THE WHITTAKER MODELS OF INDUCED REPRESENTATIONS

HERVÉ JACQUET AND JOSEPH SHALIKA

If F is a local non-Archimedean field, then every irreducible admissible representation π of GL(r, F) is a quotient of a representation ξ induced by tempered ones. We show that ξ has a Whittaker model, even though it may fail to be irreducible.

1. Introduction and notations.

(1.1) Let F be a local non-Archimedean field and ψ an additive character of F. Let G be the group GL(2, F) and B the subgroup of triangular matrices in G. If μ_1 and μ_2 are two characters of F^{\times} we may consider the induced representation $\xi = \text{Ind}(G, B; \mu_1, \mu_2)$. There is a nonzero linear form λ on the space V of ξ such that

$$\lambda \Big[\xi \Big(egin{array}{cc} 1 & x \\ 0 & 1 \Big) f \Big] = \psi(x) \lambda(f), \quad f \in V.$$

The map which sends f to the function W, defined by

(1)
$$W(g) = \lambda[\xi(g)f],$$

is clearly bijective if ξ is irreducible, that is, if $\mu_1 \cdot \mu_2^{-1} \neq \alpha_F^{\pm 1}$ (we denote by α_F or α the module of F). If $\mu_1 \cdot \mu_2^{-1} = \alpha^{-1}$, the kernel of the map is one dimensional. If $\mu_1 \cdot \mu_2^{-1} = \alpha$ the map has trivial kernel. We recall the proof. Suppose more generally that $\mu_1 \cdot \mu_2^{-1} = \chi \alpha^u$ with $\chi \overline{\chi} = 1$ and 0 < u. Then we may choose λ in such a way that

$$W\begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix} = \hat{H}(-a)\mu_2(a)|a|^{1/2}, \qquad \hat{H}(a) = \int H(x)\psi(xa) \, dx,$$

where *H* is the element of $L^{1}(F)$ defined by

$$H(x) = f\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\right].$$

From the Fourier inversion formula, W|B implies H = 0 and then, by continuity, f = 0. Thus we have proved the injectivity of the map $f \mapsto W$ and even the fact that the W's are determined by their restriction to B.

(1.2) In this paper we extend this result (and its proof) to the group $G_r = GL(r, F), r \ge 2$. In a precise way, let Q be the upper standard

parabolic subgroup of type (r_1, r_2, \ldots, r_m) , $\sum r_i = r$, in G_r . Then Q = MUwhere U is the unipotent radical of Q and M isomorphic to $\Pi \operatorname{GL}(r_i)$. Let π_i , $1 \le i \le m$, be an irreducible representation of $\operatorname{GL}(r_i, F)$; suppose $\pi_i = \pi_{i,0} \otimes \alpha^{u_i}$, where $\pi_{i,0}$ is irreducible, unitary, *tempered* and $u_1 > u_2 > \cdots > u_m$. We refer to the induced representation

(1)
$$\xi = \operatorname{Ind}(G_r, Q; \pi_1, \pi_2, \dots, \pi_m)$$

as an induced representation of "Langlands' type". Let now N_r be the group of upper triangular matrices with unit diagonal and let θ or θ_r be the character of N_r defined by

(2)
$$\theta(n) = \prod_{i=1}^{r-1} \psi(n_{i,i+1}).$$

Then there is a nonzero linear form λ on the space of ξ and, up to a scalar factor, only one such that

(3)
$$\lambda[\xi(n)f] = \theta(n)\lambda(f).$$

Let $\mathfrak{W}(\xi; \psi)$ be the space spanned by the functions of the form (1.1.1). Our goal is to prove that the map $f \mapsto W$ is bijective, even though ξ may be reducible. In fact we prove a little more: in the terminology of [**B-Z**] (Theorem 4.9) the representation ξ has a Kirillov model. We remark that when all $\pi_{i,0}$ are supercuspidal, our result is a special case of Theorem 4.11 in [**B-Z**]. In general, one can try to reduce our result to theirs by imbedding each $\pi_{i,0}$ in a representation induced by supercuspidal ones (cf. [**Z**]). For instance, denote by B_r the group of upper-triangular matrices in G_r and by σ_r the (unique) invariant irreducible subspace of

Ind
$$(G_r, B_r; \alpha^{(r-1)/2}, \alpha^{(r-1)/2-1}, \ldots, \alpha^{-(r-1)/2}).$$

Then σ_r is a square-integrable representation (ordinary special representation). Consider now the induced representation

$$\boldsymbol{\xi} = \mathrm{Ind}(G_5, Q; \boldsymbol{\sigma}_3 \otimes \alpha^{1/2}, \boldsymbol{\sigma}_2),$$

where Q has type (3, 2). Then ξ is a subrepresentation of

$$\eta = \operatorname{Ind}(G_5, B_5; \rho_1, \rho_2, \dots, \rho_5)$$

where $\rho_3 = \alpha^{-1/2}$, $\rho_4 = \alpha^{1/2}$. Since $\rho_4 = \rho_3 \otimes \alpha$, Theorem 4.11 of [**B-Z**] does not apply to η . Thus our result does not follow directly from Theorem 4.11 of [**B-Z**]; some extra work is needed.

