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1. Introduction.

1.1. Let G be reductive group defined over an algebraically closed field F and
let H be the fixator of an involution 0 of G. Roughly speaking, the space of double
cosets H\G/H is parametrized by the conjugacy classes in another group G’ (see
JR3, I-KR]).

In more detail, assume G semisimple and simply connected. Let z: G --. G be the
map defined by z(9) 90(9)-1 and S the image of z. Clearly, z is constant on the
left cosets of G modulo H and induces an isomorphism tr from G/H to S. Then
a(xgH) xtr(gH)x-1 for x e H. Thus the double cosets of H\G/H correspond via
tr to the adjoint orbits of H on S. The closed H-orbits are those of the semisimple
elements contained in S. They can be described as follows. Let A be a maximal
0-stable torus contained in S. All such tori are conjugate under the action of H.
Then every closed orbit of H in S intersects A. Furthermore, there is a Chevalley
restriction theorem for the situation at hand. Indeed, let F[S-i and F[A] be the rings
of regular functions on S and A respectively. Let H be the neutral connected
component of H and let Wn be the quotient of the normalizer of A in H by the
centralizer of A in H. Then the restriction map

restricts to an isomorphism

F[S] F[A]

Since FIS]I-I separates the closed orbits, we can identify the set of closed orbits of
H in S to the (maximal ideal) spectrum of the algebra F[A]wH, that is, to the orbits
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of Wn in A. Let R be the set of roots of A in G; it is a root system. Let R, be the
corresponding reduced root system.
Now there is a semisimple group G’ and a maximal torus A’ with Weyl group

W’ and root system R’, and an isomorphism of A’ onto A which takes W’ to W and
R’ to R,. The usual Chevalley restriction theorem implies that the set of closed
G’-conjugacy classes in G’ can be identified with the spectrum of

F[A’]w’

that is, with the orbits of W’ in A’. This gives the required bijection. We note that
the isomorphic algebras F[A]w" and F[A’] w’ are polynomial algebras, but the
group G’ need not be simply connected.

This is the general principle of comparison that guides the particular example to
be considered below. Of course, over a global or a local field, it must be modified
suitably. Assuming for now its validity over a number field F, it is natural to
postulate the existence of a trace formula identity of the form

K(h, h2) dh dh2 ft K’(O’, 9’) do’.
’(F) \G’(F,)

Here K and K’ are the cuspidal kernels, or rather the "discrete parts" of the
respective trace formulas. They are associated to functions f and f’ on G and G’,
respectively; the above equality is supposed to be true if f and f’ have "matching
orbital integrals". The only representations which contribute to the left-hand side
are those which are distinguished with respect to H, that is, contain a vector such
that the integral

is nonzero. The equality then should characterize distinguished representations as
functorial images from representations of G’.
The purpose of this paper is to explore this idea in a simple case. However, one

discovers quickly that such a simple scheme does not work. A more correct formula
might take the form

or

K(h, h2)O(hx) dh dh2 ; K’(9’, 9’) do’

K(h, h2) dhx dh2 f K’(0’, O’)0’(0’) do’,

where 0 and 0’ are suitable automorphic forms on H and G’ respectively, which
serve as "weights" in the formula.
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We now describe the situation at hand. We consider a quadratic extension E of
F; the group G is the group GL(2, E) regarded as an algebraic group defined over
F while G’ is the group GL(2, F). We denote by Z the center of G (regarded as an
algebraic group over F) and by Z’ the center of G’. We also denote by r/wv or simply
r/the quadratic character of F attached to E. If E F(x/), we also write r/= rh.
Let S’ be the set of invertible hermitian matrices. For every e S’ we denote by H
the corresponding unitary group, byH the similitude group, and by 2 the similitude
ratio

heh 2r(h)e.

In particular, for e w, where

we will write simply H, H, and 2. It will be convenient to introduce the set

S S’w.

Thus the group GL(2, E) operates on S by

s w’wsg.

It follows that H operates on S as follows:

s- h-lsh2(h).

It will be convenient to define a modified action of H on S:

s-. h-lsh.

We now describe a natural map from the set of conjugacy classes of H on S (i.e. the
orbits for the modified action) to the set of the conjugacy classes of GL(2, F). We
let So be the intersection of GL(2, F) with S; this is the space of matrices in GL(2, F)
which are symmetric with respect to the second diagonal. We first recall that all
conjugacy classes in GL(2, F) intersect So. More precisely, a semisimple regular
element is always conjugate to a matrix in So of the form

with fl2 -Tg= 0o Moreover, the conjugacy class of such an element is determined by
and the product fl f12. A unipotent element is always conjugate to an element of
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the form

with/ 4= 0. Moreover, the class is determined by e. Finally, a central element is
always in So. In the case at hand, the comparison principle takes the following form:

LEMMA 1.1. Every conjugacy class ofH in S intersects So. Moreover, two elements
S and s2 in So are conjugate under H if and only if they are conjugate under G’.

Proof. We leave the elementary proof to the reader.

1.2. Now we outline the two trace formula identities we have in mind. The action
of G on S is not transitive. To compensate for this fact, we consider a set of
representatives {e} for the orbits of G GL(2, E) on S’ (or S); the fixator of e in G
is then the unitary group H. For each e we consider the cuspidal kernel K, attached
to a function f on G and the trivial central character. On the other hand, the kernel
K’ is the cuspidal kernel attached to a function f’ on G’ for the central character r/,
except that the contribution of the representations dihedral with respect to E has
been removed. The functions f and f’ are products of local functions which have
"matching orbital integrals". At almost all places, the local functions are Hecke
functions corresponding to one another by the base-change homomorphism. As
usual, part of our task will be to prove the fundamental lemma, i.e. that such Hecke
functions indeed have matching orbital integrals.

Recall that q is the quadratic character attached to the extension. Recall an
automorphic cuspidal representation n of G is H-distinguished if it contains a vector

b such that the integral

is nonzero. Implicit in this definition is the fact that the central character of the
representation n is trivial. Similarly, we say that a representation n is q-distinguished
if the integral

ck(h)rl(2(h)) dh

is nonzero for some b in the space of n. Similar definitions apply to the groups H.
If a representation is distinguished (resp. q-distinguished) for a group H,, it is also
distinguished (resp. q-distinguished) with respect to H. A proof is outlined in [-JY ].

It is known ([HLR]) that an automorphic representation n of G with trivial
central character is distinguished (resp. q-distinguished) with respect to H if and
only if it is the base change of a representation of G’ with central character r/(resp.
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trivial). In particular, n cannot be simultaneously distinguished and r/-distinguished.
Thus the double integral

f .f K(h, h)q(2(h)) dh dh

is zero. Here the integrals are over the quotients

H(F)Z(F)\H(F), H(F)Z(F)\H(F).

In fact, this can be derived from our trace-formula identity. Let E(h, s) be an
Eisenstein series on H. We normalize it so that it has a pole at s 1 with constant
residue 1. It follows that the sum

f fK(h, h)E(h, s)q(2(h)) dh dh

is actually holomorphic at 1. Its value at s has the form

f K(h, h)O(h)rl(2(h)) dh dh

where 0 is defined by

1
E(h, s)= + O(h) + O(s- 1).

s-1

Our first trace formula is an equality of the form

f K(h, h)O(h)rl(2(h)) dh dh f K’(9’, 9’) do’.

We also consider an Eisenstein series E’(9, s) on G’ with pole at s 1. Recall (see
[J1]) that for an automorphic representation n’, and for ’ in the space of r’, the
integral

rk’(O)’(o)E’(9, s)rl(det(9))do

is an holomorphic multiple of the L-function

L(s, ’ (R) r x if).

In particular, if’ is not a dihedral representation for the extension E, this L-function
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is holomorphic at s 1. The integral

K’(g, g)r/(det g)E’(g, s) do

is thus holomorphic at s 1. Its value has the form

K’(g,g)O’(g)dg

where 0’ is defined in the same way as 0. Our second trace-formula identity has the
form

fK(h,h)dhedh=fK’(v’,o’)O’(o’)do’.
We timorously conjecture that similar identities are true for any symmetric space.

1.3. The case at hand has a special added feature. Indeed, we will derive our
identities by taking residues in identities valid for all values of a complex parameter
s. They read

and

IDEI1/2JDFJ-IL(s, 1) fK(h, h)dhE(h, s)r/(2(h)) dh

L(s, tl) f K’(g’, g’)e’(g’, s) dg’

L(s, rl) f K(h., h) dhE(h, s) dh

IDr, IX/2IDI-XL(s, lv) ; g’(9’, 9’)E’(o’, s)q(deg 9’) dg’.

Here DE and Dv are the respective discriminants. The integrals converge absolutely
for s > and have meromorphic continuation. The kernels K and K’ correspond
to functions with "matching orbital integrals", the matching being uniform in s. The
precise form of our identities will be given in the text.

Let us remark that the right-hand sides of our identities are the kind of integrals
considered in [JZ]. We would like to think of them as the Zagier trace formula. The
left-hand sides are thus a "relative version" of the Zagier trace formula. The above
identity equality involving the Zagier trace formula and the relative version of the
Zagier trace formula is directly related to a similar equality involving the Rankin-
Selberg L-function for GL(2) and the L-function studied by Asai ([A]). In turn, this
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relation is the key to the characterization of the distinguished representations given
in [HLR]. We do not expect to have a similar identityvalid for all sfor other
symmetric spaces.

Another approach to the study of distinguished representations is an identity of
the form

fK(h,n)dhO(n)dn=K’(n;,n’)O’(n’n’)dn;dn’.
Here N and N’ are the groups of upper triangular matrices with unit diagonals in
G and G’ respectively; 0 and 0’ are characters of N(F) and N’(F) trivial on the
rational points, and the integrals are over

N(F)\N(F)2, N’(F)\N’(F)2

respectively. See [JY1] for more details. In principle, this formula can be obtained
from our second identity by taking the limit as s tends to infinity. This identity was
discovered first and should generalize to symmetric spaces where G is quasi-split.
It provides information which is different from the information provided by the
formula considered here. For more information on this approach, see IF], [I 1], [I2],
[J2], [J3], [JR], [M], [Y], [JY1], [JY2], and [Z]. The present approach seems to
be more geometric and to introduce the weight factors 0 which appear as an essential
ingredient of the situation.
We also mention another class of problems for symmetric spaces. Let S be the

symmetric space of s G such that s 1. Now let G1 be an inner form of GL(2, E)
which is defined over F. Consider the symmetric space $1 of s e G such that
sx 1, where means the conjugate of sl for the Galois action which defines G
over F. We may think of S as being an inner form of S and compare distinguished
representations for G and G. This was done in [JL] under restrictive assumptions
necessitated by the lack of local information. The purpose of Hakim’s thesis was to
provide the missing local information ([Ha]). The global application follows easily.
It is described in reference [FH] which is largely "based on Hakim’s thesis". One
expects comparison results between a symmetric space and its inner forms to be
valid under much more general assumptions (see [F] for the case of GL(n)).

