to (Mehta 1967)

$$
p_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z_{n}} \prod_{1 \leq j<k \leq n}\left|x_{k}-x_{j}\right|^{2} \exp \left(-\sum_{j=1}^{n} x_{j}^{2}\right)
$$

Question: How do the particles $\left\{x_{j}\right\}_{j=1}^{n}$ behave for large n ?

The particles $\left\{x_{j}\right\}_{j=1}^{n}$ form a DPP on \mathbb{R} (Dyson 1970),

$$
R_{k}\left(x_{1}, \ldots, x_{n}\right):=\frac{n!}{(n-k)!} \int_{\mathbb{R}^{n-k}} p_{n}\left(x_{1}, \ldots, x_{n}\right) \prod_{j=k+1}^{n} \mathrm{~d} x_{j}=\operatorname{det}\left[K_{n}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{k}
$$

with correlation kernel

$$
K_{n}(x, y)=\frac{\mathrm{e}^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}}{\sqrt{\pi}} \sum_{k=0}^{n-1} \frac{1}{2^{k} k!} H_{k}(x) H_{k}(y), \quad H_{n}(z)=\frac{n!}{2 \pi \mathrm{i}} \oint \mathrm{e}^{2 z t-t^{2}} \frac{\mathrm{~d} t}{t^{n+1}} .
$$

Now analyze R_{k} asymptotically in different scaling regimes:
(A) The global eigenvalue regime: define the ESD

$$
\mu_{\mathbf{X}}(s)=\frac{1}{n} \#\left\{1 \leq j \leq n, \quad x_{j} \leq s\right\}, \quad s \in \mathbb{R},
$$

then, as $n \rightarrow \infty$, the random measure $\mu_{\mathbf{X} / \sqrt{n}}$ converges almost surely to the Wigner semi-circular distribution (Wigner 1955)

$$
\begin{equation*}
\rho(x)=\frac{1}{\pi} \sqrt{\left(2-x^{2}\right)_{+}} \mathrm{d} x \tag{2}
\end{equation*}
$$

Figure 2: Wigner's law for one (rescaled) 2000×2000 GUE matrix on the left, plotted is the rescaled histogram of the 2000 eigenvalues and the semicircular density $\rho(x)$. On the right we compare Wigner's law to the exact eigenvalue density for $n=4$ and the associated eigenvalue histogram (sampled 4000 times).
(B) The local eigenvalue regime: We shall zoom in on $x_{0}=\sqrt{2 n}$ only (Bowick, Brézin 1991, Forrester 1993, Nagao, Wadati 1993),

$$
\begin{equation*}
\frac{1}{\sqrt{2} n^{\frac{1}{6}}} K_{n}\left(\sqrt{2 n}+\frac{x}{\sqrt{2} n^{\frac{1}{6}}}, \sqrt{2 n}+\frac{y}{\sqrt{2} n^{\frac{1}{6}}}\right) \rightarrow K_{\text {Ai }}(x, y), \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in $x, y \in \mathbb{R}$ chosen from compact subsets, with

$$
K_{A \mathrm{i}}(x, y)=\int_{0}^{\infty} \operatorname{Ai}(x+z) \operatorname{Ai}(z+y) \mathrm{d} z,
$$

which yields a trace class operator on $L^{2}(t, \infty)$.

In turn, the largest eigenvalue in the GUE obeys

$$
\max _{i=1, \ldots, n} \lambda_{i}(\mathbf{X}) \Rightarrow \sqrt{2 n}+\frac{1}{\sqrt{2} n^{\frac{1}{6}}} F_{2}, \quad n \rightarrow \infty,
$$

where the cdf of F_{2} equals (Forrester 1993)

$$
\operatorname{Prob}\left(F_{2} \leq t\right)=\operatorname{det}\left(I-K_{\mathrm{Ai}} \Gamma_{L^{2}(t, \infty)}\right),
$$

which famously connects to Painlevé special function theory (Tracy, Widom 1994).

