## The Bonnet Problem. <br> Is a surface characterized by its metric and curvatures?

## Alexander Bobenko

Technische Universität Berlin
Isomonodromic Deformations, Painlevé Equations and Integrable Systems, June 2022, Columbia University
new results on Bonnet pairs joint with T. Hoffmann and A. Sageman-Furnas

## Analytic description of surfaces

Conformally parametrized surfaces

$$
\begin{gathered}
f=\left(f_{1}, f_{2}, f_{3}\right): \mathcal{R} \rightarrow \mathbb{R}^{3}, \\
<f_{u}, f_{u}>=<f_{v}, f_{v}>=e^{2 h},<f_{u}, f_{v}>=0,<n, n>=1 .
\end{gathered}
$$

Complex coordinate $z=u+\mathrm{i} v$. First and second fundamental forms

$$
\begin{aligned}
<d f, d f> & =e^{2 h} d z d \bar{z} \\
-<d f, d n> & =H e^{2 h} d z d \bar{z}+Q d z^{2}+\bar{Q} d \bar{z}^{2}
\end{aligned}
$$

Mean curvature $H=\frac{1}{2}\left(k_{1}+k_{2}\right)$, Gaussian curvature $K=k_{1} k_{2}$.

$$
<f_{z \bar{z}}, n>=\frac{1}{2} H e^{2 h}
$$

Hopf differential

$$
Q=<f_{z z}, n>
$$

## Gauss-Codazzi equations. Bonnet theorem

Gauss equation
Codazzi equation

$$
\begin{aligned}
h_{z \bar{z}}+\frac{1}{4} H^{2} e^{2 h}-|Q|^{2} e^{-2 h} & =0 \\
Q_{\bar{z}} & =\frac{1}{2} H_{z} e^{2 h}
\end{aligned}
$$

## Theorem (Bonnet theorem)

Given a metric $e^{2 h} d z d \bar{z}$, a quadratic differential $Q d z^{2}$, and a mean curvature function $H$ on $\mathcal{R}$ satisfying the Gauss-Codazzi equations, there exists an immersion

$$
f: \tilde{\mathcal{R}} \rightarrow \mathbb{R}^{3}
$$

with the corresponding fundamental forms. Here $\tilde{\mathcal{R}}$ is the universal covering of $\mathcal{R}$. The immersion $f$ is unique up to Euclidean motions in $\mathbb{R}^{3}$.

## The Bonnet problem

- A natural question is whether some of the data $e^{2 h}, Q, H$ of the fundamental forms are superfluous.
- Note that the Gaussian curvature is determined by the metric
- Do the metric and the curvatures determine a surface?
- Generally yes.

3 exceptional cases (known to Bonnet):

- cmc surfaces
- Bonnet pairs: two surfaces
- Bonnet families: one parameter family of non-cmc surfaces

Local and global theory
All 3 cases are described by integrable systems

## Constant mean curvature surfaces

- Cmc surfaces: associated family $Q \rightarrow \lambda Q,|\lambda|=1$.


Wente torus:
one family of planar curvature lines
$\Delta u=\sinh u$

- Modern global theory of cmc surfaces.
- Wente torus ['86], Abresch, Walter [87].
- all tori, description as integrable systems. Hitchin, Pinkall, Sterling ['89]
- explicit formulas in terms of RS (theta functions). Bobenko ['91]
- Higher genus: Heller [2010-]


## Bonnet pairs

- A Bonnet pair is two non-congruent isometric surfaces $\mathcal{F}^{+}$and $\mathcal{F}^{-}$with the same mean curvature at corresponding points.
- Lawson-Tribuzy ['81], 3 immersions $\Rightarrow$ one-parameter family
- $\Rightarrow$ There exist at most 2 compact immersions
- Claims (retracted) that they do not exist. Sabitov ['12]
- Sufficient conditions for non-existence. Jensen -Musso-Nicolodi ['18]


## Bonnet pairs

## Bonnet Problem:

Do there exist compact Bonnet pairs?

