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Abstract Painlevé transcendents as well as solutions of nonlinear waves are deeply linked to solutions of Riemann—Hilbert problems on

the sphere. At their core, these problems define a (trivial) vector bundle on the sphere, and the poles of the transcendents correspond to

non-trivial bundles where the partial indices of the associated problem become non-zero. In higher genus there are additional issues linked

to the index; the role of degree—zero bundles is better played by degree ng (with n the rank and g the genus). The practical application

of the theory of infinitesimal variations then requires a matrix version of the Cauchy kernel that contains as parameters the Turin data,

namely the moduli of a reference bundle. While these notions seem closer to algebraic geometry than to Integrable Systems, I will indicate

how they become necessary to address certain problems stemming from asymptotic analysis of Padé approximations on Riemann surfaces.
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Introduction: genus and index for people in the RH community

On the plane, the prototype RHP is

Y pz`q “ Y pz´qGpzq, z P S
1
, Y p8q “ 1, Y pzq, Y ´1pzqanal. & bdd. on CzS1

Obstruction!

indS1 detG ‰ 0.

Let C be a smooth R.S. of genus g and � the bdry of an embedded disk D.

Question

Can we repeat the problem above?

Answer: NO!

- If we insist on index 0 we must allow poles (try even for the scalar problem!).

- If we insist on holomorphicity of Y pzq we must choose ind� degG “ ng.

Alg. geometers know this very well; this is a vector bundle E of degree ng and Riemann–Roch says

h
0pE q “ h

1pE q ` ng ´ npg ´ 1q “ h
1pE q ` n.

Generically we have unique solution (modulo normalization); on the non-Abelian Theta divisor

h
1pE q ° 0.
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Inevitability of Tyurin

For a RHP of index ng then detY will have ng zeros!

Example (Simple zeros)

div pdetY q “ ∞ng
j“1 pj “: T . Then Y ppjq has co-rank 1; KerrowpY ppjqq “ Cthju.

Definition (Tyurin data)

The collection of T (divisor of degree ng) and hj P P
n´1 is called Tyurin data.

They classify the moduli space of vector bundles of degree ng (up to common GLn action)

For higher multiplicity points the description is subtler, see loc.cit.
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Deformation theory and the non-abelian Cauchy kernel

With an eye to small norm theorems and Deift–Zhou-type of problems we need to study
“infinitesimal” deformations:

Y pz`; ✏q “ Y pz´; ✏q pGpzq ` ✏�Gpzqq , z P �.

Then, like in genus 0:

9Y pz`q “ 9Y pz´qGpzq ` Y pz´q�Gpzq

Question

How to solve this non-homogeneous RHP? In genus zero

9Y pzq “

¨

˚̋
¿

�

Y pw´q�GpwqY ´1pw`q 1 dw

pw ´ zq2i⇡

˛

‹‚Y pzq

The problem is what goes instead of 1 dw
w´z ?
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Simple Tyurin points (example): equation for ⌅

Consider T “ ∞ng
j“1 pj

Tyurin vectors : hpY ppq “ 0 hp P P
n´1

Let !`pzq P H
0pKCq be the (normalized) holomorphic di↵erentials:

!`pT q :“ diag
´
!`pp1q, . . . ,!`ppngq

¯
P Matngˆng H :“

»

——————–

h1

h2

.

.

.

hng

fi

������fl
P Matngˆn

Theorem

Brill–Noether–Tyurin matrix

T :“ “
!1pT qH !2pT qH . . . !gpT qH ‰ P Matngˆng

h
1pE q “ corankT .

The non-Abelian Theta divisor is thus a divisor: ⌅ “ tdetT “ 0u.
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Cauchy kernel and a�ne connection

Definition

The Cauchy kernel C8pw, zq “ C8pw, zq dw is a di↵erential/function matrix such that

1 C8pw, zq “
´

1
w´z ` Fpzq ` Opw ´ zq

¯
dw i.e. res

w“q
C8 “ 1;

2 as a di↵erential in w/function in z:

div pC8pw, zqqw • ´8 ´ z div pC8pw, zqqz • ´w ` 8 ´ T

3 for every pj P T (here version for simple Tyurin data only)

h
t
jC8pw, zq “ Opw ´ pjq (1)

C8pw, zq “ h
t
jvj

z ´ pj
` regular (2)

It exists and is unique for E R ⌅.