Universality

Wigner's law (2) is a universal limiting law (Arnold 1967, ...) and so is the soft edge law (3) (Soshnikov 1999). Both laws holds true for centered and scaled Hermitian Wigner matrices $\mathbf{X}=\left(X_{j k}\right)_{j, k=1}^{n}$ with $\mathbb{E}\left|X_{j k}\right|^{2}<\infty$ where $X_{j k}, j<k$ are iid complex variables and $X_{j j}$ iid real variables independent of the upper triangular ones (\oplus decay).

The other side of the coin

Consider the Complex Ginibre ensemble (GinUE), i.e. matrices

$$
\mathbf{X}=\mathbf{Y} \in \mathbb{C}^{n \times n}: \quad Y_{j k} \stackrel{\text { iid }}{\sim} N\left(0, \frac{1}{\sqrt{2}}\right)+\mathrm{i} N\left(0, \frac{1}{\sqrt{2}}\right)
$$

as in (Ginibre 1965). Equivalently think of a log-gas system $\left\{z_{j}\right\}_{j=1}^{n}$
$\subset \mathbb{C}$ with joint pdf for the particles' locations equal to (Ginibre 1965)

$$
p_{n}\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{Z_{n}} \prod_{1 \leq j<k \leq n}\left|z_{k}-z_{j}\right|^{2} \exp \left(-\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right) .
$$

Question: How do the particles $\left\{z_{j}\right\}_{j=1}^{n}$ behave for large n ?

The particles $\left\{z_{j}\right\}_{j=1}^{n}$ form a DPP on $\mathbb{C} \simeq \mathbb{R}^{2}$ (Mehta 1967),

$$
R_{k}\left(z_{1}, \ldots, z_{n}\right):=\frac{n!}{(n-k)!} \int_{\mathbb{C}^{n-k}} p_{n}\left(z_{1}, \ldots, z_{n}\right) \prod_{j=k+1}^{n} \mathrm{~d}^{2} z_{j}=\operatorname{det}\left[K_{n}\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{k}
$$

with correlation kernel

$$
K_{n}(z, w)=\frac{\mathrm{e}^{-\frac{1}{2}\left(|z|^{2}+|w|^{2}\right)}}{\pi} \sum_{k=0}^{n-1} \frac{1}{k!}\left(z w^{*}\right)^{k} .
$$

Now analyze R_{k} asymptotically in different scaling regimes:
(A) The global eigenvalue regime: define the ESD

$$
\mu_{\mathbf{X}}(s, t)=\frac{1}{n} \#\left\{1 \leq j \leq n, \quad \Re z_{j} \leq s, \quad \Im z_{j} \leq t\right\}, \quad s, t \in \mathbb{R}
$$

then, as $n \rightarrow \infty$, the random measure $\mu_{\mathbf{X} / \sqrt{n}}$ converges almost surely to the uniform distribution on the unit disk (Ginibre 1965)

$$
\begin{equation*}
\rho(z)=\frac{1}{\pi} \chi_{|z|<1}(z) \mathrm{d}^{2} z \tag{4}
\end{equation*}
$$

Figure 3: The circular law for 1000 complex (rescaled) Ginibre matrices of varying dimensions $n \times n$ in comparison with the unit circle boundary. We plot $n=4,8,16$ from left to right.

Figure 4: Rescaled eigenvalue density for $\mathbf{X} \in$ GinUE with $n=5,50,250$ from left to right. The larger n, the better its approach to the uniform density on $x^{2}+y^{2} \leq 1$.
(B) The local eigenvalue regime: We shall zoom in on $\left|z_{0}\right|=\sqrt{n}$ only (Ginibre 1965, Mehta 1967)

$$
\begin{equation*}
\frac{1}{\sqrt{n}} K_{n}\left(z_{0}+\frac{z}{\sqrt{n}}, z_{0}+\frac{w}{\sqrt{n}}\right) \rightarrow K_{\mathrm{e}}(z, w) \tag{5}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in $z, w \in \mathbb{C}$ chosen from compact subsets, with

$$
K_{\mathrm{e}}(z, w)=\frac{1}{2 \pi} \operatorname{erfc}\left(\sqrt{2}\left(\mathrm{e}^{\mathrm{i} \theta} w^{*}+\mathrm{e}^{-\mathrm{i} \theta} z\right)\right) \mathrm{e}^{-\frac{1}{2}\left(|z|^{2}+|w|^{2}\right)+z w^{*}}
$$

where $\theta=\arg z_{0}$.

