INTRO TO HIGHER MATH HOMEWORK 12 DUE DECEMBER 5

Prove the following, using the formal definitions of \mathbf{Z} and \mathbf{Q} from class. Recall that $\mathbf{Z} = (\mathbb{N} \times \mathbb{N}) / \sim$ where

 $(m_1, n_1) \sim (m_2, n_2)$ if and only if $m_1 + n_2 = m_2 + n_1$,

and $\mathbf{Q} = (\mathbb{Z} \times \mathbb{N}^+) / \sim$ where

 $(a,b) \sim (c,d)$ if and only if $a \cdot d = b \cdot c$.

- (1) Prove that addition and multiplication on \mathbf{Z} are well-defined.
- (2) Prove that \leq on **Z** is a linear ordering
- (3) Prove that addition and multiplication on \mathbf{Q} are associative, commutative, and distributive.
- (4) (a) Prove that [(1,1)] is the multiplicative identity in **Q**. That is, show that $[(p,q)] \cdot [(1,1)] = [(p,q)]$ for all $[(p,q)] \in \mathbf{Q}$.
 - (b) Let $[(a, b)] \in \mathbf{Q}$ such that $a \neq 0$. Prove that [(a, b)] has a multiplicative inverse in \mathbf{Q} , that is, that there is some $[(c, d)] \in \mathbf{Q}$ such that $[(a, b)] \cdot [(c, d)] = [(1, 1)]$.