A�ne connection

The matrix Fpzq is an a�ne connection under change of coordinates:

Fp⇣q “ d⇣

dz
Fpzq ` 1

2

d

dz
ln

ˆ
d⇣

dz

˙
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Formula for C8

The kernel is not abstract:

Cijpq, pq “

det

»

————–

!1pT qH ¨ ¨ ¨ !gpT qH !p,8pT qHej

!1pqqet
i ¨ ¨ ¨ !gpqqet

i !p,8pqq�ij

fi

����fl

detT
, i, j “ 1, . . . , n. (3)

!jpT q “

»

——–

!jpp1q 0 0 ¨ ¨ ¨ 0

0 !jpp2q 0 ¨ ¨ ¨ 0

0 0

.
.
.

0 0 ¨ ¨ ¨ !jppngq

fi

��fl P Matngˆng H :“

»

———–

h1
h2

.

.

.
hng

fi

���fl P Matngˆn (4)

Explicit formulas are essential for applications.
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Applications: from symplectic geometry of moduli
space to nonlinear steepest descent (Padé)
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Logarithmic form of Liouville’s tautological form

T
‹
V xA pDq RpC,GLnqA`FD M

FD reference a�ne connection constructed directly from Cauchy kernel;

M the monodromy map;

V moduli space of (stable) vector bundles of degree ng

xA pDq connections (with fixed polar divisor).

RpC,GLnq is the character variety

Theorem

If ✓can is tautological one form on T
˚
V then

' :“ pM´1q˚
✓can is a “potential” on RpC,GLnq for the Goldman symp. form:

d' “ !
G

' is a logarithmic form on RpC,GLnq with pole along Mp⌅q and residue ´h
1pE q:

' ` d ln detT “ Op1q.

Informally: the (class of the) Goldman symplectic form is “Poincaré dual” to ⌅.
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More practical application: Padé on Riemann surfaces

Given a measure the Weyl-(Stiltjes) function (or generating function of moments):

W pzq :“
ª

ewpxq dx
z ´ x

“
ÿ

j•0

µj

zj`1

The Padé approximation is a rational approximation scheme:

W pzq “ Qn´1pzq
Pnpzq ` Opz´2n`1q, |z| Ñ 8.

Fact:

The denominators are the orthogonal polynomials for the measure.

Can we merge these two worlds? (B)OPs on RSs?

Very little literature:

Fasondini-Olver-Xu (2020) arXiv:2011.10884: Orthogonal “polynomials” on elliptic curves

C. Charlier: spectral curves and matrix OPs Trans. Math. Appl. 5 (2021), no. 2, tnab004,
35 pp.
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Two generalization directions

Generalizations: either via meromorphic functions or meromorphic half–di↵erentials.

ª
PnpzqPmpzqewpxq dx “

ª
Pnpzq

?
dxloooooomoooooon

'n

Pmpzq
?

dxloooooomoooooon
'm

ewpxq

Meromorphic functions with pole at a given point.

(5)

I am going to describe only the second setting here. The first one is necessary for application to
MOPs: also generalizes nicely multi–point Padé approximations.
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Padé on Riemann surfaces

We need the following data:

A smooth R.S. C of genus g;

a (generic) divisor D of degree g;

a fixed chosen point 8 P C;

a local coordinate z : D8 Ñ C such that 1
zp8q “ 0.

a curve � Ä C;

a density (measure) dµ on �.

The (scalar) Cauchy kernel

C8pp, qq is a di↵erential in p and function in q such that:

1 as a di↵erential w.r.t. p it has poles at q, 8 and residues `1, ´1; zeros at p P D;

2 as a function w.r.t. q it has poles at p,D and zero at 8.

Such object exists and is unique.

Example (genus 1)

C8pz, wq “ p⇣pz ´ wq ` ⇣ pw ´ aq ´ ⇣pzq ` ⇣paqq dz.

8 is z “ 0 and D “ a.

12 / 32

O

gparameters

É



Definition (Weyl di↵erential)

We define it by

Wppq “
ª

qP�
C8pp, qq dµpqq

The space of polynomials of degree n is now replaced by the line bundle L pn8 ` Dq (of
dimension n ` 1 like the space of polynomials by Riemann–Roch).