In turn the rightmost eigenvalue in the GinUE obeys

$$
\max _{i=1, \ldots, n} \not \Re_{i}(\mathbf{X}) \Rightarrow \sqrt{n}+\sqrt{\frac{\gamma_{n}}{4}}+\frac{G}{\sqrt{4 \gamma_{n}}}, \quad n \rightarrow \infty,
$$

where $\gamma_{n}=\frac{1}{2}\left(\ln n-5 \ln \ln n-\ln \left(2 \pi^{4}\right)\right)$ and the cdf of G equals (Cipolloni, Erdős, Xu, Schröder 2022)

$$
\operatorname{Prob}(G \leq t)=\mathrm{e}^{-\mathrm{e}^{-t}},
$$

so no Painlevé transcendents are floating about.

Universality

The circular law (4) is a universal limiting law (Girko 1985, ...) and so is the edge law (5) (Cipolloni, Erdős, Xu, Schröder 2022). Both laws holds true for centered and scaled matrices $\mathbf{X}=\left(X_{j k}\right)_{j, k=1}^{n}$ with iid complex entries so that $\mathbb{E}\left|X_{j k}\right|^{2}<\infty(\oplus$ decay $)$.

Connecting both sides

Consider the Complex Elliptic Ginibre ensemble (eGinUE), i.e. matrices

$$
\mathbf{X}=\sqrt{\frac{1+\tau}{2}} \mathbf{X}_{1}+\mathrm{i} \sqrt{\frac{1-\tau}{2}} \mathbf{X}_{2} \in \mathbb{C}^{n \times n}: \quad \mathbf{X}_{1}, \mathbf{X}_{2} \in \text { GUE independent }
$$

as in (Girko 1986). Here, $0 \leq \tau \leq 1$. Equivalently think of a log-gas system $\left\{z_{j}\right\}_{j=1}^{n} \subset \mathbb{C}$ with joint pdf equal to (Ginibre 1965)

$$
p_{n}^{\tau}\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{Z_{n}^{\tau}} \prod_{1 \leq j<k \leq n}\left|z_{k}-z_{j}\right|^{2} \exp \left(-\frac{1}{1-\tau^{2}} \sum_{j=1}^{n}\left(\left|z_{j}\right|^{2}-\tau \Re z_{j}^{2}\right)\right) .
$$

Question: How do the particles $\left\{z_{j}\right\}_{j=1}^{n}$ behave for large n ?

The particles $\left\{z_{j}\right\}_{j=1}^{n}$ from a DPP on $\mathbb{C} \simeq \mathbb{R}^{2}$ (Di Francesco,... 1994),

$$
R_{k}^{\tau}\left(z_{1}, \ldots, z_{n}\right):=\frac{n!}{(n-k)!} \int_{\mathbb{C}^{n-k}} p_{n}^{\tau}\left(z_{1}, \ldots, z_{n}\right) \prod_{j=k+1}^{n} \mathrm{~d}^{2} z_{j}=\operatorname{det}\left[K_{n}^{\tau}\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{k}
$$

with correlation kernel

$$
K_{n}^{\tau}(z, w)=\frac{\mathrm{e}^{-\frac{1}{2\left(1-\tau^{2}\right)}\left(|z|^{2}-\tau \Re z^{2}+|w|^{2}-\tau \Re w^{2}\right)}}{\pi \sqrt{1-\tau^{2}}} \sum_{k=0}^{n-1} \frac{\tau^{k}}{2^{k} k!} H_{k}\left(\frac{z}{\sqrt{2 \tau}}\right) H_{k}\left(\frac{w^{*}}{\sqrt{2 \tau}}\right) .
$$

