INTRO TO HIGHER MATH HOMEWORK 12 DUE DECEMBER 5

Prove the following, using the formal definitions of \mathbf{Z} and \mathbf{Q} from class. Recall that $\mathbf{Z}=$ $(\mathbb{N} \times \mathbb{N}) / \sim$ where

$$
\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right) \quad \text { if and only if } \quad m_{1}+n_{2}=m_{2}+n_{1},
$$

and $\mathbf{Q}=\left(\mathbb{Z} \times \mathbb{N}^{+}\right) / \sim$ where

$$
(a, b) \sim(c, d) \quad \text { if and only if } \quad a \cdot d=b \cdot c .
$$

(1) Prove that addition and multiplication on \mathbf{Z} are well-defined.
(2) Prove that \leq on \mathbf{Z} is a linear ordering
(3) Prove that addition and multiplication on \mathbf{Q} are associative, commutative, and distributive.
(4) (a) Prove that $[(1,1)]$ is the multiplicative identity in \mathbf{Q}. That is, show that $[(p, q)]$. $[(1,1)]=[(p, q)]$ for all $[(p, q)] \in \mathbf{Q}$.
(b) Let $[(a, b)] \in \mathbf{Q}$ such that $a \neq 0$. Prove that $[(a, b)]$ has a multiplicative inverse in \mathbf{Q}, that is, that there is some $[(c, d)] \in \mathbf{Q}$ such that $[(a, b)] \cdot[(c, d)]=[(1,1)]$.