Problem (Padé approximation problem)

Find Pn P L pD ` n8q and Qn´1 P Kppn ` 1q8q

div

ˆ
Qn´1

Pn
´ W

˙
• 2D ` p2n ´ 1q8.

Theorem (”Orthogonality”)

ª

�
PnppqPmppq dµppq “ hn�nm.
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What survives?

We now use the local coordinate z and define a reference basis of “monic” meromorphic functions ;

⇣jpqq :“ res
p“8 zppqjCpp, qq “ z

j ` Opz´1q.

1 Pseudo–moments µj,k (not Hankel!):

µj,k “
¿

�

⇣jppq⇣kppq dµppq “ ´ res
q“8

¿

pP�

⇣jpqqCpq, pq⇣kppq dµppq

Dn :“ det

„
µj,k

⇢n´1

j,k“0

2 Heine formula

Pnppq :“ 1

Dn

ª

�n
det

”
⇣a´1ppbq

ın`1

a,b“1
det

”
⇣a´1ppbq

ın
a,b“1

nπ

j“1

dµppjq, pn`1 “ p.

3 Riemann–Hilbert problem (see next).

The departed

1 Three term recurrence relation; replaced by a 2g ` 3 recurrence relation.
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Problem

Let Yn be a 2 ˆ 2 matrix with functions in the first column and di↵erentials in the second column,
meromorphic in Cz�

Ynpp`q “ Ynpp´q
„

1 dµppq
0 1

⇢
, p P �.

In addition we require that the matrix is such that it has poles at D in the first column and zeros
in the second column, and also the following growth condition at 8:

Ynppq “
„

OpD ` n8q Kp´D ´ pn ´ 1q8q
OpD ` pn ´ 1q8q Kp´D ´ pn ´ 2q8q

⇢
. (6)

Ynppq “
´
1 ` Opzppq´1q

¯ «
z
nppq 0

0 dzppq
znppq

�
, p Ñ 8. (7)

Problem inherently of index 2g

detYn P Kp28q; it has 2g zeros! How to prove uniqueness? Existence? Tyurin divisor....
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Theorem

The solution of the RHP exists and is unique if and only if Dn ‰ 0.

Note that it is di↵erent from genus 0; the solution if it exists is unique. Now it may exist and be
not unique (if Dn “ 0).

Ynppq “
«

Pnppq Rnppq
rPn´1ppq rRn´1ppq

�

Rnppq :“
ª

�
Cpp, qqPnpqq dµpqq rRn´1ppq :“

ª

�
Cpp, qq rPn´1pqq dµpqq.

Pnppq “ 1

Dn
det

»

————–

µ0,0 µ1,0 ¨ ¨ ¨ µn,0

µ0,1 µ1,1 ¨ ¨ ¨ µn,1

.

.

.
.
.
.

⇣0ppq ⇣1ppq ¨ ¨ ¨ ⇣nppq

fi

����fl
P L pD ` n8q

rPn´1ppq “ 1

Dn
det

»

————–

µ0,0 µ1,0 ¨ ¨ ¨ µn´1,0

µ0,1 µ1,1 ¨ ¨ ¨ µn´1,1

.

.

.
.
.
.

⇣0ppq ⇣1ppq ¨ ¨ ¨ ⇣n´1ppq

fi

����fl
P L pD ` pn ´ 1q8q.
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Guaranteed existence: Harnack-curves. A case study. I

If C has antiholomorphic involution fixing � and dµ is a positive measure, then Dn ° 0 (easy to
show).
Genus 1. Elliptic curve E⌧ “ C{2!1Z ` 2!2Z, In Weierstraß form the elliptic curve is

Y
2 “ 4X3 ´ g2X ´ g3 “ 4pX ´ e1qpX ´ e2qpX ´ e3q

with e1 ` e2 ` e3 “ 0 and e1 † e2 † e3.
Antiholomorphic involution z Ñ !1

!1
z “ z. We choose 8 “ t0u and D “ tau, with

a P p0, 2!1q.

L pD ` n8q “ C

!
1, ⇣ pzq ´ ⇣ pz ´ aq ´ ⇣ paq ,}pzq,}1pzq, . . . ,}pn´2qpzq

)
.

Real–analytic: fpzq “ fpzq.