- A Bonnet pair is two non-congruent isometric surfaces $\mathcal{F}^{+}$and $\mathcal{F}^{-}$with the same mean curvature at corresponding points.
- Lawson-Tribuzy ['81], 3 immersions $\Rightarrow$ one-parameter family
- $\Rightarrow$ There exist at most 2 compact immersions
- Claims (retracted) that they do not exist. Sabitov ['12]
- Sufficient conditions for non-existence. Jensen -Musso-Nicolodi ['18]


## Bonnet pairs

## Bonnet Problem:

Do there exist compact Bonnet pairs?

- A Bonnet pair is two non-congruent isometric surfaces $\mathcal{F}^{+}$and $\mathcal{F}^{-}$with the same mean curvature at corresponding points.
- Lawson-Tribuzy ['81], 3 immersions $\Rightarrow$ one-parameter family
- $\Rightarrow$ There exist at most 2 compact immersions
- Claims (retracted) that they do not exist. Sabitov ['12]
- Sufficient conditions for non-existence. Jensen -Musso-Nicolodi ['18]


## Bonnet pairs

## Bonnet Problem:

Do there exist compact Bonnet pairs?

- A Bonnet pair is two non-congruent isometric surfaces $\mathcal{F}^{+}$and $\mathcal{F}^{-}$with the same mean curvature at corresponding points.
- Lawson-Tribuzy ['81], 3 immersions $\Rightarrow$ one-parameter family
- $\Rightarrow$ There exist at most 2 compact immersions
- Claims (retracted) that they do not exist. Sabitov ['12]
- Sufficient conditions for non-existence. Jensen -Musso-Nicolodi ['18]


## Compact Bonnet pairs?

A smooth Bonnet pair $\mathcal{F}^{ \pm}$is given by conformal immersions

$$
f^{ \pm}: \mathcal{R} \rightarrow \mathbb{R}^{3}
$$

of the same Riemann surface, with common metric $e^{2 h}$, common mean curvature function $H$ and different Hopf differentials $Q^{+} \not \equiv Q^{-}$.

- Codacci equations $\Rightarrow Q_{h}:=Q^{+}-Q^{-}$is holomorphic
- There exists no Bonnet pairs of genus $g=0$. Lawson-Tribuzy ['81], $Q_{h}=0$ on a sphere.
- The set of umbilic points coincides with the zero divisor of $Q_{h}$. Bobenko ['08], Sabitov ['12]


## Bonnet pairs of genus $g=1$ ?

No umbilic points on Bonnet tori:

$$
Q^{ \pm}=\frac{1}{2}(\alpha \pm i)
$$

where $\alpha: \mathcal{R} \rightarrow \mathbb{R}$ smooth.
The Gauss-Codazzi equations of Bonnet tori

$$
\begin{aligned}
4 h_{z \bar{z}}+H^{2} e^{2 h}-\left(1+\alpha^{2}\right) e^{-2 h} & =0 \\
\alpha_{\bar{z}} & =e^{2 h} H_{z}
\end{aligned}
$$

- solve the GC equations
- solve the frame equations
- find doubly periodic immersions


## Bonnet pairs of genus $g=1$ ?

No umbilic points on Bonnet tori:

$$
Q^{ \pm}=\frac{1}{2}(\alpha \pm \mathrm{i}),
$$

where $\alpha: \mathcal{R} \rightarrow \mathbb{R}$ smooth.
The Gauss-Codazzi equations of Bonnet tori

$$
\begin{aligned}
4 h_{z \bar{z}}+H^{2} e^{2 h}-\left(1+\alpha^{2}\right) e^{-2 h} & =0 \\
\alpha_{\bar{z}} & =e^{2 h} H_{z}
\end{aligned}
$$

- solve the GC equations
- solve the frame equations
- find doubly periodic immersions

This is not the way to solve the problem!