1.4. The material is arranged as follows. We begin with the first trace formula.
We prove the fundamental lemma for the unit element of the Hecke algebra in
Section 2, and for the general element in Section 3. We establish that we can match
arbitrary functions in Section 4; in Section 5 we prove our trace formula under
some restrictive assumptions. Finally, in Section 6 we indicate how to modify our
arguments to obtain the second trace formula. For simplicity, we prove our formula
under restrictive assumptions specified in the text.

In the present work, we consider only representations of G with trivial central
character. One should, more generally, consider representations of G with a central
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character which is the base change of a character of F. Moreover, in the present
work, we have singled out a unitary group H, namely the split one. One should also
investigate an identity where one unitary group other than the split one is singled
out. We intend to come back to these questions in a subsequent work.

2. The fundamental lemma: unit element.

2.1. We consider an unramified quadratic extension E/F of local fields with odd
residual characteristic. We let r/e/e or r/be the quadratic character of F attached to
E. We denote by Re (respectively Re) the ring of integers of F (resp. E), by Pe
(respectively Pe) the maximal ideal in that ring. We denote by qe or simply q the
cardinality of Re/Pe. Thus Re/Pe has q2 elements. We denote by 0e the module
function on F.
We let P be the group of upper triangular matrices in GL(2, E), regarded as a

group defined over F, and let N be its unipotent radical. We set

P’= PG’, N’= NG’, Pn= PcH, Nn= NH,

K GL(2, Re), K’ GL(2, Re),

and we let f(h, s) be the function on H defined by

f(h,s)=la,s, ifh=(10 )z(; 01)k
with k e K c H, a F, x + 0 and z Z. We let be a smooth function of
compact support on S. For a in So but not in P’, we set

n(e, r, s) f (h-zrh)n(X(h))f(h, s) dhdz. (1)

The integral in h is over Z\H, the measure to be specified later, the integral in z is
over Z’ F . It will be proved below that the integral converges absolutely for
9s > 0.
On the other hand, let O’ be a smooth function of compact support on G’. We set

f’(O’, a, s) f O’(g’-zag’)f’(g ’, s) dg’rl(z dz, (2)

where f’(g’, s) is the function on GL(2, F) defined in the same way as f. The integral
is over G’/Z’ and Z’ - F . It converges for 91s > 0.
We shall say and tg’ have matching orbital integrals if

n(a, a, s)L(s, le) rl(fl)n’(a’, a, s)L(s, tl) (3)
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for all s with 9s > 0 and all a of the form

(;
with 12 tz O. The measures are chosen as follows. We choose a Zo such that
E F(o). Then conjugacy by

transforms H into the group GL(2, F)Z, and we use this map to transport the Haar
measure on H/Z to

GL(2, F)Z/Z
_

GL(2, F)/Z’. (4)

Thus the measure on H/Z depends only on the measure on G’/Z’.
To prove the convergence of the integrals we proceed as follows. Suppose that

9ts > 0. Then we can write

L(2s, le)f’(g, s) fo[(0, x)g]lxl 2s d xldeg gls,

where Do is the characteristic function of R.. Let tr be an element of So such that
fllfl2 v O. We denote by T’ the torus of G’ which centralizes tr. It can be viewed as
the multiplicative group of a commutative semisimple algebra L’. Then

L(2s, l)’((I)’, a, s) ;r /z(O’) do’ f(1)o[(O, l)t’O’]ldet t’l dt’

where

(o’) f ,’(o’-’zo’)n(z) dz.

The inner integral is actually a Tate integral for the algebra L’. Thus it converges
absolutely for 9ts > 0. On the other hand, g is, for fixed tr, a smooth function of
compact support on T’\ G’. This implies that f’ converges for 9s > 0. Our argu-
ment also shows that, for each s, f’(’, tr, s) is a smooth function on the set of tr

such that fllfl2 # 0. We can use the isogeny (4) to transport the integral f to the
group G’ and obtain an integral whose convergence is established in a similar way.
A formal computation shows that relation (3) is satisfied for all (, fl, f12) with

12 # 0 if it is satisfied for e {0, }, fl: 1, and//2 # 0. We will write f(tI), fl, s)
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and f’(O’, fl, s) for the integrals when

Similarly, we will write fo(O, fl, s) and f,oo(O,, fl, s) for the integrals when

Let

Then

If we fix fl and let e tend to 0, we obtain, for I1 small enough,

A similar relation is true for f’. Thus we see that the relation

f(a, fl, s)L(s, 1.) f’(a’, fl, s)L(s, tl) (5)

for all fl implies that the functions have matching orbital integrals.

PROPOSITION 2.1. Assume the extension is unramified of odd residual characteris-
tic. Let o be the characteristic function of K S and let ’o be the characteristic
function of K’. Then o and ’o have matchinl orbital intelrals.

2.2. The proof of the proposition is based on the computation of an integral
that we now introduce:

A(t, s)= fl -It- x2l-:q-’+

xl<-x q-+i
dx. (6)

Here the volume of Re is one. We let q be the cardinality of the residual field of F
and write A(t, X) for A(t, s) if X q-L We let Zo be any unit of F which is not a
square in E, and we let to be a uniformizer.
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LEMMA 2.2. Let be an integer. Then A(t, s) converges absolutely for 9ts > O. It
is given by the formulas, where X q-S, lY[ < 1,

I+X
X2q

I+X
A(t, s) X2q

+X
Xq

4-lyl2s-1X(1 4- X)(1 Xq)
y2

(1 X2q)(1 X)
/f

lYl2-X(1 + Xq)
X2q

lyl 2s-lX2q(1 + X)
1 X2q

/f y2z0

/ft y2to.

We leave the computation to the reader. El

The following lemma is then easily verified.

LEMMA 2.3. If Zo is any unit which is not a square, then

(y, -X) A(y’%, X)
1-X I+X

A(y2, X) A(y2zo, X)
I+X 1-X

If to and to’ are two uniformizers, then

A(y2to, X) A(y2to’, X)
1-X I+X

2.3. We now compute the orbital integrals for

(1
where fl is nonzero. We compute first f. We set

Then

dh dultl- d tdk
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if x oU and Zo is a unit which is not a square. The measure of Rr for du is one,
and the measure of R for d t is also one. In passing, we remark that our choice
of measures suggests writing x u/xo instead. Since Zo is a unit, the measure dx
is the same. However, when E is ramified, we will take Zo to be a uniformizer and
will write x U/o. Now

f(h, s) Itl s,

We get

s) f ’t’o I(z(1- z(1 + x)
Itl-r/(t) dt du dz.

The integral is zero unless 1 fl is a norm. Assuming this to be the case, we set

I1 fll- I12,

The support of the integrand is defined by the conditions

I(1 fl)zZl-- 1, Izl 1, Izxl 1,

Iz(fl- xZ)l < Itl < Izl -x,

Integrating with respect to first, we get

/(z)lz[
1- + Izl-X(z)lfl- xlS-X(fl_ x-)q-+

+ q-+ du dz.

Integrating over z, we get

du.

Recall x oU. We now change u to u,;. We arrive at the expression

-s+l

du.

Thus



A TRACE FORMULA FOR SYMMETRIC SPACES 317

where

We remark that is always an integer. Finally,

(7)

2.4. We pass to the computation of the integral f’. We set

Then

dg dxltl- dt dk, f’(g, s) Itl.
As before, we find

f’(O,/, s) Oo zt t-z(#-x))]z(1 + x) It d dxl(z) d Z.

However, this time x is in F. As before, the integral is zero unless

I1 fll- I12,

and the support of the integrand is defined by

I(1-fl)z2l=l, Izll, Izxll,

Iz(fl- x2)l Itl Izl -x,

Integrating with respect to first, we get

q-S+1 dxrl(z) d z.

Integrating over z, we get

’(o , s)= rt() / I1- I7ll-lfl X2ls-lq-s+l
d q-S+1 dx,
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the integral over Ixl I1, If we change x to x, we arrive at

iylr/(y -It- x2lS-Xq-s+x

1 q-+ dx,

with fl/y2, that is,

ff(, fl, s)-ITIv/(T)A (, X). (8)

Comparing with Lemma (2.3), we get equation (5) and the proposition. 121

3. The fundamental lemma: general element.

3.1. We keep the notations of the previous section. Letf be a bi-K-invariant on
G of compact support and f’ be a bi-K-invariant function on G’ with compact
support. We shall say that f’ corresponds to f if the following condition is satisfied.
For x q-S set X q-2S; let FI be the unramified component of the representation
of G induced by (e, es) and let r be the unramified component of the representa-
tion of G’ induced by (e}, r/e,s). Thus II is the base change of , and for any x,

Tr rI(f)= Tr rr(f’). (9)

We note that this relation makes sense if f is invariant under the center of G and
f’ transforms under the character r/of the center of G’. If it is satisfied, we shall also
say that f’ corresponds to f.

Let o be the characteristic function of K c S’. We define a function s on S’ by

Oy(s) ;no f(h#) dh

if s is of the form s ’w9, and

%(s) o

if s is not in the orbit of w. We assume that the measure of

H c K

is one. If fo is the characteristic function of K, then ’o q)o. In general, since

f fo * f, we can write

y(s) fbo(’so)f(9-x do.
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The bijection s sw allows us to identify S’ to S and to regard a function on S’
as a function on S that we denote also by O. We want to prove the following
statement.

PROPOSITION 3.1. If f’ corresponds to f, then the functions Os and f’ have
matching orbital integrals.

3.2. We need some preliminaries. For almost all X, the representation H intro-
duced above is H-distinguished in the sense that there is a nonzero linear # form
on the space of H such that

#(1-I(h)v) #(v),

for every vector v in the space of H and h H. Let Vo be a K-fixed vector. Then the
function oJ defined by

co(g) (I-I(g)vo)

is H-invariant on the left and an eigenfunction of the Hecke operators on the right.
In particular, let fl be the characteristic function of

where to is a uniformizer. Then

oJ(ay)f (y) dy (X + X-)qoJ(9).