Theorem

The orthogonal sections ⇡n exist and have n ` 1 zeros. These lie all on � for pn ` 1q even, while

for pn ` 1q odd one zero belongs to ↵.

Question

Interlacing?
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Guaranteed existence: Harnack-curves. A case study. II

⌧
2 �

↵D0

⌧ ⌧ ` 1

1

X

W

�

D

e3 e2 e1

↵

Figure: An example of real elliptic curve (specifically W2 “ 4pX ´ 1qpX ´ 2qpX ` 3q). On the left pane we have the “elliptic”
parametrization as the quotient of C by the lattice ⇤⌧ . On the right the representation of the real section of E⌧ in the Weierstrass
parametrization. The divisor D consists of a single point on the real oval of the ↵ cycle (in this example D “ 1{3 in the elliptic
parametrization), while the measure of orthogonality is defined on the cycle � and it is given by an arbitrary smooth positive function

wppq on � times the holomorphic normalized di↵erential dp “ dX
2!1W

. Also plotted are the zeros of the orthogonal section ⇡6

with respect to the “flat” measure with wppq ” 1. Note that the zero on ↵ is already (for n “ 6) extremely close to e1 : this zero,
for even n converges to e1 exponentially fast.
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We now present the asymptotic analysis under

Assumption

The function wppq is analytic in a strip containing � and real on �.

This is a non-scaling regime.

ª

�
PnppqPmppqewppq dp “ �nmhn
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Nonlinear Steepest descent analysis

In genus 1 no practical di↵erence between functions/di↵erentials.

Problem

Let Y “ Ynppq be the 2ˆ 2 matrix, meromorphic on E⌧ z� and with poles at p “ 0,D, such that

1 Near p “ 0 ” ⇤⌧ we have the behaviour

Y ppq “ p1 ` Oppqq
„

p
´n 0
0 p

n´2

⇢
, p Ñ 0 mod ⇤⌧

2 Near p “ D mod ⇤⌧ we have that

Y ppq “
„

Oppp ´ Dq´1q Opp ´ Dq
Oppp ´ Dq´1q Opp ´ Dq

⇢

3 The boundary values at p P � are bounded and satisfy:

Y pp`q “ Y pp´q
«

1 ewppq

0 1

�

Note that detY ppq has 2 zeros: usual argument for uniqueness fails. But the theorem earlier
guarantees existence since (using Andreief) one sees Dn ° 0.
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A quick rundown of the DZ method and novelties I

1 The g–function is found explicitly and along similar lines;

2 the steps of (i) normalization (using the g–function) of the singularity and (ii) opening lenses
is also without major surprises.

3 The “model problem” (aka “outer parametrix”) is found explicitly Mppq; alas, its
determinant has also 2 zeros div detM “ p1{4q ` p3{4q. These zeros and the
corresponding kernel spaces are the Tyurin data.
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A quick rundown of the DZ method and novelties II

1 The issue is in the error analysis: to see consider the prototype

Y`pzq “ Y´pzqJpzq, |z| “ 1, Y p8q “ 1.

Y pzq “ 1 ` 1

2i⇡

¿

|w|“1

Y´pwq`
Jpwq ´ 1

˘ dw

w ´ z
.

The latter expression needs a matrix Cauchy kernel that is defined given the Tyurin data:
C0pp, qq dp is a matrix–valued di↵erential with respect to the variable p and meromorphic
function with respect to the variable q satisfying the following properties

1 It has a simple pole for p “ q and p “ 0 and no other poles with respect to p;
2 The residue matrix for p “ q is 1 (and hence at p “ 0 is ´1)
3 It has a simple pole for q “ p and at the Tyurin divisor T “ p1{4q ` p3{4q and all

entries vanish for q “ 0.
4 The expression M

´1ppqC0pp, qqMpqq is locally analytic with respect to q and p at T .
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Figure: The first few monic orthogonal sections plotted as a function of s P r0, 1s via p “ ⌧
2

` s; here ⇡nppq P Pn are the

“monic” sections behaving like ⇡nppq “ p´np1 ` Oppqq. The elliptic curve is

W2 “ 4X3 ´ 19X ` 15 “ 4pX ´ 1qpX ´ 3{2qpX ` 5{2q. Here ⌧ » 0.6563i. We have set D “ 1{3 P R and
8 “ 0. The contour � is the segment r⌧{2, ⌧{2 ` 1s in E⌧ ; in the X–plane this is the segment X P re3, e2s (on both sheets).
The thick line is the plot of the orthogonal section obtained by computing explicitly the moments. The thin line is the approximation.
Observe that the approximation is almost perfect starting from n “ 2, confirming the exponential rate of convergence discussed in the
text.
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Asymptotic results I

1 For every compact subset of E⌧ z� we have

⇡nppq “ e´S8
M11ppqepn´1qgppq`Sppq`

1 ` Ope´nc0 q˘
.