## Main result: Bonnet pairs of genus $g=1$ do exist



A compact Bonnet pair of genus $g=1$.
Corresponding generators are shown.
The orange generators are not congruent

## Isothermic surfaces

Isothermic surfaces = conformal curvature line parametrization

$$
f_{u v} \in \operatorname{span}\left\{f_{u}, f_{v}\right\}, \quad Q(z, \bar{z}) \in \mathbb{R}
$$

Dual isothermic surface

$$
d f^{*}:=e^{-2 h}\left(f_{u} d u-f_{v} d v\right)
$$

The periodicity properties of $f: \mathcal{R} \rightarrow \mathbb{R}^{3}$ are not respected. Quaternionic description of surfaces

$$
\begin{gathered}
(u, v) \rightarrow f(u, v) \in \operatorname{Im} \mathbb{H} \\
d f^{*}=-\left(f_{u}\right)^{-1} d u+\left(f_{v}\right)^{-1} d v
\end{gathered}
$$

## Bonnet pairs from isothermic surfaces

Description of Bonnet pairs (frames) in terms of isothermic surfaces in $S^{3}$ by Bianchi [1903].
Quaternionic description for simply connected $D \subset \mathbb{R}^{2}$ is crucial in our construction
Theorem (Kamberov-Pedit-Pinkall ('98))
The immersions $f^{ \pm}: D \rightarrow \operatorname{Im} \mathbb{H}=\mathbb{R}^{3}$ build a Bonnet pair if and only if there exists an isothermic surface $f: D \rightarrow \operatorname{Im} \mathbb{H}$ and a real number $\epsilon \in \mathbb{R}$ such that

$$
d f^{ \pm}=( \pm \epsilon-f) d f^{*}( \pm \epsilon+f)
$$

where $f^{*}$ is the dual isothermic surface.

## Periodicity conditions

Torus $\mathcal{R}=\mathbb{C} / \mathcal{L}$. If $\gamma$ is a cycle on $\mathcal{R}$ that is closed on the isothermic surface $f: \mathcal{R} \rightarrow \mathbb{R}^{3}$.
The corresponding curves are closed on the Bonnet pair iff

$$
\begin{array}{ll}
(\mathcal{A} \text {-periodicity condition }) & \int_{\gamma}-f d f^{*} f+\epsilon^{2} d f^{*}=0, \\
(\mathcal{B} \text {-periodicity condition }) & \int_{\gamma}\left[d f^{*}, f\right]=2 \int_{\gamma} \operatorname{Im}_{\mathbb{H}}\left(d f^{*} f\right)=0 .
\end{array}
$$

- Parameter $\epsilon$ is not essential
- Isothermic surfaces are Möbius invariant


## Lemma

Let $f$ be an isothermic torus such that $f^{*}$ and $\left(f^{-1}\right)^{*}$ are also tori. Then the $\mathcal{A}$-periodicity condition for Bonnet pairs is satisfied for any $\gamma$

$$
\int-f d f^{*} f+\epsilon^{2} d f^{*}=\left(f^{-1}\right)^{*}+\epsilon^{2} f^{*}
$$

## Discrete Bonnet pairs. Local theory

Discrete isothermic surfaces Bobenko-Pinkall ['96].
$f: \mathbb{Z}^{2} \rightarrow \operatorname{Im} \mathbb{H}=\mathbb{R}^{3}$ is a discrete isothermic net if for each quad

$$
\left(f_{1}-f\right)\left(f_{12}-f_{1}\right)^{-1}\left(f_{2}-f\right)\left(f_{12}-f_{2}\right)^{-1}=-1
$$

Discretization of the Kamberov-Pedit-Pinkall formula by Hoffmann-Sageman-Furnas-Wardetzky ['17]
$\Rightarrow$ Discrete Bonnet pairs

$$
f_{1,2}^{ \pm}-f^{ \pm}:=\operatorname{Im}_{\mathbb{H}}\left(( \pm \epsilon-f)\left(f_{1,2}^{*}-f^{*}\right)\left( \pm \epsilon+f_{1,2}\right)\right)
$$

## Discrete compact Bonnet pairs. Numerical example



Two views of a discrete isothermic torus. Extremely coarse numerical example on a $5 \times 7$ lattice.