At any rate, our approach is more direct and we use the results of Bernstein-Zelevinski only in an auxiliary way. In more detail, let P_r be the

subgroup of matrices p in G_r of the form

$$p = \begin{pmatrix} g & * \\ 0 & 1 \end{pmatrix}, \quad g \in G_{r-1}.$$

Call τ_r the unitary representation of P_r induced (in Mackey's sense) by θ_r . Then τ_r is irreducible and the right regular representation of P_r is a multiple of τ_r ; the right regular representation of G_r has the same property, when restricted to P_r . Thus, if π is an irreducible (preunitary) square-integrable representation, then denoting by $\overline{\pi}$ the corresponding unitary representation, we see that $\overline{\pi} | P_r$ is a multiple of τ_r . (Cf., for instance, [J]). Thus π is generic, that is, there is a linear form $\lambda \neq 0$ on the space V of π satisfying (1.2.3). Since λ is unique, within a scalar factor, we see that in fact $\overline{\pi} | P_r \approx \tau_r$. Finally if η is an induced representation of the form

$$\eta = \operatorname{Ind}(G_rQ; \pi_1, \pi_2, \ldots, \pi_m),$$

where the π_i are irreducible square-integrable, then η is pre-unitary and $\bar{\eta} | P_r \simeq \tau_r$ (loc. cit.). In particular η is irreducible. This shows that if π is any irreducible pre-unitary tempered representation of G_r then $\bar{\pi} | P_r \simeq \tau_r$. This is, *essentially*, all we need to know about tempered representations (cf. §2 below).

We also remark that the problem of finding all irreducible square-integrable representations of G_r is equivalent to the problem of finding all irreducible generic ones. Indeed, if π is a square-integrable representation, then π is generic by the above remarks, thus by Theorem 9.7 of [**B**-**Z**] (classification of all generic representations) π is equivalent to an induced representation of the form

$$\boldsymbol{\xi} = \operatorname{Ind}(G_r, Q; \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \dots, \boldsymbol{\sigma}_m)$$

where the σ_i are "generalized special representations". But then Casselman's criterion for square-integrability shows that, in fact, ξ is itself a generalized special representation: this is a sketch of the proof of Theorem 9.3 stated in [**Z**] and due to I. N. Bernstein. Conversely if ξ is a representation of the form (1.2.1) then ξ has a unique irreducible quotient $J(\pi_1, \pi_2, \ldots, \pi_m)$ ("Langlands' quotient": cf. [**B-W**] XI, §2). If ξ is irreducible then our result implies that $J(\pi_1, \pi_2, \ldots, \pi_m)$ is degenerate (not generic). Since any irreducible representation π of G_r has the form $J(\pi_1, \pi_2, \ldots, \pi_r)$ for appropriate π_i , we see that if π is generic then π must be equivalent to a representation of the form (1.2.1); that is, we have another proof of Theorem 9.7 of [**B-Z**]. Finally we also remark that our result and its proof apply to the case $F = \mathbf{R}$ or \mathbf{C} as well. Naturally λ in (1.1.3) and (1.1.1) is then a linear form defined and continuous on an appropriate space of smooth vectors to which f belongs. One needs to duplicate the estimates of §2 and check that in (3.1.2), the linear form $f \mapsto W(e)$ can be taken to be λ , that is, is continuous. Furthermore in (3.2.15) the right-hand side does not have support in the set (3.2.16) but is "of rapid decrease for $|a_i|$ large". Rather than dealing with these minor changes now we prefer to wait for another occasion. We also remark that, taking again into account Langlands' classification and Theorem D of [**K**], we get, for GL(r, F), another easy proof of the difficult Theorem 6.2 of [**V**].

However, on the whole, our motivations are global. In [J-P-S] Theorem (13.6) and [G-J], §4 we used this result for GL(3). Similar applications are expected for higher r's.