M11ppq “ e´i⇡p ✓1pD; 2⌧q✓1pp ´ D ´ ⌧ ; 2⌧q✓1
1p0; 2⌧q✓t2,3upp; 2⌧q

✓1pD ` ⌧ ; 2⌧q✓1pp ´ D; 2⌧q✓1pp; 2⌧q✓t2,3up0; 2⌧q , (8)

where the choice between ✓2, ✓3 is according to the parity of n. The function Sppq is the
“Szegö” function for the function wppq defined in terms of the Cauchy kernel and w.
The g–function is given by:

egppq “ e`

$
’’’’&

’’’’%

ei⇡pp´ ⌧
2 q´ i⇡

2
✓1pp; 2⌧q

✓1pp ´ ⌧ ; 2⌧q =
⌧
2 † =p † =⌧

e´i⇡pp´ ⌧
2 q` i⇡

2
✓1pp ´ ⌧ ; 2⌧q
✓1pp; 2⌧q 0 † =p † 1

2=⌧.

e` “ ´i
✓

1
1p0; 2⌧q
✓1p⌧ ; 2⌧q e

´i⇡ ⌧
2 ° 0
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Asymptotic results II

2 For p P � we have the modulated oscillatory behaviour for p “ s ` ⌧
2 ` i0:

⇡nppq “ 2epn´1q`´S8
<

ˆ
M11pp`qeSpp`q

˜
ei⇡s´ i⇡

2
✓1

`
s ` ⌧

2 ; 2⌧
˘

✓1

`
s ´ ⌧

2 ; 2⌧
˘

¸n´1 ˙`
1 ` Ope´nc0 q˘

3 For every continuous function � defined on � Ä E⌧

lim
nÑ8

1

n

2t n`1
2

uÿ

j“1

�pzpnq
j q “

ª

�
�ppq

b
e1 ´ }ppq dp

2⇡
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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Asymptotic results III

4 The extra zero of ⇡n for n even tends at exponential rate to p “ 1
2 (i.e. X “ e1).

5 The square of the norms of the monic orthogonal sections have the asymptotics

}⇡n}2 “ 2⇡e2pn´1q`´2S8e´i⇡⌧ e´2i⇡D
✓
2
1pD; 2⌧q

✓
2
1pD ` ⌧ ; 2⌧q

✓
1
1p0; 2⌧q
✓4p0; 2⌧q

ˆ
✓3p0; 2⌧q
✓2p0; 2⌧q

˙7n `
1 ` Ope´nc0 q˘

where 7n “ 1 for even n and ´1 for odd n.
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Matrix (Bi)Orthogonal Polynomials I

Matrix weight W pzq on the real axis (or contour � in C ) gives rise to matrix BOPs.

ª

�
PnpzqW pzqP_

mpzq dz “ �nmHn,

Notable applications to the Aztec diamond (see Arno’s talk).
Connection with scalar orthogonality on a Riemann surface already recognized by [Charlier ’20]
(implicitly in [Duits-Kuijlaars ’17]).
It is su�cient that the eigenvectors of W pzq live on an algebraic surface C (of genus g).

Example (arxiv:2107.12998)

Z : C Ñ CP
1
, div pZq • ´r8

ª

�
 n 

_
mew,  

p_q
n P

?
Kppn ` 1q8q b X

p_q

 p_q
k pzq :“

»

———–

 
p_q
rk pzp1qq . . .  

p_q
rk pzprqq

.

.

.
.
.
.

 
p_q
rk`r´1pzp1qq . . .  

p_q
rk`r´1pzprqq

fi

���fl
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Matrix (Bi)Orthogonal Polynomials II

Theorem

The matrices

Pnpzq :“  kpzq ´1
0 pzq , P

_
n pzq :“ p _

0 q´1pzq _
k pzq

are polynomials and (bi)-orthogonal for the weight

W pzq “ W pzq dz :“  0pzq⇤pzq _
0 pzq, ⇤pzq “ diag

ˆ
Y pzp1qq, . . . , Y pzprqq

˙
.