Now analyze R_{k} asymptotically in different scaling regimes:
(A) The global eigenvalue regime: define the ESD

$$
\mu_{\mathbf{X}}(s, t)=\frac{1}{n} \#\left\{1 \leq j \leq n, \quad \Re z_{j} \leq s, \quad \Im z_{j} \leq t\right\}, \quad s, t \in \mathbb{R}
$$

then, as $n \rightarrow \infty$, the random measure $\mu_{\mathbf{X} / \sqrt{n}}$ converges almost surely to the uniform distribution on the ellipse

$$
E_{\tau}:=\left\{z \in \mathbb{C}:(\Re z)^{2} /(1+\tau)^{2}+(\Im z)^{2} /(1-\tau)^{2}<1\right\},
$$

(Crisanti, Sommers, Sompolinsky, Stein 1988)

$$
\rho(z)=\frac{1}{\pi\left(1-\tau^{2}\right)} \chi_{E_{\tau}}(z) \mathrm{d}^{2} z
$$

Figure 5: The elliptic law for 500 complex (rescaled) elliptic Ginibre matrices of dimension 10×10 in comparison with the ellipse boundary. We plot $\tau=0,0.25$, 0.75 from left to right.
(B) The local eigenvalue regime: One can look at

$$
n \rightarrow \infty: \quad 1-\tau>0 \text { uniformly in } n \quad \text { strong non-Hermiticity }
$$

as done in (Forrester, Jankovici 1996). Or, more interestingly, one can look at

$$
n \rightarrow \infty: \quad \tau \uparrow 1 \quad \text { weak non-Hermiticity }
$$

as first investigated by (Fyodorov 1997). To this end, set

$$
\sigma_{n}:=n^{\alpha} \sqrt{1-\tau_{n}}>0, \quad\left(\tau_{n}\right)_{n=1}^{\infty} \subset[0,1)
$$

which will allow us to interpolate between GUE and GinUE statistics.

We shall zoom in on the rightmost particle of the process $\left\{z_{j}\right\}_{j=1}^{n}$ $\equiv\left\{\left(x_{j}, y_{j}\right)\right\}_{j=1}^{n} \subset \mathbb{R}^{2}$ (Bender 2009). Centering and scaling,

$$
x_{j} \mapsto \tilde{x}_{j}=\frac{x_{j}-c_{n}}{a_{n}}, \quad y_{j} \mapsto \tilde{y}_{j}=\frac{y_{j}}{b_{n}}, \quad \alpha=\frac{1}{6},
$$

accordingly, the eigenvalue process $P_{n}^{\tau_{n}}=\left\{\left(\tilde{x}_{j}, \tilde{y}_{j}\right)\right\}_{j=1}^{n}$
(i) converges weakly to a Poisson process on \mathbb{R}^{2} when $\sigma_{n} \rightarrow \infty$,
(ii) converges weakly to the interpolating Airy process on \mathbb{R}^{2} when

$$
\sigma_{n} \rightarrow \sigma \in[0, \infty) .
$$

The Poisson process is determined by the correlation kernel

$$
K_{\mathrm{p}}\left(z_{1}, z_{2}\right)=\delta_{z_{12} 2} \frac{1}{\sqrt{\pi}} \mathrm{e}^{-x_{1}-y_{1}^{2}}, \quad z_{k}=\left(x_{k}, y_{k}\right) \in \mathbb{R}^{2}
$$