## Discrete compact Bonnet pairs. Numerical example



The corresponding discrete Bonnet pair

## Discrete compact Bonnet pairs. Numerical example



On the discrete isothermic torus, the curvature lines with 5 vertices are planar (orange) and the curvature lines with 7 vertices are spherical (blue)

## Isothermic surifaces with one family of planar curvature lines

Classification by Dabroux ['1883]. Involved and tricky computations

## Theorem

Every isothermic surface $f(u, v)$ with one family (u-curves) of planar curvature lines has its planes tangent to a cone, and is given by

$$
\begin{array}{r}
f(u, v)=\Phi^{-1}(v) \gamma(u, \mathrm{w}(v)) \mathbf{j} \Phi(v) \\
\Phi^{\prime}(v) \Phi^{-1}(v)=\sqrt{1-\mathrm{w}^{\prime}(v)^{2}} W_{1}(\mathrm{w}(v)) \mathbf{k},
\end{array}
$$

where $\mathrm{w}(\mathrm{v})$ is a reparametrization function satisfying $\left|\mathrm{w}^{\prime}(v)\right| \leq 1$, the lattice is rectangular, and $\omega \in \mathbb{R}$, and $\gamma(u, \mathrm{w})$ and $W_{1}(\mathrm{w})$ are given by explicit formulas in theta functions.

## Formula for the curves $\gamma$

$$
\gamma(u, \mathrm{w})=-\mathrm{i} \frac{2 \vartheta_{4}(\omega)^{2}}{\vartheta_{1}^{\prime}(0) \vartheta_{1}(2 \omega)} \frac{\vartheta_{1}\left(\frac{u+\mathrm{iw}-3 \omega}{2}\right)}{\vartheta_{1}\left(\frac{u+\mathrm{i} \mathrm{w}+\omega}{2}\right)} e^{(u+\mathrm{i} w) \frac{\vartheta_{4}^{\prime}(\omega)}{\vartheta_{4}(\omega)}}
$$

- Problem: $\gamma(u, \mathrm{w})$ is never periodic in $u$
- Darboux classification contains no cylinders or tori. He considers elliptic functions on rectangular lattices only.


## Formula for the curves $\gamma$

$$
\gamma(u, \mathrm{w})=-\mathrm{i} \frac{2 \vartheta_{4}(\omega)^{2}}{\vartheta_{1}^{\prime}(0) \vartheta_{1}(2 \omega)} \frac{\vartheta_{1}\left(\frac{u+\mathrm{iw}-3 \omega}{2}\right)}{\vartheta_{1}\left(\frac{u+\mathrm{iw}+\omega}{2}\right)} e^{(u+\mathrm{i} \mathrm{w}) \frac{\vartheta_{4}^{\prime}(\omega)}{\vartheta_{4}(\omega)}}
$$

- Problem: $\gamma(u, \mathrm{w})$ is never periodic in $u$
- Darboux classification contains no cylinders or tori. He considers elliptic functions on rectangular lattices only.
- Classification must be extended by including the elliptic functions on rhombic lattices
- Similar to the story with cmc tori, but more involved


## Rectangular and rhombic lattices: the curves $\gamma$

Rectangular: $\tau \in \mathrm{i} \mathbb{R}$

$$
\gamma(u, \mathrm{w})=-\mathrm{i} \frac{2 \vartheta_{4}(\omega)^{2}}{\vartheta_{1}^{\prime}(0) \vartheta_{1}(2 \omega)} \frac{\vartheta_{1}\left(\frac{u+\mathrm{i} \mathrm{w}-3 \omega}{2}\right)}{\vartheta_{1}\left(\frac{u+\mathrm{iw}+\omega}{2}\right)} e^{(u+\mathrm{iw}) \frac{\vartheta_{4}^{\prime}(\omega)}{\vartheta_{4}(\omega)}}
$$

Rhombic: $\tau \in \frac{1}{2}+\mathrm{i} \mathbb{R}$

$$
\gamma(u, \mathrm{w})=-\mathrm{i} \frac{2 \vartheta_{2}(\omega)^{2}}{\vartheta_{1}^{\prime}(0) \vartheta_{1}(2 \omega)} \frac{\vartheta_{1}\left(\frac{u+\mathrm{iw}-3 \omega}{2}\right)}{\vartheta_{1}\left(\frac{u+\mathrm{iw}+\omega}{2}\right)} e^{(u+\mathrm{i} \mathrm{w}) \frac{\vartheta_{2}^{\prime}(\omega)}{\vartheta_{2}(\omega)}}
$$

## Zeros of $\vartheta_{2}^{\prime}$ for rhombic lattices


triple zero

imaginary zeroes

$\vartheta_{4}^{\prime}(\omega)$ in rectangular case never vanishes, $\vartheta_{2}^{\prime}(\omega)$ in rhombic case can vanish.