Since oJ is invariant under the center of G, this relation implies conversely that oJ is
an eigenfunction of the Hecke operators. Next, let f be the function on S’ defined by

if s tlwg for some g, and

f(s) 0 (0)

otherwise. Then

f(sz) f(s) (11)

for z F because the image ofH under the similitude ratio map is F . Moreover,
for all k e K,

f(tksk) f(s) (12)
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and

(tsf)f (#) do (X + X-)qf(s). (13)

We will show that for all X there is a function f satisfying conditions (10)-(13),
unique within a constant factor; moreover f(e) : 0.
The theory ofelementary divisors shows that a set of representatives for the orbits

of K on S’ is the set of matrices of the form

with > j. Moreover, such a matrix is in the orbit of w if and only if its determinant
is minus a norm, that is, + j is even. In particular, the function f is determined
by its values on the above matrices with 2n, j 0. We denote these values by
f,. We denote by Pe the maximal ideal in Re. Then the above equation is equivalent
to the difference equation

1 + (q2 q 1)f + (q + 1)fo (X + X-)qt)o,

f,_ + q2fn+ (X -- X- qf., ifn >0.

Clearly, these conditions determine the scalars f uniquely in terms of fo. In
particular, we can take fo 1. This shows the existence and uniqueness of f. We
will denote by fx the function we just defined. Solving the difference equation, we
find

qX
).

qX-x
(X-lq-X)n. (14)f"- (X + 1)(q- 1)

(xq-x +
(X-x + 1)(q- 1)

To continue, there is an invariant measure on the orbit ofw under G. This measure
can be computed as follows

To compute y we write that
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We take the measure ofK c S to be so that ),(1) 1. Applying the previous relation
to the characteristic function of an orbit of K, we find a recurrence relation for
,(to2m), and then

(1) 1, (toTM) q2(1 q-l) for m > 0. (15)

We also denote by x the spherical function attached to the representation rr and
by 09, its value on the matrix

Recall this is

qx2 + qx-2 + 1
(xq-i/2). + (_ x-tq-/2).. (16)09. (q + 1)(x2 + 1) (q + 1)(x-2 + 1)

Of course, this can be proved as before by solving a difference equation. We also
recall that the Haar measure on G’ can be computed like so:

0))tO
k2 dk dk2T’(toi-J),

where V’ is defined by

’(1)= 1, ’(m)=q’n(1 +q-) form > 0.

Recall that X x2. It is now a simple matter to verify the following relations:

LEMMA 3.2. Notation bein# as above, for any n > 1,

’n)(72n) q" "n-1 )(U32(n-l)) C02n)’(I72n) C02(n-1))t(72(n-1)),

3.3.
gives

Now suppose that f and f’ correspond to one another. Then equality (9)

fx(’wg)f(g) dg f ogx(g’)f’(g’ dg’.

In terms of the function , on S’ associated to f, this reads

fx(S)O(s) ds f ogx(g’)f’(g’) dg’.
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Conversely, if this relation is satisfied, then f’ is associated to f. If is a K-invariant
function of compact support on S’ with support in the orbit of w and f’ is a Hecke
function on G’, we shall say that f’ corresponds to if this relation is satisfied for
all x. To prove the proposition it will suffice to show that, given and a correspond-
ing f’, then and f’ have matching orbital integrals.
Now the previous lemma and the integration formulas imply the following

lemma:

LEMMA 3.3. Let t}. be the characteristic function of the set of matrices s in S’ with
integral entries and Idet sl q-2n. Let ’ be similarly the characteristic function
of the set of matrices ’ in G’ with integral entries and deg ’1 q-. Then
corresponds to ’2.

Proof. Indeed, the equality to be proved reads

and follows at once from the previous lemma and the formulas for , and V’.
Now the translates of, under the center form a basis of the space of K-invariant

functions on S’ (or S) with support in the set of matrices with determinant of even
valuation. We see that the proposition will be completely proved if we prove the
following lemma:

LEMMA 3.4. For n > 0 the functions #. and #0’. have matching orbital integrals.

Proof. We regard , as a function on S. We first compute the orbital integral
of , with n > 0. We proceed as before: the integral is equal to

f(., fl, s) dXt dXz du

where x ux/o and the integral is over the domain

I(1 fl)z2l q-2n,

Izl 1, Izxl 1,

Iz(fl- x2)l < Itl < Izl -x.
The integral is zero unless

I1 -/1 I’12,

Assuming this condition is satisfied, we find

f(.,/3, s) Il’q"’r/()(- 1)"A ,-o -X

where A was defined in the previous section.
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We pass to the computation of f’(z,,/3, s). We proceed as before: the integral
is equal to

’(., fl, s) f Itl-Xq(z) d t d z dx

taken over

I(1 fl)z21-- q-2.,

Izl 1, Izxl 1,

Iz(/- x2)l Itl Izl -x,

We see the integral is zero unless

I1-/I-ITI2, 171q1.

Assuming this condition is satisfied, we find

n’(*2,,,/3, s) lT, lq"rt(7,)( 1)"A , ,2
X

Comparing the above explicit formulas and the functional equation of the func-
tion A, we see that our functions have indeed matching orbital integrals. This
concludes the proof of the lemma and the proposition. 121

4. Matching arbitrary functions.

4.1. Now we let E be a quadratic extension of F, a nonarchimedean field of odd
residual characteristic. Thus E is an unramified or tamely ramified extension of F.
We define the notion of "matching" for this more general situation. Recall that Z
denotes the center of G, a group isomorphic to E, and that Z’ denotes the center
of G’, a group isomorphic to F. As before, we have an isomorphism

H/Z - G’/Z’,

unique within an inner automorphism, which allows us to transport a measure on
G’/Z’ to H/Z. We define the function f’ on G’ as before. To complete our definition,
we need to specify the function f in terms of the function f’. To that end we choose
Zo such that E F(o); if E is unramified, we take for Zo a unit which is not a
square, and if E is (tamely) ramified, we take for o a uniformizer of F. We let be
the isomorphism

:HG’Z



324 JACQUET, LAI, AND RALLIS

defined by

We may view f’ as a function on G’Z invariant under Z. Thus we may set

f(g) f’((g)).

Let U be the intersection Z c GL(2, Re). Thus U is isomorphic to the group of units
ofE and K’U is a maximal compact subgroup of G’Z. We set Kn -1 (K’U). Hence
Kn is a maximal compact subgroup of H. Note that f and Kn do not depend on
the choice of Zo, provided Zo is as above. As before, we consider the integrals

s) ff(h, s)O[h-lzah]rl(2(h)) dh d

s) f S)(I)’ [g’-lztT’] dgti/(g) dXg,

As before, the integrals converge absolutely for Rs > 0 and tr So

(;r= /# 0.
2 0

Moreover, their interpretation as "Tate integrals" show that they continue analyti-
cally as meromorphic functions to the whole complex plane.
We shall say that a smooth function of compact support on S and a smooth

function of compact support O’ on G’ have matching orbital integrals if, for all tr in
So of the above form, relation

1o1-1/2(O, a, s)L(s, lr) r/(l)D.’(O’, a, s)L(s,

holds for all s with Ots > 0. This definition is independent of the choice of o and
coincides with the definition of the previous section when E is unramified.
As before, we will introduce the notations t2(O, fl, s) and fl(O,/3, s) and the

corresponding notations for f’.
In this section, our goal is the following proposition:

PROPOSITION 4.1. Given a smooth function of compact support on S, there is a
smooth function of compact support 0’ on G’ with matchin# orbital integrals. Con-
versely, given t’ there is with matchin# orbital integrals.

To be definite, we prove the existence of O’ for a given
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4.2. We first study the asympotic behavior of the integrals f(,/3, s) when
tends to 0. Explicitly,

zt-’(a- I I’-z(1 + x) /k r/(2(k)) dklt xrl(t) dt dx dz.

Here x u/xo and dx du.
We will denote by I(@, s) the integral corresponding to/3 0. Explicitly,

I(,s)= h-Xz 01) hI f(h, s)r/(2(h))dh

z(1 + x)
k r/(2(k)) dklt lrl(t) dt dx d Zo

This integral is thus a unipotent orbital integral. It will be convenient to introduce
the scalar part of the intertwining operator:

m(s) fN f(wnk, s) dn fN f(wn, s) dn.

Since 2(w) 1, we can change h to wh in the integral and then use the Iwasawa
decomposition to obtain

s) m(s) f o t) k] r/(2(k))dkltlSrl(t)dtdz.

In particular, this shows that the integral converges absolutely for Rs > 0.
We consider also the integral

the integral over the quotient ZNH\H. Explicitly,

This integral converges for 9ts < 1.
It will be convenient to introduce the following function b on F:

z. (17)
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Thus q is a Schwartz-Bruhat function on F such that

O(ux) O(x),t(u)

for all u F with lul 1. It is easily seen that the function b is an arbitrary
Schwartz-Bruhat function with that property.

In terms of q,

I(0, s) m(s) f b(t)ltlq(t) dt,

j(a, s) f 4(t)ltll-’(t) dt.

(18)

(19)

The first integral converges for 9s > 0 and the second for 9s < 1. These distribu-
tions determine the "Shalika germs" of the orbital integrals. Namely, let A > 0 a
constant and set for fl an integer

C(fl, s)= xl<a (rl(fl- x2)lfl- x2l-x q(-x2)lx21-x) dx (20)

where
u

x u F, dx du.

If we change the value of A, the integral does not change provided I/1 is small
enough.

PRoPosrrioy 4.2. Given , for I/1 sufficiently small and all s with 0 < 91s < 1,

f2(, fl, s) l(dp, s) + C(, s)J(dp, s).

To prove the proposition, we use the following lemma:

LEMMA 4.3. Let g be afixed character ofF ofmodule 1. Given a Schwartz-Bruhat
function tF on F x F, there are two Schwartz-Bruhat functions tP (x, u) and W2(x, u)
on F, which are Laurent polynomial in q-U, such that

q’(t, xt-X)z(t)ltl" Z(u, 7.)tP(x, u) + Z(-u, Z-)W2(x, u)z.(x)lxl".dt

Moreover,

q(O, u) V(t, O)(t)ltl" dt
L(u, )

qz(O, u)
j" (0, t)(t)-Xltl dt

L(-u,z-x)
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To be more precise, each function W(x, u) is a finite sum of the form

where the functions are Schwartz-Bruhat functions. The original integral con-
verges for all u provided x 0, and the other integrals are meromorphic functions
of u. We leave the proof of the lemma to the reader.

Next, we remark that, if Ifll < 1, then the corresponding matrix a has a determi-
nant of absolute value one. It follows that, for a given I), there is a compact set of
F with characteristic function # such that

f(dp, fl, s) f P[h-zah]rl(2(h))f(h, s) dh#(z) d go

We apply our lemma (or rather a variant of the lemma with parameters) to the
function W defined by

W(v’ x’ x2) fIk- (Z(lzxx+ ) ZX2 )klrl(2(k))dkla(z)dz(1 + v)
go

It is a Schwartz-Bruhat function on E x F x F. In terms of tt’ (recall x U/o,
dx du),

f((1), fl, S) f tI(x, t, (fl X2)t-1)ltl-lr/(t) d t dx.