and the interpolating Airy process by the correlation kernel

$$
\begin{gathered}
K_{\text {Ai }}^{\sigma}\left(z_{1}, z_{2}\right)=\frac{1}{\sigma \sqrt{\pi}} \exp \left[-\frac{1}{2 \sigma^{2}}\left(y_{1}^{2}+y_{2}^{2}\right)+\frac{1}{2} \sigma^{2}\left(x_{1}+\mathrm{i} y_{1}+x_{2}-\mathrm{i} y_{2}\right)+\frac{1}{6} \sigma^{6}\right] \\
\quad \times \int_{0}^{\infty} \mathrm{e}^{s \sigma^{2}} \mathrm{Ai}\left(x_{1}+\mathrm{i} y_{1}+\frac{1}{4} \sigma^{4}+s\right) \mathrm{Ai}\left(x_{2}-\mathrm{i} y_{2}+\frac{1}{4} \sigma^{4}+s\right) \mathrm{d} s,
\end{gathered}
$$

where we write $z_{k}=\left(x_{k}, y_{k}\right) \in \mathbb{R}^{2}$ for shorthand. In addition

$$
\max _{i=1, \ldots, n} x_{j}(\mathbf{X}) \Rightarrow c_{n}+a_{n} B_{\sigma}, \quad \sigma_{n} \rightarrow \sigma \in[0, \infty)
$$

where the cdf of B_{σ} equals (Bender 2009)

$$
F(t, \sigma):=\operatorname{Prob}\left(B_{\sigma} \leq t\right)=\operatorname{det}\left(I-K_{A i}^{\sigma} \upharpoonright_{L^{2}((t, \infty) \times \mathbb{R})}\right) .
$$

The problem and its solution

Gernot Akemann's question

What can you say about $F(t, \sigma)$? Any Painlevé transcendents floating around? What about asymptotics?
and our answer

B-Little 2022

For all $(t, \sigma) \in \mathbb{R} \times[0, \infty)$,

$$
F(t, \sigma)=\exp \left[-\int_{t}^{\infty}(s-t)\left\{\int_{-\infty}^{\infty} q_{\sigma}^{2}(s, \lambda) \mathrm{d} \nu_{\sigma}(\lambda)\right\} \mathrm{ds}\right], \quad \frac{\mathrm{d} \nu_{\sigma}}{\mathrm{d} \lambda}=\frac{1}{\sigma \sqrt{ } \pi} \mathrm{e}^{-\lambda^{2} / \sigma^{2}}
$$

where $q_{\sigma}(t, \lambda)$ solve the integro-differential Painlevé-II equation

$$
\frac{\partial^{2}}{\partial t^{2}} q_{\sigma}(t, y)=\left[t+y+2 \int_{-\infty}^{\infty} q_{\sigma}^{2}(t, \lambda) \mathrm{d} \nu_{\sigma}(\lambda)\right] q_{\sigma}(t, y), \quad q_{\sigma}(t, y) \sim \operatorname{Ai}^{(}(t+y), t \rightarrow+\infty .
$$

The above shows in particular that

$$
F(t, \sigma)=\operatorname{det}\left(I-K_{\mathrm{A}_{i}}^{\sigma} \upharpoonright_{L^{2}((t, \infty) \times \mathbb{R})}\right)=\operatorname{det}\left(I-L_{\sigma} \upharpoonright_{L^{2}(t, \infty)}\right),
$$

where L_{σ} is trace class on $L^{2}(t, \infty)$ with kernel

$$
\begin{equation*}
L_{\sigma}(x, y)=\int_{-\infty}^{\infty} \Phi\left(\frac{z}{\sigma}\right) \operatorname{Ai}(x+z) \operatorname{Ai}(z+y) \mathrm{d} z \tag{6}
\end{equation*}
$$

with $\Phi(x)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} \mathrm{e}^{-y^{2}} \mathrm{~d} y=1-\frac{1}{2} \operatorname{erfc}(x)$. Note that (6) is an example of a so-called finite-temperature Airy kernel.

Some details

Why a Painlevé connection? Put $J_{t}:=(t, \infty) \times \mathbb{R} \subset \mathbb{R}^{2}$.