## Bonnet periodicity conditions when $f$ has a family of closed planar curvature lines

The Bonnet periodicity conditions ( A and B ) simplify


The spherical inversion and dualization operations map each planar curvature line, and therefore the entire surface, onto (minus) itself

## Fundamental piece

The fundamental piece $\Pi$ is the parametrized cylindrical patch

$$
\Pi=\{f(u, v) \mid u \in[0,2 \pi], v \in[0, \mathcal{V}]\}, \mathrm{w}(v+\mathcal{V})=\mathrm{w}(v)
$$

- $f$ has an axis A and generating rotation angle $\theta \in[0, \pi]$ with $\Phi(0)^{-1} \Phi(\mathcal{V})=$ $\cos (\theta / 2)+\sin (\theta / 2)$ A.



## Bonnet periodicity conditions when $f$ has a family of closed planar curvature lines

## Theorem

Let $f(u, v)$ be an isothermic cylinder with one family (u-curves) of closed planar curvature lines, and with periodic $\mathrm{w}(v+\mathcal{V})=\mathrm{w}(v)$ that yields a fundamental piece with axis A and generating rotation angle $\theta \in[0, \pi]$. Denote its Gauss map by $n$ and metric by $e^{2 h}$.
Then the resulting Bonnet pair cylinders $f^{ \pm}$are tori if and only if

1. (Rationality condition)

$$
k \theta \in 2 \pi \mathbb{N} \text { for some } k \in \mathbb{N}
$$

2. (Vanishing axial $\mathcal{B}$ part)

$$
\left\langle\mathrm{A}, \int_{0}^{\mathcal{V}} e^{-h(\omega, \mathrm{w}(v))} n(\omega, v) d v\right\rangle_{\mathbb{R}^{3}}=0
$$

## Second family of spherical curvature lines

- The primary challenge, is that the angle $\theta$, axis A, and Gauss map $n$, depend on the frame $\Phi(v)$, which cannot be computed explicitly.
- The periodicity conditions can be refined when the second family of curvature lines is spherical.
- The key geometric insight is that the centers of the curvature line spheres are collinear and lie on the axis.
- Both periodicity conditions are given as Abelian integrals.


## Periodicity conditions as Abelian integrals

## Theorem

Let $f(u, v)$ be an isothermic cylinder of rhombic type, with spherical $v$-curvature lines. Then the arising Bonnet pair cylinders $f^{ \pm}$are tori if and only if there exist parameters $\omega, \delta, s_{1}, s_{2}$ such that

$$
\text { Rationality condition: } \frac{\theta}{2}=\int_{s_{1}^{-}}^{s_{1}^{+}} \frac{Z_{0}}{\tilde{Q}_{2}(s)} \frac{\mathcal{Q}_{2}(s)}{\sqrt{\mathcal{Q}(s)}} d s \in \pi \mathbb{Q} \text {. }
$$

$$
\text { Vanishing axial } \mathcal{B} \text {-part: } \quad \int_{s_{1}^{-}}^{s_{1}^{+}} \frac{\mathcal{Q}_{2}(s)}{\sqrt{\mathcal{Q}(s)}} d s=0 .
$$

Here, $s_{1}^{-}, s_{1}^{+}$are the two real zeroes of the $v$-elliptic curve $\mathcal{Q}(s)=-\left(s-s_{1}\right)^{2}\left(s-s_{2}\right)^{2}+\delta^{2} \mathcal{Q}_{3}(s)$, where the $u$-elliptic curve $\mathcal{Q}_{3}(s)$ and $\mathcal{Q}_{2}, \tilde{\mathcal{Q}}_{2}, Z_{0}$ are given by explicit formulas.