Thus we find

f(, fl, s) L(s 1, r/) fV (x, fl x2, s) dx

+ L(1 s, rl) f 2(x, fl x2, s)lfl x2l-Xr/(fl x2) dx

where the functions tI’ are as in the lemma; here, they are Schwartz-Bruhat functions
on E x F depending on s. For Ifll small enough we get,

f(l), fl, s) L(s 1, rl) f (x, -x2, s) dx

+ L(1 s, r/) f 2(x, --X2, S)lfl x2lS-Xrl(fl x2) dx.
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Similarly, we get

I(, s) f W(x, t, -x2t-)ltl-rl(t) dt dx

L(s 1, I) f (x, x2, s) dx

+ L(1 s, rl) fW2(x, -x2, s)lx21-xl(-x2) dx.

On the other hand,

J(, s) fF(0, O, t)ltl-rl(t) dt.

Thus, by the lemma

J(, s) L(1 s, r/)P2 (0, 0, s).

To obtain our assertion we write our orbital integral in the form

L(s -1, n) f ,(x, -x2, s) dx + L(1- s, n) f %(x, --X2, S)IX2IS-llI(--x2) dx

+ L(1 s, rl) fW2(x, -x, s)(lfl xZls-lrl(fl x2) IxZlS-lr/(-x2)) dx.

The sum of the two first terms is I(, s). In the third term the bracket expression
vanishes if Ix21 is large in comparison with ft. Thus, for fl small enough, we may
replace W2(x, -x2, s) by g2(0, 0, s) in the third term. We get then

f(O, fl, s) I(0, s) + C(fl, s)J(O, s).

This proves the proposition. El

4.3. We consider similarly the integrals f’. Recall the integral

where
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Explicitly,

’(" fl’ s) f ’Ik-l (Z(1- zt-’- )’ ] -z(1 + x) ,]k dklt d dxrl(z) d Zo

As before, we consider the orbital integral corresponding to fl 0:

l’(’" s) f e’Ik- (z(1- -zt-X2)kldkl is-1 dtdxrl(z)dz(1 + x)
Zo

We denote by N’ the intersection of G’ and N and denote by m’(s) the scalar part
of the intertwining operator

m’(s) ;
v’
f’(wnk, s) dn fN, f’(wn, s) dn.

We have then

l’(’, s) m’(s) fc’[k-z(o i) k] dkltlS dtrl(z) d Zo

Similarly, we define

J’ta,’, s) fa,’ [g’-,z #’ f’(g" s) dg’rl(z) d z,

the integral over Z’N’\ G’. Explicitly,

As before, it will be convenient to introduce the following function ’ on F:

Thus ’ is a Schwartz-Bruhat function on F such that

’(ux) ’(x)
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for all u F with lul 1. As before, the function b’ is an arbitrary Schwartz-Bruhat
function with that property. In terms of

I’(p’, s) m’(s) f ’(t)ltl d t, (21)

J’(’, s) f b’(t)ltl x- d t. (22)

We define

<A
(lfl- x21s-x -Ix2ls-x) dx.

As before, this does not depend on the value on A, provided Ifll is small enough and
we have the following proposition:

PROPOSITION 4.4. Given ’, for Ifll sufficiently small and all s with 9s > 0,

f’(dP’, , s) I’(P’, s) + C’(, s)J’(’, s).

The proof is the same as before.

4.4. The first step in matching the orbital integrals is the following lemma:

LEMMA 4.5. Given , there is alP’ such that for all s and all fl sufficiently small,

IZol-X/2(, fl, s)L(s, lr) f’(’, fl, s)L(s, rl).

Proof. It suffices to show that given tl) there is tl)’ with

[zol-X/2l(l), s)L(s, lr) I’(’, s)L(s, rl), (23)

Izol-X/2C(fl, s)J(, s)L(s, lr) C’(fl, s)J’(’, s)L(s, rl). (24)

Now it is easily verified that

re(s) m’(s)lol.
The relation (23) reads

1ol-l/2 ;(x)lxln(x) dx/L(s, n) ’(x)lxl dx/L(s, lr).
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The left-hand side is a Laurent polynomial in q-S. Since b’ is an arbitrary Schwartz-
Bruhat function such that

’(xu) ’(x)

for lul 1, we see that the right-hand side is an arbitrary Laurent polynomial and
so we can choose O’ in such a way that this relation and thus (23) is satisfied. Then
the relation (24) will be a consequence of the following identity that we state as a
lemma:

LEMMA 4.6. With the above notations,

L(s, le)C(, s) L(s, r/)C’(fl, s)
Iol- L(1 s, Iv) L(1 s, r/)

provided Ifll is small enou#h.
As before, we set X q-S and we write C(fl, X) and C’(fl, X) for C and C’. The

function C’ is easily computed: we let z be a unit of F which is not a square, to a
uniformizer of F, and y be an integer of F; then

c’(fl, x) =,

_q-lly]2,-: (Xq- 1)2(1 + X)
(1 X2q)(1 X)

if y2

_q_l lY12,_
(X2q2 1)

if fl y2z (25)X2q

lyl2_ x(1 Xq)(1 + x)
X2q

if y2to.

In particular, we have the functional equation

1- X-q- C,ffl _X" l+X-q- C’(fl, X).
1-X I+X (26)

Now suppose the extension unramified. Then o is a unit and

We have then

r/(zo) r/(-Zo) 1.

U2 Is-1 Zol ] du

C’(flo, -x).
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Thus

L(s, 1) X-1

c([, s) c’([o, x)
L(1 -s, 1) 1-X

I+X c’(, x)

L(1 s, r/)
c’(/, s)

by the functional equation (26). This proves the lemma in this case.
Now suppose the extension is ramified. Then Zo is a uniformizer of F, and the

relation to be proved reads

X-q-qX C(, s) C’(, s). (27)
1-X

We first prove this relation when fl y2 for some integer y. Then in the integral
for C, both fl x2 and -x2 are norms. Thus we get

X-q-C’(YZzo, X)

X_q_llYl2S_ X(1 Xq)(1 + X)
X2q

On the other hand,

C’(y2, s) -q-XlYl2-x
(Xq 1)2(1 + X)
(1 X2q)(1 X)

so that the relation (27) is easily verified.
For the remaining cases fresh computations are needed:

LEMMA 4.7. Suppose the extension is ramified so that Zo is a uniformizer. Suppose
also fl yEz where z is not a square and y is an integer. If z is a unit, then

C(fl, s) -lyl2-
q-l(1 + Xq)(X 1)

1 X2q
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If z is a uniformizer, then

C(fl, s) lYl 2s-1
-x( -x2)

1 X2q

The relation (27) follows easily by comparing with the corresponding formula for
C’. It remains to establish the lemma.

First suppose z is a unit. Then r/(z) 1. After changing u to UZo, we get

C(y2zl, s) q-: flul<l (/(Y2Zl u2z)ly2"cx U2Zols-x --lU2olS-xrl(--U2Zo)) du.

For lul > lyl the integrand is zero. Thus the integral simplifies to

(r/(Zl)ly2zx U2Zol-I -lU2ol-x) du.

Changing u to yu, we get

q-llyl2"-I fl.l<x (-Izx u2:ol-1 --lU2Zol-) du,

which simplifies further to

q-XlYl2S-* [ -1 -fl.l Xqlu2l-Xdul"
This is easily evaluated to give the answer.
Now assume z is a uniformizer. Recall o is also assumed to be a uniformizer.

We have again

C(fl, s) q- (r/(y2z ZoU2)lzly2 ZoU2ls-1 --I%u21s-x) du.

As before, the integrand is zero for lul > lyl. After changing u to uy, we find for the
integral

q- lY12- flul<l (/’](’1 Zou2)lx oU21- --Izou2ls-l) du.

We write the integral of this difference as a difference of two integrals, the first of
which we decompose as the sum of the contributions of the sets

lul 1, lul < 1.
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In this way we obtain

q-lYl2S-If I’I(T, 1--T,oU2)I’I--’goU2[s-1 du+Xrl(z)-

The rest of the computation depends on whether or not zl/Zo is a square. First
assume it is not. Then

[’t’ T0U2[s-1 Xq

and

r/(z) r/(zl/Zo)r/(-Zo)r/(- 1) --r/(- 1).

Thus the above expression becomes

q-lyl2-x [-l(-1)Xq fl,,l= r/(1 eu2) du l(- 1)X

where e r,o/’r 1. Thus e is a unit and not a square. Let k be the residual field of F;
thus k has q elements, and we may view r/ as the unique nontrivial quadratic
character of k . The integral which remains to be computed can be evaluated as a
sum over k :

q f1.1=1 q(1 u2e) du
xkX

rl(1

Thus the total expression to be evaluated is

q-lly12-I I-r/(- 1)X(1 + r/(1 ex2))

Since e is not a square, x2e is not zero and the sum over x is also equal to

2 # {x 0l x28 is a square} (q 1)

or, what amounts to the same,

#{(x,y)lx2e + y2 1} 2-(q- 1).

If is a square, then r/(- 1) and the quadratic form .X;2e -- y2 is equivalent to
the norm form for the quadratic extension of k. Thus the above number of pairs is
q + 1, and the sum over x is zero. The first term in the total expression is then -X.
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If -1 is not a square, then r/(-1)=- 1 and the quadratic form x2e, + y2 is
equivalent to the form xy so that the number of pairs is now q 1. The sum over
x is then equal to -2, and the first term in the total expression is still equal to -X.
Thus the total expression is

q-llyl2S-xI_X
This simplifies to the required expression for Lemma 4.7.
Now assume Zo/Z is a square. We may assume z Zo as well. Then r/(zo)=

r/(-1). We find

q-Xlyl2S-x Jr/(-1)Xq flul=l r/(1 U2)11 U2Is-1 du + Xl(--1)-

Because the character r/is ramified, the contribution of the sets u + l I< 1 and
lu 11 < vanishes. Thus the integral can be replaced by an integral over the set

lul- lu + 11 lu- 11

or by a sum over

q fn(1- u2)ll-u2l-du--qf?(1-u2)du r/(1 X2).
x:0, l-x2 :0

In this way the total expression is equal to

lYl2S-x [q(-1)X(l +
xO, 1--x2O (1--X2)) X2q

Now

r/(1 x2) 2 # {x :/: OI x2 : O, x2 is a square}

#{x-011-x2:0}

CA ((x, y)lx2 + y2__ 1}-q- 1.

If is a square, we have r/(- 1) 1; the form X2 + y2 is then equivalent to xy and
the number of pairs is q 1. The sum over x is thus equal to -2, and the first term
in the total expression is -X. If is not a square, then r/(- 1) 1; the form is
equivalent to the norm form and the number of pairs is q + 1. Thus the sum is 0,
and the first term in the total expression is again -X. Thus we find the same result
as before and we are done. This completes the proof of Lemmas 4.7 and 4.5.