Trace identities

We have for all $n \in \mathbb{Z}_{\geq 0}$ and $(t, \sigma) \in \mathbb{R} \times[0, \infty)$,

$$
\operatorname{tr}_{L^{2}\left(J_{t}\right)}\left(K_{\mathrm{Ai}}^{\sigma}\right)^{n}=\operatorname{tr}_{L^{2}\left(J_{t}\right)} K_{\sigma}^{n}
$$

where K_{σ} is trace class on $L^{2}\left(J_{t}\right)$ with kernel

$$
\begin{equation*}
K_{\sigma}\left(z_{1}, z_{2}\right):=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-\frac{1}{2} y_{1}^{2}} \mathrm{~K}_{\mathrm{Ai}}\left(x_{1}+\sigma y_{1}, x_{2}+\sigma y_{2}\right) \mathrm{e}^{-\frac{1}{2} y_{2}^{2}} . \tag{7}
\end{equation*}
$$

The point is, (7) is an additive Hankel composition kernel in the horizontal variable!

Indeed, $K_{\sigma}\left(z_{1}, z_{2}\right)$ is of the type

$$
K_{\sigma}\left(z_{1}, z_{2}\right)=\int_{0}^{\infty} \phi_{\sigma}\left(x_{1}+s, y_{1}\right) \phi_{\sigma}\left(s+x_{2}, y_{2}\right) \mathrm{d} s
$$

where

$$
\phi_{\sigma}(x, y):=\frac{1}{\pi^{\frac{1}{4}}} \mathrm{e}^{-\frac{1}{2} y^{2}} \mathrm{Ai}(x+\sigma y)
$$

Thus the methods of (Krajenbrink 2021) and (Bothner 2022) are readily available in the analysis of $F(t, \sigma)$ and the integro-differential Painlevé-II equation appears quite naturally.

Bulk excursions

How about (tail) asymptotics of $F(t, \sigma)$?

B-Little 2022

For any $\epsilon \in(0,1)$, there exists $t_{0}=t_{0}(\epsilon)$ such that

$$
\begin{equation*}
F(t, \sigma)=1-A(t, \sigma) \mathrm{e}^{-B(t, \sigma)}(1+o(1)), \tag{8}
\end{equation*}
$$

for $t \geq t_{0}$ and $0 \leq \sigma \leq t^{\epsilon}$. Here,

$$
\begin{aligned}
& A(t, \sigma)=\frac{1}{2 \pi t^{\frac{3}{2}}}\left(\sqrt{4+\sigma^{4} t^{-1}}-\sigma^{2} t^{-\frac{1}{2}}\right)^{-\frac{5}{2}}\left(4+\sigma^{4} t^{-1}\right)^{-\frac{1}{4}} \\
& B(t, \sigma)=\frac{4}{3} t^{\frac{3}{2}}\left(1+\frac{\sigma^{4}}{4 t}\right)^{\frac{3}{2}}-t \sigma^{2}-\frac{1}{6} \sigma^{6} .
\end{aligned}
$$

And beyond $0 \leq \sigma \leq t^{\epsilon}, \epsilon \in(0,1)$?

B-Little 2022

There exist $t_{0}, \sigma_{0}>0$ such that

$$
\begin{equation*}
F(t, \sigma)=\exp \left[\sigma^{\frac{3}{2}} C\left(\frac{t}{\sigma}\right)+\frac{1}{4} \int_{\frac{t}{\sigma}}^{\infty}\left\{\frac{\mathrm{d}}{\mathrm{~d} u} D(u)\right\}^{2} \mathrm{~d} u\right](1+o(1)), \tag{9}
\end{equation*}
$$

for $t \geq t_{0}$ and $\sigma \geq \sigma_{0}$. Here,

$$
C(y)=\frac{1}{\pi} \int_{0}^{\infty} \sqrt{x} \ln \Phi(x+y) \mathrm{d} x, \quad D(y)=\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{\sqrt{x}} \ln \Phi(x+y) \mathrm{d} x
$$

Note that (8) and (9) capture the full $(t \rightarrow+\infty)$ crossover between

$$
F_{2}(t)=1-\frac{1}{16 \pi t^{\frac{3}{2}}} \exp \left[-\frac{4}{3} t^{\frac{3}{2}}\right](1+o(1)) ; \quad \mathrm{e}^{-\mathrm{e}^{-t}}=1-\mathrm{e}^{-t}(1+o(1))
$$

The left tail (uniformly for all $\sigma \in(0, \infty)$) is work in progress.