## Proof of existence

- Proof of existence by asymptotic analysis $\delta \rightarrow 0$


## Compact Bonnet pairs from isothermic tori with planar and spherical curvature lines



Fundamental pieces of an example with 3-fold symmetry

## Compact Bonnet pairs from isothermic tori with planar and spherical curvature lines



The pair of corresponding orange curves and the fundamental piece of the isothermic torus

## Compact Bonnet pairs from isothermic tori with planar and spherical curvature lines



The example with 3-fold symmetry

## Compact Bonnet pairs from isothermic tori with planar and spherical curvature lines



The corresponding isothermic torus

## Example with 4-fold symmetry



The fundamental piece and full isothermic surface

## One surface!

- The corresponding Bonnet tori $f^{+}$and $f^{-}$are mirror images of each other. Note that the mirror symmetry mapping $f^{+}$ to $f^{-}$is not the mean curvature preserving isometry.



## Compact Bonnet pairs with two different surfaces

## Proof by a small perturbation.



## Bonnet families



- One parameter families of non-cmc surfaces
- Umbilic free surface is a Bonnet surface iff [Graustein '24]:
(i) it is isothermic
(ii) $1 / Q$ harmonic

Bonnet family:
non-cmc surface

## Local classification

[E. Cartan '42] 3 types

$$
\begin{array}{ll}
A: & |Q|^{2}=\frac{4}{\sin ^{2} 2 t} \\
B: & |Q|^{2}=\frac{4}{\sinh ^{2} 2 t} \\
C: & |Q|^{2}=\frac{1}{t^{2}}
\end{array}
$$

Analytic treatment via ODE. Hazzidakis equation [1887]

$$
\begin{gathered}
\left(\left(\frac{H^{\prime \prime}}{H^{\prime}}\right)^{\prime}-H^{\prime}\right) \frac{1}{|Q|^{2}}=2-\frac{H^{2}}{H^{\prime}} . \\
1 / Q=h+\bar{h}, w=\int \frac{d z}{h^{\prime}}, t=w+\bar{w}, H^{\prime}(t)<0, e^{u}=-\frac{2|Q|^{2}}{H^{\prime}}
\end{gathered}
$$

Intrinsic isometries by imaginary shifts $w \mapsto w+i a$

## Description via monodromy problems

Bobenko, Eitner ['98]

$$
x=e^{-4(w+\bar{w})}, \quad \lambda=e^{-4 w}
$$

Frame equations of Bonnet families B :

$$
\begin{aligned}
\frac{\partial \Phi}{\partial \lambda} \Phi^{-1} & =\frac{B_{0}(x)}{\lambda}+\frac{B_{1}(x)}{\lambda-1}+\frac{B_{x}(x)}{\lambda-x} \\
\frac{\partial \Phi}{\partial x} \Phi^{-1} & =-\frac{B_{x}(x)}{\lambda-x}+C(x)
\end{aligned}
$$

and Hazzidakis equation

$$
4\left(x \frac{\mathcal{H}^{\prime \prime}(x)}{\mathcal{H}^{\prime}(x)}\right)^{\prime}+\mathcal{H}^{\prime}(x)=\frac{4}{(x-1)^{2}}\left(2+\frac{\mathcal{H}^{2}(x)}{4 x \mathcal{H}^{\prime}(x)}\right)
$$

## Description via Painlevé equations

For any solution of the Painlevé VI

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-x}\right) y^{\prime 2}-\left(\frac{1}{x}+\frac{1}{x-1}+\frac{1}{y-x}\right) y^{\prime}+ \\
& \frac{y(y-1)(y-x)}{2 x^{2}(x-1)^{2}}\left(\theta^{2} \frac{(x-1)}{(y-1)^{2}}-\theta(\theta+2) \frac{x(x-1)}{(y-x)^{2}}\right)
\end{aligned}
$$

The function

$$
\mathcal{H}(x) \equiv-2 \frac{(x-1)\left(\theta^{2} y(x)^{2}-x^{2} y^{\prime 2}(x)\right)}{y(x)(y(x)-1)(y(x)-x)}
$$

solves the Hazzidakis equation.
Similar formulas for Bonnet families C and Painlevé V.

## Bonnet families. Global classification

Bonnet families as maximal immersions of open stripe, half-plane and disc. Also with critical points $d H=0$ (isolated). No compact examples. Bobenko-Eitner ['00]


Maximal immersions of Bonnet families of types A, B and C.