336 JACQUET, LAI, AND RALLIS

4.5. To complete the proofofProposition 4.1, it will suftice to show the following
statement. We choose a set of representatives {z} for the cosets F/F2.

LEMMA 4.8. Given z and

with flo v 0, let To be the torus which centralizes tro in GL(2, E). Its intersection with
H is a torus T in H, and its intersection with G’ a torus T’ in G’. Let U be a compact
open set of T’ containing tro. Assume furthermore that U does not contain a pair of
the form

or an element with fl v O. Then there is ’ such that

rl(fl)f(, a, s)L(s, 1) f’(O’, a, s)L(s, 1)

for a in U, and

f’(O’, a, s) 0

if tr is not conjugate to an element of F U.

Proof. We can write f in the form

(., a, s)= fT (h-’zah)rl(2(h)) dh fz f(th, s)dt dz.
\H \T

The relations

a U, h-azh Support

imply that z is in a compact set of F and h in a fixed compact set of T\H. Thus,
for tr U we can write

f(, a, s) f (h, a)rl(2(h))f(h, s) dh,

where ff is a smooth function on T\H x F U, such that

(h, zu) (h, u)
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and whose support has a compact projection on the first factor. Similarly, we can
choose a ’ whose support is compact and contained in the set of conjugates of U
in G’. Then f’ vanishes for tr not conjugate into UF. For tr in U, it can be written

f’(O’, a, s) f ’(g’, a)f(g’, s) dg’,

where q’ is an arbitrary smooth function on T’\ G’ x UF such that

’(h, zu) rl(z)’(h, u)

and whose support has a compact projection on the first factor. Thus it will suffice
to show that, given q, we can find q’ such that

L(s, 1)r/(fl) f a)l(2(h))f(h, s) ah L(s, rl) f ’(’, a)f’(#’, s) dh

for tr U. In other words, it will suffice to show that, given h H, there are gi G’
and ci such that

L(s, 1)ff(th, s)l(2(th)) dt L(s, l) c ff’(t’a,, s)dt’.

We can use the isomorphism between H/Z and G’/Z’ to reduce this assertion to a
question on G’: T’ is as before but T is now a torus of G’. We can take it to be the
torus which centralizes the element

in G’. We can take f to be f’ and replace 2 by det. Furthermore, if o is the
characteristic function of Rr x Rr in F2, we can take

if(g, s) fo[(0, u)]lul2 d uldet #ls.

The above identity reads

f’(th, s)rl(det(th)) dt/L(s, l) c, fr f(t’l, S) dt’/L(s, 1).
/z’ ’/z’

We can view T’ as the multiplicative group of an algebra L’ isomorphic to F x F
if z is a square and to F(x/) if not. In particular (see [JZ]),

fr f’(t’,s)dt’= fr o[(O, 1)t’a]ldettaldt’
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is a Tate integral for L’ and the trivial character. The corresponding L-function is
L(s, 1)L(s, rh).
A similar interpretation is available for T as multipcative group of an algebra

L isomorphic to F F if fro is a square and to F(/ro) if not. Similarly,

f’(th, s)rl(det(th))dt fr*o[(O, 1)th]ldet thlS,(det th)dt
/Z’

is a Tate integral for the character r/o det of L. The corresponding L-function is
L(s, l)L(s, rh).
The proposition will then follow from the next lemma:

LEMMa 4.9. Let o be the characteristicfunction of R in F2. Assume is a unit
or a uniformizer. Set X q-S and

P(X) f Oo[(0, 1)t’g]ldet t’gl dt’/L(s, 1)L(s, rh).

Then

P(X) P(X-lq- ), (28)

and any Laurent polynomial satisfying this identity can be written as as sum of
expressions of the above type. The same assertion is true for

Q(x) fr o[(0, 1)tg]r/(det tg)ldet tgl dt/L(s, rl)L(s, rh).

4.6. We now prove the lemma. This requires some preparation. It will be
convenient to say that a Laurent polynomial is symmetric if it satisfies (28). Let o
be an additive character of F whose conductor is Rr. We define the Fourier
transform of a Schwartz-Bruhat function on F to be

(x) f q(y)o(xY) dy,

the measure being self-dual. We define the symplectic Fourier transform of a
Schwartz-Bruhat function on F2 by

O(x, y) O(u, V)o(uY vx) du dr.

It follows that for g SL(2, F) (or for Idet gl 1) the function

(x, y)-- Oo i-(x,
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is its own symplectic Fourier transform. Conversely, we have the following
statement.

LEMMA 4.10. Let V be the space of Schwartz-Bruhat functions on f2 such that

, Eu(x, y)] E(x, y)] for lul 1,

Then V is spanned by the functions of the form

(x, y) o[(X, y)a]

with det 9 1.

This is a standard result ([Ho]). Similarly, we have the following lemma.

LEMMA 4.11. Let I/" be the space of Schwartz-Bruhat functions on F2 such that

p(x, y)= q(to-lx, w-ly), dp[u(x, y)] [(x, y)-] for lul 1.

Then V is spanned by the functions of the form

(x, y)o[(Xt, y)v]

with det 9 1.

4.7. Now we prove the assertions relative to the polynomial P in Lemma 4.9.
We can assume that z is either a unit or a uniformizer.

First suppose z is a uniformizer. Then the image of T’ under det is the norm group
for a ramified extension. Its product by the group of units is the whole multiplicative
group of F. Thus we can take 0 in SL(2, F) without restricting the generality. By
Lemma 4.10 we can write

P(X) fr, I)[(0, 1)t’]ldet t’l dt’/L(s, 1)L(s,

where is an arbitrary element of V. We have to show that P is an arbitrary
symmetric polynomial. Recall the algebra L’ of matrices of the form

Thus L’ - F(x/ and

L(s, 1.,)= L(s, 1)L(s, r/t ).
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We identify to the function W on L’ defined by

W(a + bx/ O(b, a).

We define an additive character on L’ by

,(z)=o Tr
x/

The corresponding Fourier transform is

e(z) W(u)g,(uz) du,

the measure being self-dual. Note that tb is identified to t(). We now have

P(X) fL’ W(z)IzI dz/L(s’ 1,),

where W is in the space Vz, of functions W such that

’e(z) ’e(), ’e(uz) ’e(z),

Now Oo is its own Fourier transform. The corresponding function on L’ is the
characteristic function of the ring R,, of integers in L’. It follows that the Tate
functional equation takes the form

(z)lzl dz/L(s, It,,) f, ’(z)lzl x- dz/L(1 s, 1,,). (29)

Since L’ is a ramified quadratic extension, the cardinality of its residual ,field is q.
For tI’ V,, the left-hand side is thus a symmetric polynomial in X q-. More-
over, it is easily checked that it is in fact an arbitrary symmetric polynomial. This
proves our assertion in this case.
Now assume that z is a unit but not a square. Then the image of T’ under det is

the set of elements with even valuation. This time we may assume Idet 0l is 1 or q-1.
This leads us to consider the polynomials

P(X) fr’ 0[(0, 1)t’]ldet t’l

where is an arbitrary element of V, and

P1 (X) X fr, 0[(0, 1)t’]ldet t’l dt’/L(s, 1)L(s, rh),
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where O1 is an arbitrary element of V1. We have to show that they are symmetric
and that they span, when the functions vary, the space of symmetric polynomials.
As before, we introduce the algebra L’ and the character if, and the Tate functional
equation takes the form (29). We can write

P(X) fL’ (z)lzl d z/L(s, 1L.),

where q is in the space VL, corresponding to 1/. Since the residual field of L’ has q2
elements, P(X) is an arbitrary symmetric polynomial in X2. Similarly, the space VL,
of the functions W corresponding to the functions V: consists of all functions
such that

We then have

() qW(to-z), W(uz)= for u R,.

PI(X) X fz, W(z)lz[ dz/L(s, 1,),

with W VL,. Applying the Tate functional equation, we find that P1 is a symmetric
polynomial containing odd-degree monomials only. It is easily seen that P is an
arbitrary polynomial with these properties. Our assertion is proved in the case at
hand.
We pass to the case where z is a unit and a square. After a change of variables,

we can take z 1. Moreover, without a loss of generality, we can take g SL(2, F).
Thus we can take

P(X) fr, O[(0, 1)t’]ldet t’l dt’/L(s, lr)L(s, lr),

where q is in V. We have to show this is an arbitrary symmetric polynomial. The
algebra L’ is isomorphic to the sum oftwo copies of F. Correspondingly, we identify

to the function q on L’ defined by

where

W(u, v) O(b, a)

u=a+b, v=a-b.

We define a Fourier transform on L’ by
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The space V, corresponding to V is actually identical to V. We can take

P(X) f W[u, v]luvl du dv/L(s, 1F)2

where W is in V,. The Tate functional equation reads

’Eu, v]luvl du dv/L(s, 1F)2 ;C[U, V]Iuvl- du dv/L(1 s, lv)2.

This shows that P is indeed symmetric for W e V,. Now V, is spanned by functions
of the form

’e(x, y)= (x)(y),

where is a Schwartz-Bruhat function such that

#(ux) (x)

for lu[ 1. For such a q, the polynomial P has the form

P(X) s(x)s(x-’q-
where S is an arbitrary Laurent polynomial. Any symmetric polynomial is a linear
combination of polynomials of this form, and our assertion follows in this case.

4.8. We pass to the study of the polynomials Q in Lemma 4.9. Here T is the
multiplicative group of L, the algebra of matrices of the form

The character r/o det is a multiplicative character rh, of L and

L(s, l)L(s, tl,) L(s, rlL).

If z 1, then L is the extension E, rh, 1, and we can apply the previous results.
If z Zo e2 where e and Zo are units, then r/= r/ is an unramified character and

the algebra L is split; so we can again apply the previous results (with X replaced
by -X).

iflzl 1, Iol q-X or I1 q-X, Iol 1, then L is a ramified quadratic extension
of F but r/o det is an unramified character of L, so that we can apply again the
previous results with X replaced by -X.
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In the two remaining cases we have Izl Ivol q-1. Suppose first that z "17o 62
where e is a unit. We may as well assume e 1. Then L is isomorphic to the sum
of two copies of F. A function (b, a) is identified to the function q(u, v) where

u=a+bzo, v=a-b’co.

The symplectic Fourier transform becomes the following Fourier transform on L:

The space VL corresponding to V is the space of functions P such that

q’ , V(ux, uy) q’(x, y) for u R.