Bulk excursions

Zooming in on bulk particles of the process $\left\{z_{j}\right\}_{j=1}^{n} \equiv\left\{\left(x_{j}, y_{j}\right)\right\}_{j=1}^{n}$ $\subset \mathbb{R}^{2}$, gaps between consecutive x_{j}, in the weak non-Hermiticity limit, are governed by an interpolating sine process on \mathbb{R}^{2} with kernel

$$
K_{\text {sin }}^{\sigma}\left(z_{1}, z_{2}\right)=\frac{1}{\sigma \pi^{\frac{3}{2}}} \exp \left[-\frac{1}{2 \sigma^{2}}\left(y_{1}^{2}+y_{2}^{2}\right)\right] \int_{0}^{1} \mathrm{e}^{-(s \sigma)^{2}} \cos \left(\left(z_{1}-z_{2}^{*}\right) s\right) \mathrm{d} s,
$$

where we write $z_{k}=x_{k}+\mathrm{i} y_{k}$ for shorthand. In addition the limiting gap function equals

$$
H(t, \sigma):=\operatorname{det}\left(I-K_{\sin }^{\sigma} \upharpoonright_{L^{2}((-t, t) \times \mathbb{R})}\right), \quad t>0, \quad \sigma>0
$$

thus generalizing the sine kernel determinant.

Back to Painlevé

Gernot Akemann's question

What can you say about $H(t, \sigma)$? Any Painlevé transcendents floating around? What about asymptotics?

Trace identities

We have for all $n \in \mathbb{Z}_{\geq 0}$ and $(t, \sigma) \in(0, \infty) \times(0, \infty)$,

$$
\operatorname{tr}_{L^{2}\left(I_{t}\right)}\left(K_{\sin }^{\sigma}\right)^{n}=\operatorname{tr}_{L^{2}\left(I_{t}\right)} S_{\sigma}^{n}, \quad I_{t}:=(-t, t) \times \mathbb{R},
$$

where S_{σ} is trace class on $L^{2}\left(I_{t}\right)$ with kernel

$$
\begin{equation*}
S_{\sigma}\left(z_{1}, z_{2}\right):=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-\frac{1}{2} y_{1}^{2}} \mathrm{~K}_{\sin }\left(x_{1}+\sigma y_{1}, x_{2}+\sigma y_{2}\right) \mathrm{e}^{-\frac{1}{2} y_{2}^{2}} \tag{10}
\end{equation*}
$$

Based on the above trace identities one then proves

$$
H(t, \sigma)=\operatorname{det}\left(I-K_{\text {sin }}^{\sigma} \Gamma_{L^{2}((-t, t) \times \mathbb{R})}\right)=\operatorname{det}\left(I-M_{\sigma} \upharpoonright_{L^{2}(-t, t)}\right)
$$

where M_{σ} is trace class on $L^{2}(-t, t)$ with kernel

$$
\begin{equation*}
M_{\sigma}(x, y)=\frac{t}{2 \pi} \int_{-\infty}^{\infty} \Psi_{t / \sigma}(z) \cos (z(x-y) t) \mathrm{d} z \tag{11}
\end{equation*}
$$

with $\Psi_{\alpha}(x)=\pi(\Phi(\alpha(x+1))-\Phi(\alpha(x-1)))$. Note that (11) is an example of a so-called finite-temperature sine kernel. In turn $H(t, \sigma)$ relates to an integro-differential Painlevé-V transcendent, (Bothner 2021, unpublished).

Thank you very much for your attention!!!