Example

It works also if C is the sphere! Zptq “ pt ´ cq2 : CP1 Ñ CP
1

WLpzq dz “
„

1 ↵ ` 1 ´ c ´ ?
z

↵ ` 1 ´ c ´ ?
z p↵ ` 1 ´ c ´ ?

zq2
⇢

pc ` ?
zq↵ e´c´?

z

2
?
z

dz.

Pjpzq “

»

—–
res
s“8

L↵
2jpsqps`1`↵´2cq ds

z´Zpsq res
s“8

L↵
2jpsq ds

Zpsq´z

res
s“8

L↵
2j`1psqps`1`↵´2cq ds

z´Zpsq res
s“8

L↵
2j`1psq ds

Zpsq´z

.

fi

�fl

ª 8

c2
PjpzqWLpzqP t

kpzq dz “ �jk

«
�p2j`↵`1q

p2jq! 0

0 �p2j`↵`2q
p2j`1q!

�
.
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KP and 2–Toda: stitching together Krichever’s tau functions

Tensor L by a zero-degree bundle with transition function e
∞

t`z
`ppq near 8.

A section of Ltpn8 ` Dq satisfies:

p nq • ´D,  nppq “ z
ne

∞
t`z

`ppqp1 ` Opz´1qq.

Note:

For n “ 0 it is the Baker–Akhiezer function of Krichever.

Take

 P yLt :“
à

n•0

Ltpn8 ` Dq

� P yLs :“
à

n•0

Lspn8 ` Dq

Pairing:

x�, yt,s “
ª

�
�ppq ppq dµppq

We can construct biorthogonal sections t n,�nunPN (if non-degenerate!)
A basis is

⇣jpp; tq “ z
je

∞
t`z

` p1 ` Opz´1qq (similarly for s)
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Tau function

Definition (The Tau function)

The Tau function is defined by

⌧npt, sq :“ 1

n!
⇥pF ptqq⇥pFpsqqeQptq`Qpsq`nAptq`nApsqˆ

ˆ
ª

�n
det

“
⇣a´1prb; tq‰n

a,b“1
det

“
⇣a´1prb; sq‰n

a,b“1

nπ

j“1

dµprjq “

“⌧Krptq⌧KrpsqenAptq`nApsq det
„
µabpt, sq

⇢n´1

a,b“0

The expression Qptq is a quadratic form and Aptq is a linear form in the times.
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Theorem

The tau function

1 Is a KP tau function w.r.t. both sets of times (satisfies HBI):

res
x“8 ⌧npt ´ rxs, sq⌧nprt ` rxs, sqe⇠px;tq´⇠px;rtq dzpxq ” 0

2 It is a tau function for 2–Toda Hierarchy (Adler-VanMoerbeke)

res
x“8 ⌧npt ´ rxs; sq⌧m`1prt ` rxs; rsq e

⇠px;tq´⇠px;rtq`Aprt´tq dzpxq
zpxqm´n`1

“

“ res
x“8 ⌧n`1pt; s ` rxsq⌧mprt; rs ´ rxsq e

⇠px;rsq´⇠px;sq`Aps´rsq dzpxq
zpxqn´m`1

3 If Pnpp; t, sq, Qnpp; t, sq are the biorthogonal sections then the Baker and dual Baker

functions are (up to prefactors) Pnpx; t, sq and

Rnpx; t, sq :“
ª

rP�
Cpx, r; tqQn´1pr; t, sq dµprq

respectively (note that dual BA is a di↵erential).

4 ⌧npt, sq “ 0 if and only if ⌧Kr “ 0 or the pairing is degenerate on

Ltpn8 ` Dq b Lspn8 ` Dq
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Outlook

1 Varying weights: this requires study of equilibrium problem on RS: we need appropriate Green
functions.

2 One can study DRPF: the projection operator (in the Harnack case) gives a TP kernel
defined on the curve.

3 New integrable systems? Connection with Hitchin systems (higher genus generalization of
Calogero–Moser types).

4 Interface with algebraic geometry of vector bundles.
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