Since r/is ramified, the polynomial P has the form

P(X) f tP(u, v)luvlSrl(uv) du dr,

for q e V.. Now the Tate functional equation reads

(u, v)luvlX-I(uv) du dv q(- 1)e(q, s, t)2 ;P(u, v)luvl(uv) du d

where ff is the character of F defined by

If is the function of support R defined by

O(u) n(u)

for lul 1, its Fourier transform with respect to k has the form c for a suitable c.
The function

V(x, y)= c(x)O(y)

is thus in Vz, and the Tate functional equation in fact reads

(u, v)luvlX-rt(uv) du d v f (u, v)luvl(uv) d u d v.
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For q V, this is a symmetric polynomial in X. Moreover, just as before, this
polynomial is arbitrary.

Finally, we assume e:o where e is a unit which is not a square. Thus L is
another ramified extension of F. A function on F2 is identified to the function W
on L defined by

V(a + bzo/)= (b, a).

If we define

and

’(z) V(u)(uz) ,lu,

then the image V, of V is the space of functions F such that

’e(z) e(), ’e(uz) ,e(z)

for u e R,. The character r/, is defined by r/t,(z) r/(z). The Tate functional equa-
tion reads

(Z)rlL(Z)IZl x-s dz (s, r/L, ) f W(Z)rlL(Z)IZl d Zo

We first show that the e factor is actually one. It suffices to find F e V: such that
the integral

W(Z)IL(Z)IZl d

is a positive constant. We first choose the corresponding function . Let k be the
characteristic function of R, and ko the characteristic function of R. The Fourier
transform of k with respect to o is the function x defined by

ql (X)-" qO(X)- q-1q0(XtO)"

It follows that the function

@(x, y)= (kx (x)tk(Y)
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is in V. We consider the corresponding function W in VL. Its support is contained
in the set of units of L. Up to a positive factor, the corresponding Tate integral is
found to be equal to

1-q-l- r/(1-x2e).
xEk

As we have seen in the previous section, the sum is actually 0 or 2 and so the total
integral is > 0, and our assertion is proved. We finish the proof as before: the
polynomial Q is the sum of two polynomials

with Y e V., and

P(X) f W(z)qL(z)lzl d

ex (x) X y (z)’(z)lzl d z

with q e VI, the space corresponding to V1. Then P (resp. P1) is an arbitrary
symmetric polynomial containing monomials ofeven (resp. odd) degree. Our asser-
tion follows. This conclude the proof of the lemma and the proposition. E!

4.9. We conclude this section by the following corollary to Proposition 4.1:

LEMMA 4.12. If and ’ have matching orbital integrals, then

lrol-/2 f (x)lxln(x) d*L(s, 1) f ’(x)lxl dxL(s, n). (30)

This follows from the proof of the proposition. El

5. Global theory.

5.1. We let E/F be a quadratic extension ofnumber fields. Then S is an algebraic
variety defined over F. We set

Then G GL(2, E) operates on S on the right:

s e--} g*sg.

For e in S we denote by H, H, and 2 the corresponding unitary group, similitude
group, and similitude ratio. Thus for h e H,,

h*e,h 2(h)e,.
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We say that two matrices st and s2 are rationally equivalent over F if there is
GL(2, E) such that

$1 *$2)

We say they are projectively equivalent if there is a ), e GL(2, E) and a/ e F such
that

In particular,/ is in the image F of 2 if and only if/e and e are rationally equi-
valent. Two matrices are rationally (resp. projectively) equivalent if and only if
they are rationally (resp. projectively) equivalent at each place of F which is inert
in E.

At a nonarchimedean place, the two definitions of equivalence coincide. More-
over, st is equivalent to s2 if and only if det st and det s2 are equal up to the product
by a norm. In particular, s belongs to the orbit of e, that is, the form associated to
sw is split, if and only if det s is a norm.

At a real place v of F inert in E, st and s2 are projectively equivalent if and only
if det st and det s2 are equal up to the product by a norm, that is, have the same
sign. Matrices s with positive determinant are those for which sw is split; they form
a single rational equivalence class. The set of matrices with negative determinant is
the union of two rational classes.

For a place v of F inert in E, set F 2(H(Fv)). Then F is actually equal to F,
except when v is real and inert, and det ev < 0, in which case it consists ofthe positive
elements of F.

Let F be the product of the F. Thus

F, &(H,(F)).

Clearly,F is an open subgroup offinite index in F. Since F is dense in the product
of the F with v real, we have

F =FF.

On the other hand,

F F nF.

It follows that F is a subgroup of finite index in F, and we have a disjoint union
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We have exact sequences

-, H(F)-, H(F)- F- 1,

H(Fa) H(F)- F --, 1.

We choose a measure on H,(F,) that we write as a product of local measures. It is
assumed that for almost all places the measure of the maximal compact defined
below is 1. We choose a measure on F in the usual way. It induces a measure on
F, and we use the local sequence to define a measure on H(Fo).
We choose a system of representatives {e} for the rational classes. We can take

it to be of the form e =/e’ where {e’} is a set of representatives for the projective
classes and, for each e’, {/} is a set of representatives for the cosets of F’ in F . We
choose a function of compact support on S(F). We assume that is a product
of local functions o. Thus o is a smooth function of compact support on S(Fo).
Furthermore, for almost all v, it is in fact the characteristic function of the set of
integral elements of So with unit determinant. For each e, we choose a function f
on GL(2, E), smooth of compact support, such that

fn f(hg) dh O(g*g).
to(F,)

In order for this integral to be nonzero, there must be an id61e z which is a norm
at each place such that z det e is in the image of the support of under det. Let
X(O) be the set of e with this property. This image is a compact set; since Nr,/,(E[
is open in F2, this image is contained in a finite union of cosets of N,/r(E[). A
fortiori, det e belongs to a finite union of cosets of Ne,/r(E ). Writing e #e’, we see
that e’ belongs to a finite set. Thus X() is a finite set itself.

it will be convenient to choose a finite set X of e and to choose the function o
for each place v of F inert in E with support in the union of the orbits of the e e X
under GL(2, Eo). Then

(I)(a*) 0

if e is not in X. For e X we will take f 0.
Next, to each e we associate a kernel function

K(g, g2) f(g-’g2).
GL(2, E)

We will set

K(g) fn K(h, g) dh.
.(F)\H.tF,)
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We claim that

K(g) r, dz Z O(g*zg).

Indeed, it suffices to prove this for g e. We can write

K(e) f(fL(hoh)dho)dhHdF)\G(F)

with

ho H (Fa), hi H, (Fa,)\H(F).

Thus we find

K(e) fO(*e2(hl)) dh
f, a,(*z)d Zo

Replacing e by /e does not change the similitude group; thus summing over
la F/F, we find

fv;, ,(*ez)dz

f; Z Z q’(*’z) d z
/F laF

fz/ , (z)d*z

where the sum is for tr in the projective class of e. Summing over the projective
classes, we find our result.

5.2. We set

K,a(g) K(g). (31)
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We have thus

K,(g) ;,/ sv) O(g*zg) dz. (32)

Associated to the functionf and the trivial central character, we have in the usual
way a cuspidal kernel, a special kernel, and an Eisenstein kernel, .cus, .k"se, and

respectively. We define

K"’(g) Kc’th g) dh

the integral over Z(F)H(F)\H(F). We define similarlyKe,K. We remark that
for any cusp form b on GL(2, E), invariant under the center,

Ko(g)(g)dg ;KS’(g)(g) dg.

Thus we may view Kp as the projection of K(R) on the space of cusp forms.
In this section, our goal is to compute the integral

l’(s) f KS’(h)E(h, s)r/(2(h)) dh, (33)

where E(g, s) is an Eisenstein series on the group H Hw, suitably normalized. The
integral is over Z(F)H(F)\H(F). We first compute formally. We will justify our
steps completely under the restrictions mentioned in the introduction.

At this point, we assume that every real place of F splits in E and that every finite
place of even residual characteristic splits in E. We need to specify the measures we
are using on H and G’, the maximal compacts, and the functions f, f’ which are
used to define the Eisenstein series. For each place v of F inert in E, we choose an
element t such that

Eo Fo(x/). (34)

If v is unramified in E, we take for to a unit; if v is ramified, we take for to a uniformizer
of Fo. For v split, we take to 1. We set

to 1-I to. (35)

Then for v inert, conjugacy by

go (0x ) (36)
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defines an isomorphism

If v is split, then Ho is the set of triples (gl, g2, 2) with g e G’o, 2 e F such that

wgiw2.

On the other hand, G’oZo is isomorphic to the set of pairs

(g21, g22)

with g Go, 2i F. Thus we have again an isomorphism

The product of the o defines then an isomorphism

: H(F) G’(F)Z(F).

Recall P is the group of upper triangular matrices, Pn its intersection with H, and
P’ its intersection with G’. Here it will be more convenient to think of P as a group
defined over E. For each finite place v of F we set

Ko GL(2,

For v real we set

0(2, lR).

For v complex we set

Ko= U(2,

We regard Z - E as an algebraic group over F, and for each place v ofF we denote
by Uo the maximal compact subgroup of Zo. We let K’ be the product of the K’o and
U the product of the Uo. We define a function f’ on G’(F)Z(F) by

f’(g’z) Itl

for
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Thus we may write f’ as the product of local functions fo’ which, for v inert, are the
functions introduced in the previous sections. We use the isomorphism to trans-
port K’U and f’ to H. We denote by Kn andf the corresponding maximal subgroup
and function. Thus

Then

f(h,s)=ltl ifh (t )k.

E(h, s) f(yh, s).
PH(F) \H(F)

On G’(F)/Z’(F), we choose a measure compatible with the Iwasawa decomposi-
tion

d#’ dk’ltl- dt du

Here dt and du are the Tamagawa measures. We transport this measure to
H(F)/Z(F). The measure needs not be the same as the one we have used to define
the kernels in terms of. The integral (33) is defined for 9s > 1. For simplicity, we
will drop the index from the kernels. Unfolding the Eisenstein series, we find also
for 9ts >

lCUSP(s) ;Z(F,)P.(F)\H(F) KCUp(h)f(h, s)rl(2(h)) dh.

We have

Kcusp K Keis- Kspe, K K"e + KsinO,

where

P(E)S(F)
0(9"z9) d z,

P(E)S(F)
o(g*zg) dz.
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Each function of g is invariant under P(E) on the left. It will be convenient to
introduce the function K defined by

Then

KSi,,o KeiS KSt,e.

K*’’’ Kre + K.

We will denote by I the integral

I(s) K(h)f(h, s)r/(2(h)) dh.
(F)Pn(F)\H(Ft)

We will define similarly !eis, Ireo, and so on. Thus

1cusP(S)-" Iree(s) + I(S). (37)

5.3. We first consider Ire. We need the following lemma which relates conjuga-
tion under PH(F) and H(F) in $(F):

LEMMA 5.1. Suppose P(E) c S(F). Then is conjugate to an element of So(F)
by an element of Pn(F). Moreover, two elements of So(F) which are not in P(F) are
conjugate under H(F) if and only if they are conjugate under Pn(F). Finally, if is
in So(F) So(F P(E), then its centralizer in Pn(F) is equal to Z(F). E!

According to the lemma, a semisimple element of S(F)- S(F)c P(E) can be
written in one way in the form

(17-z , 7 Pn(F)/Z(F), z F" fl F {0, 1},

or in the form

7-z( )y, 7 e Pn(F)/Z(F), z e F fieFIF2.

A unipotent element in S(F) S(F) P(E) can be written in one way in the form

’ e Pn(F)/Z(F), zF

Thus the integral IreO(s) can be written as a sum

IreS(S) n(ap, fl, S) +
fieF ---(0,1} flF/F2

n(, fl, s) + I""’(I), s)
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where we have set

and

01) hI t/(2(h))f(h, s)dhdz,

where the integral is for h Z(F)\H(F) and z e F.
We give another formula for the last integral: we can change h to wh to get

Integrating via the Iwasawa decomposition, we
get

l""’(s’=m(s’ferv;, P[k-Xz( 10 i)kl rl(t)ltlsrl(2(k,)dtdkdz’

where we have set

here E F(xo and

m(s)=fvoef[w(10

u

For future needs, we compare m(s) with the scalar m’(s) defined by

m’(s)=fvf’[w(10 )]du.
We find

m(s) Itolm’(s). (38)
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As in the local case, we introduce a Schwartz-Bruhat function on F:

Then

lU"i(s) m(s) f (t)rl(t)lt] dt. (40)

5.4. We now consider the integral I. Recall

I(s) K(h)f(h, s)r/(2(h)) dh.
(F)PH(F)\H(F)

The integral I factors through an integral on Nn(F)\Nn(F), namely,

fur,/e,I( Xl)#ldu. (41)

Let us agree to denote by dx the measure on xoF such that

dx= 1.

Thus we can write x xoV and dx dv where dv is the Tamagawa measure on
F. In terms of the variable u defined by

we have

U

so that

dx dv ItX/21 du.

Let o be a nontrivial additive character of E trivial on E + F. If/ is a smooth
function on Eh/E, then

#(x)dx=fE l(y)dy+ , fr #(Y)o(y)dy,
/E F /E
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where dy is the Tamagawa measure on E, that is, the one for which the measure of
E/E is 1. Recall

(g) K’(g)- Kt,(g)_ K(g).

The sum

vanishes. Thus we can evaluate (41) as follows:

Itol o/o

--Itll/2 E,/E (gst’ec"l’Keis’ [(10 )ff] dy, (43,

--ItIx/2 fe K’[(; )g]Oo(ey)dy. (44)

Because of the cuspidality, we can replace K + K by K in the middle integral.
Thus the integral (41) can be written as the sum of three terms:

(45)

(46)

(47)

To evaluate (45) we write

Integrating over Nn(F)\Nn(F,), we get for (45)
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where dv is the Tamagawa measure on F/F. The second term simplifies, and we
obtain for (45) the expression

Now we write again K Ks" + K"e to compute (46). The integral of -Ks"
gives

fl+ Y+_ YY) zg]dz dy.

This simplifies to

where dx is the Tamagawa measure on F. If we combine it with the expression we
obtained for (45), we obtain

It remains to compute the integral of -Kre on N(E)/N(E). The matrices of the
form

with fl, , F form a set of representatives for the orbits of N(E) on S(F) S(F)
P(E). It follows that the integral of -Kreo is
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To compute (47) we set

and we see that (41) is equal to the sum of three terms

-re, Ig* (10 Yl)zlldzdyt (49)

For each integral, z is integrated over F[. To compute I(s) we need to inte-
grate each one of the above functions on Z(F)(Nn)(F)Pn(F)\H(F) against
f(h, s)r/(2(h)). To do so, we use the Iwasawa decomposition: we write

Then

dh It1-1 dt dk, rl(2(h))f(h, s) l(t)ltls.

We obtain I as the sum of three new integrals Ii, < < 3. To compute I1 (s) we
recall the Schwartz-Bruhat function introduced earlier:

We find

or, by the Poisson summation formula,

It11/2 /, o (t)ltlrl(t) dxt"
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Finally,

l(s) Itol /2 ;e (t)ltlrl(t)dt. (52)

For 12(s) we find

This can be further transformed into (see [JZ])

12(S) --lt0[ x/2 k-n*
0

2 =tl zt Zo) nkI co(t)] +lrl(2(k)) dt dn dk dz.

(53)

The integral is for z, e F, n e N(E), k K, and the sum over all id61e-class
characters co of F whose square is r/. Finally, we have

(54)

Thus we have

,’(s) y (o, fl, s) + f(o, fl, s) + p"’(o, s) + y t,(s). (55)
fieF-]0,1} #F/F2

5.5. We consider similarly a smooth function of compact support O’ on G’(F).
We associate to O’ a kernel

K’(x, y)= fe, Z
/F GL(2, F)

O’(x-1 zy)rl(z dz

and corresponding kernels K’cus’, K’spe, and K’eis. We consider the integral

I’CUSp(s) f K’cP(g ’, g’)E’(g, s) dg’ (56)

where E’ is an Eisenstein series defined as

E’(g’, s) f’(yg, s).
P’(F)\G’(F)
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Just as before (see [JZ]), we have an expression

I’"’(s) fY(O’, fl, s)
t’--7o,1}

+
Fx/Fx2

+ I’""(’, s)

where

zg’ rl(z)f’(g’, s) dg’,

fY(O’, fl, s) O’ a ’-1
z# rl( )f ( s) do’

za’ q(z)f’(a, s) da,

and 1’i, < < 3, is defined below.
We introduce as before a Schwartz-Bruhat function q’ on F,

and the scalar part of the intertwining operator

f’(wn, s) (s).dn m’

Then

I’""(cD’, s) m’(s) f b’(t)ltl dt.

The remaining integrals are

I](s) fe ’(t)ltl dt’

359

(57)

(58)

(59)

(60)

(61)

(62)

-0) zn2 kl co(t)It 0 +l)/2 dt dnl dn2 dk rl(z) dz.

(63)
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We also define

K’whi(gl, g2) feA/e K’eiS(nlg’ n2g2)(xl)(x2) dn dn2

Then

5.6. We now compare the two formulas we have obtained. We assume that
and O’ are products of local functions. At a place v of F which is inert in E, we
assume that Oo and ’o have matching orbital integrals. At a place v off which splits
in E, we can identify the variety So to G’o and then we take o O’o. The functions
f are also taken to be product of local functions. At a place v which is inert in E,
we take

f,o(h#) Oo(#*el).dh

At a place v which splits into two places vl,/)2 of E, we may identify Fo, to Fo. Then
So is the set of pairs (s, s2) with s GL(2, Fo) and

S2 wts1 W.

Then we take

o(s, s) ;(s).

The image of e in So is (el,/32) and the corresponding group Ho is the set of pairs
(hi, hE) with

h2 w’e,-Xth-l’e w.

We demand that

f.o(hlg)f.o(h2g2) dh Oo(w g2we’g

that is,
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If ’v is a Hecke function and el is in K’v, and fo, are Hecke functions, this relation
simplifies. Indeed, since h and th have the same double coset for the maximal
compact of GL(2, Fo), we get

ff,(ha)f(h-1) dh O’v(a).

In what follows, we will assume that, for a finite place u of F which splits in E,
the function ’u and the functions fu,, fu2 are supercuspidal. Thus in the above
discussion the kernels Kes, K’, K’i, K’spe are zero. Moreover, the integrals I2(s),
13 (S) and Iz (s), I (s) are 0.
The formal computations simplify. For lC"’(s) for instance, we find directly that

lU’(s)

where

f(O, fl, s) + f,oo(,, fl, s) + lun’(*, s) + 11 (O, s) (65)
F-O, F/F2

However, because of the cuspidality condition, we find

Thus the integral of b vanishes, and we can write also

/F fieF

Thus 11(0 has the same expression as before.
To justify our formal computation, we need only show that in the above expres-

sion for Ic"’p all the integrals and sums converge absolutely. The above expression
for I1 (s) converges absolutely for 9ts > 1. Similarly, the expression for I"" converges
absolutely for 9ts > 1. To prove the convergence of f(, tr, s) we proceed as in the
local case, that is, we write it as a Tate integral over the multiplicative group of an
algebra L. The trace of the matrix in the integral for f(tI), fl, s) is 2z while its
determinant is z2(1 fl). Thus z2(1 fl) remains in a compact set of the id61es while
z remains in a compact set of the ad+les. The first condition implies in particular
that Izl is in a compact set of IR . The second condition implies then that z is in a
compact set of the id61es. In turn, this implies that 1 fl is in a compact set of the
id61es and hence in a finite set. Thus fl takes only finitely many values. The
determinant of the matrix in foo(O, fl, s) is -z2fl. It remains in a fixed compact set
ofthe id61es. This implies that fl takes only finitely many values (modulo F 2). Hence
our formal computation is justified, for 9ts > 1.
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Similarly, we find

I’C"SP(s) fl’(’, , s) (66)
fief0,1}

+ f’(tI)’,/3, s) (67)

+ l’""i(’, s) (68)

+ I] (s) (69)

for 9s > 1.

5.7.

THEOREM 5.2. Under the previous assumptions (in particular, the condition of
cuspidality at a place u), we have for all s

Itol-1/2L(s, lv)ICUSP(s)= L(s, rl)I’"’e(s).

Proof. We claim that for any place v of F

[tool-mL(s, lo)(Oo, fl, s) L(s, rlo)fY(’o, fl, s).

Indeed, this is the condition of matching orbital integrals if v is inert. Suppose v
splits; then too by choice, and the character r/o is trivial and the functions o,
identical. The equality is thus trivial. Multiplying these equalities together, we
obtain

[tol-X/2L(s, lv)K(, fl, s) Z(s, rlo)’(t’o, fl, s).

Similarly,

Itol-X/ZL(s, lv)(O, fl, s) L(s, qo)f’(’, fl, s).

To complete the proof we need to show that

[tol-X/2L(s, lv)IUni(t, S) L(s, rl)I’Uni(’, S),

Itol-/2L(s, 1)I1(, s) L(s, )I’(’, s).

Since m(s) tolm’(s), the first relation is equivalent to

Itol-/2L(s, lr) f (t)ltlrl(s) dt L(s, ) f ’(t)ltl dt.
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The functions b and ’ are products of local functions. We claim that, for any place
vofF,

Itool-/2L(s, lo) qbo(t)ltlrl(s) dt L(s, rlo) f C)’o(t)ltl dt.

Indeed, if v is inert, this is a consequence of the local theory. If v is split, this equality
is trivial. The global equality follows.
Now we have

Itol (70)
IDol

Using the functional equation of the L-functions, we see the global identity just
obtained reads

L(1-s, lF) f b(t)ltlrl(t) dt L(1- s, n) b’(t)ltl dt,
or changing s to s,

L(s, lF) (t)ltll-rl(t) dt L(s, rl) ’(t)ltl- dt.

Using the global Tate functional equation, we find

L(s, lr)f(t)ltlnts)dt L(s, rl) f S’(t)ltl dt.

Now

Itol-1/2L(s, lr)II(S)= Itol-I/2L(s, le)lto] 1/2 (t)ltlSrl(t) dt
L(s, 1) q(t)ltlSrl(t) dt
L(s, rl) ;’(t)ltl dt

L(s, rl)l’ (s).

This concludes the proof of the theorem.
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5.8. We remark that the identity of the theorem is true for any normalization
of the Eisenstein series E’(9, s) provided the Eisenstein series E(9, s) verifies

(, s) e’((a), s).

We choose E’ in such a way that its residue at is the constant function equal to
1. We write

We evaluate the residues of the two sides of our identity at s 1. The right-hand
side has a pole of order at most 1. Its residue is simply

L(1, rl) ; K’C"’(g’, g’) dg’

that is, apart from the factor L(1, r/), it is the standard trace formula. The left-hand
side must have a simple pole at s 1. This shows that Icusp is holomorphic at s 1,
or what amounts to the same,

The residue of the left-hand side is thus

Itol -x/2 Res=l L(s, le) fKCt’(h)O(h)dh.
More explicitly,

Ito1-1/2 ReS=l L(s, 1) f K"’(h, h)O(h)d dh.

We have thus proved the weighted trace formula announced in the introduction.

5.9. We now state some consequences of our formula. Let zr be a cuspidal
automorphic representation of G’, with a supercuspidal component at u, and central
character r/. The representation rr (R) r/gives the same contribution to our residual
trace formula. The sum of these contributions is equal to the contribution of the
base change H of rr. It follows that this contribution is nonzero. Thus there must be
an e such that H is distinguished with respect to H. Moreover, there must be a in



A TRACE FORMULA FOR SYMMETRIC SPACES 365

the space of II such that the integral

(h)O(h)rl(h) dh

is nonzero. Of course this result could be obtained directly in terms of the relevant
L-functions. It is likely that similar results can be obtained for any symmetric space.

5.10. We comment on what should happen when the assumption of cuspidality
at one place is removed. The kernel Ki is integrable in the first variable on H; on
the other hand, Ke is itself an integral over a certain set of quasi characters. The
double integral does not converge when e 1; when one interchanges the order of
integration, one gets a continuous sum, i.e. a convergent integral over a set of quasi
characters and a discrete sum. If e 1, then one gets only a continuous sum. Thus
the term I3(s) is the sum of a continuous part and a discrete part. The discrete part
should match the contribution of the dihedral representations on G’. The continu-
ous sum should be equal to the integral I(s). The terms I2 and Iz should be equal.

6. The second trace formula. We now explain how to modify the previous
constructions to obtain the second trace formula mentioned in the introduction.
We consider first the local situation: E is an extension of a nonarchimedean field

F of odd residual characteristic. The notations f’ and Zo have the same meaning as
before. However, we need to replace Zo by its inverse. Thus we set

We define an isomorphism

01)
of H/Z onto G’Z/Z. We set

fl(g) f’(l(g)).

For tI) smooth of compact support on S, we now set

D(O, a, s) f O(h-azh)f (h, s) dh dz.

For O’ smooth of compact support on G’, we set

s) f s)r/(det g) dg rl(z) dz.
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We say that and ’ have "matching orbital integrals" if

Izxl-1/2L(s, r/)f(tI), tr, s) q(fll)L(s, lr)’(tI)’, tr, s) (71)

for all

with fllfl2 0. As before, we introduce the notations f(tI), fl, s), D(tI), fl, s) and the
similar notations for f’. Just as before, we have the following fundamental lemma:

PROPOSITION 6.1. If the extension E is unramified, then the functions o and ’o
have matchin9 orbital integrals. More 9enerally, if t is a function of compact support
on S invariant under K and ’ is a function of compact support on G’ bi-invariant
under K’ which corresponds to , then and tV have matchin9 orbital integrals.

Proof. Recall that zl is then any unit which is not a square. With the notation
ofSection 3, it will suffice to show that. and.have matching orbital integrals.
We get as before that f(tI)., fl, s) and f’(tI)z,, fl, s) are zero unless

I1 fll ITI 2,

and then

f(CP, fl, s) y [Sq"SA (fifo2" )\
,x

n’(*2., fl, s) lyl’qnA (tim2" )-x

Then our assertion follows from the functional equation satisfied by the function A.
Next, we have the following result:

PROPOSITION 6.2.
versely.

Given O, there is a ’ with matchin9 orbital integrals and con-

Proof. We only discuss the asymptotic behavior of our integrals when/3 tends
to 0 and check they are compatible.
We first study the asymptotic behavior of the integrals f(, fl, s) when/3 tends

to 0. As before, we will denote by I(, s) the integral corresponding to fl 0.



A TRACE FORMULA FOR SYMMETRIC SPACES 367

We consider also the integral

the integral over the quotient ZNu\H.
It will be convenient to introduce the following function on F:

Thus is an arbitrary Schwartz-Bruhat function on F such that

(ux) 4(x)

for all u F with lul 1. In terms of ,
I(dO, s) m(s) f (t)ltl’n(t) dt, (73)

J(O, s) f o(t)ltl 1- dt. (74)

The first integral converges for 9s > 0 and the second for 9s < 1. These distribu-
tions determine the "Shalika germs" of the orbital integrals. Namely, let A > 0 be
a constant and set for fl an integer

where

Cx(fl, s) (I/3 xZl-* -Ix2l*-*) dx (75)
xl<A

U
x u F, dx du.

PROPOSITION 6.3. Given , for I/1 sufficiently small and all s with 0 < 9ts < 1,

(, , s) I(, s) + Cx(, s)J(, s).

The proof is the same as before. El

6.1. We consider similarly the integrals fg. Recall the integral

’(0’, ,8, s) f O’[g-zag]f(g, s)q(det g) d9 rl(z) dz



368 JACQUET, LAI, AND RALLIS

where

As before, we consider the orbital integral corresponding to/3 0:

r(,’, s).

Similarly, we define

O’ f’(9’, s)q(det 9’) do’ rl(z) dz.

As before, we introduce the following function k’ on F:

7) k] r/(det k)dk rl(z) dz

Thus b’ is an arbitrary Schwartz-Bruhat function on F such that

(ux) n(u)’(x)

for all u F with lul 1. In terms of b’, we have

I’(’, s)= m’(s) )’(t)rl(t)ltl dt, (76)

We define

J’(O’, s) f k’(t)rt(t)ltl 1- dt. (77)

C’x(fl, s)= I,l<a (q(fl xZ)lfl x/]s-x q(--xZ)lxZ]s-x) dx.

As before, this does not depend on the value of A, provided Ifll is small enough and
we have the following proposition:

PROPOSITION 6.4. Given ’, for Ifll sufficiently small and all s with 9s > 0,

’(b’, fl, s) l’(b’, s) + C’x (fl, s)J’(cb’, s).

The proof is the same as before.
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6.2. The first step and the only one we discuss in matching the orbital integrals
is the following lemma:

LEMMA 6.5. Given , there is 6o’ such that for all s and all fl sufficiently small,

I, ]-/2n(D, fl, s)L(s, ri) f’(*’, fl, s)L(s, 1F).

Proof. It suffices to show that, given tI), there is ’ with

Izxl-x/2I(*, s)L(s, tl) I’(0’, s)L(s, lv), (78)

Ivxl-X/2cx(fl, s)J(, s)L(s, ) C’x(fl, s)J’(’, s)L(s, lv). (79)

Since

mx(s) m’(s)lZl[,
the relation (78) reads

dx L(s, rl) f qY(x)(x)lxl dx L(s, r).

As before, given b, there is b’ such that this relation is satisfied. Then the relation
(79) will be a consequence of the following identity that we state as a lemma:

LEMMA 6.6. With the above notation,

L(s, lr)C’a(fl, s)
L(1 s, 1)

rt(- 1)1, -x L(s, tl)Cx(fl, s)
L(1 s,r/)

provided Ifll is small enough.

Indeed, we have

Cx(fl,

C’(fl, s) q( 1)lZo 1-1C s

Thus the above equation is equivalent to the corresponding equation for the pair
(C, C’).

6.3. Now we let E/F be a quadratic extension of number fields. As before, we
assume that every real place of F splits in E and that every finite place of even
residual characteristic splits in E. For each place v of F inert in E we choose an
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element tx,o such that

If v is unramified in E, we take tl,o of module 1; if v is ramified, we take for tl,o the
inverse of a uniformizer of Fo. If v splits in E, we take to 1. We set

tx l-I tl, o. (81)

Conjugacy by

defines for each inert place v an isomorphism

x,o: H(Fo) G’(Fo)Z(Fo).

At a split place we have a natural isomorphism. As before, we define an isomorphism

x H(F) G’(F)Z(F).

We use it to transport K’U and f’ to H. We denote by Kn and fl the corresponding
maximal subgroup and function. Thus

Then

E (h, s) fx (,h, s).
PI(F)\H(F)

On G’(F)/Z’(F), we use the same measure do’ as before. We transport this
measure to H(F)/Z(F). The measure need not be the same as the one we have
used to define the kernels in terms of. Given a smooth function ofcompact support
on S(F), we define as before a cuspidal kernel Kc"s’ and the integral

IC"S’(s) fz K"’(h)EI (h, s) dh.
(F)H(F)\H(F)

Similarly, given a smooth function of compact support ’ on G’(F), we define the
cuspidal kernel K’u’ and the integral

I’"’(s) f K’"’(9’, g’)q(det g’)E’(g, s) dg’ (83)
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where E’ is the Eisenstein series defined as

E’(g’, s) f’(yg, s).
P’(F)\G’(F)

We assume that and ’ are product of local functions. At a place v of F inert
in E, we assume that Oo and ’o have matching orbital integrals in the sense of the
present section. At a place v off which splits in E, we can identify the variety So to

G’o and then take o ’o. The functions f are chosen as before. Then we have the
following result.

THEOREM 6.7. Under the previous assumptions (in particular, the condition of
cuspidality at a place u), we have for all s

]tll-I/2L(s, rl)l*P(s)= L(s, 1F)I’P(S).

The proof is the same as before. 121

6.4. If we normalize the Eisentein series as before and take the residue at s
of both sides of our identity, we obtain

]tl-/2L(1, rl) f K.(h., k)dh dh

Res L(s, 1)1= f K’cup(g’, g’)O(g’)rl(det g’) dg’.

This is the other weighted trace formula mentioned in the introduction.
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