(1.3) In addition to the notations already introduced we will use the following ones: q will be the cardinality of the residual field of F, \Re the ring of integers in F; K_r will be the subgroup $GL(r, \Re)$. We will denote by Z_r the center of G_r , by A_r the subgroup of diagonal matrices in G_r , by $B_r = A_r N_r$ the group of upper triangular matrices and, finally, by P_r the subgroup of matrices of the form

(1)
$$p = \begin{pmatrix} g & * \\ 0 & 1 \end{pmatrix}, \quad g \in G_{r-1}.$$

2. Estimate of tempered Whittaker functions.

(2.1) Let π be an irreducible pre-unitary tempered representation of G_r . Then there is a linear form $\lambda \neq 0$ on the space V of π satisfying (1.2.3) and, within a scalar factor, only one. We denote by $\mathfrak{W}(\pi; \psi)$ the space spanned by functions of the form (1.1.1) with f in V. We recall some known facts on the elements of $\mathfrak{W}(\pi; \psi)$.

(2.2) If W is in $\mathfrak{W}(\pi; \psi)$ then the integral

$$\Psi(s, W, \overline{W}, \Phi) = \int_{N \setminus G_r} W(g) \overline{W}(g) \Phi[(0, 0, \dots, 0, 1)g] |\det g|^s dg,$$

where Φ is in the space $S(F^r)$ of Schwartz-Bruhat functions on F^r , converges for Res $\gg 0$ and represents a rational fraction in q^{-s} without pole for Res > 0 ([J-P-S] Prop. (8.4)); in passing we note that this result is independent of the classification of all square-integrable representations.

(2.3) The unitary representation of G_r corresponding to π has the property that its restriction to the subgroup P_r is equivalent to the

representation τ_r of P_r induced (in Mackey's sense) by θ_r . It amounts to the same to say that

(1)
$$B(W, W') = \int_{N_{r-1} \setminus G_{r-1}} W \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] \overline{W'} \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] dh$$

defines a G_r -invariant form on $\mathfrak{W}(\pi; \psi)$ (cf. [J]). From this or Theorem (4.9) of [**B-Z**] it follows that any W is determined by its restriction to P_r .

(2.4) Finally, the space of these restrictions contains the space $\mathfrak{K}_0(\pi; \psi)$ of functions f on G_r , transforming on the left under θ_r , right smooth and of compact support mod N_r ([G-K] (5.2)).

(2.5) We need an estimate for the elements of $\mathfrak{W}(\pi; \psi)$. The quickest proof uses (2.2). Let δ_r denote the module of the Borel subgroup B_r in G_r . We will extend δ_r to a function on G_r which is K_r -invariant on the right. We remark that

(1)
$$\delta_r \left[\begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix} \right] = \delta_{r-1}(g) |\det g|$$

if g is in G_{r-1} . We also define a function Λ_r on G_r by setting

(2)
$$\Lambda_r \left(zn \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix} k \right) = |\det g|$$

for $z \in Z_r$, $n \in N_r$, $k \in K_r$, $g \in G_{r-1}$.

PROPOSITION. Suppose π is a tempered representation of G_r and W is in $\mathfrak{W}(\pi; \psi)$. Then, for any s > 0, there is a constant $c_s > 0$ such that $|W|^2 \leq c_s \delta_r \Lambda_r^{-s}$.

Proof. Let $\Phi \ge 0$ be an element of $S(F^r)$ which is K_r invariant on the right. Then, for $s \ge 0$, setting $\eta_r = (0, 0, \dots, 0, 1)$, we have:

(1)
$$\Psi(s, W, \overline{W}, \Phi) = \int_{K_r} dk \int_{A_{r-1}} |W|^2 \Big[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} k \Big] \delta_r^{-1} \Big[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \Big] |\det a|^s d^{\times} a$$
$$\times \int_{F^{\times}} \Phi[\eta_r bk] |b|^{rs} d^{\times} b.$$

The convergence of the integral for Res $\gg 0$ amounts to the convergence of a power series in $x = q^{-s}$,

(2)
$$\Psi(s, W, \overline{W}, \Phi) = \sum_{m \ge m_0} a_m x^m,$$

say for $0 < |x| < \varepsilon$ (cf. (4.1) and (4.2) in [J-P-S]). By (2.2), the series in (2) actually converges for 0 < |x| < 1. But then since the integrand in (1) is ≥ 0 , the integral for Ψ must actually converge for s > 0. In particular

(3)
$$\int |W|^2 \left[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} k \right] \delta_r^{-1} \left[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right] |\det a|^s d^{\times} a < +\infty$$

(for s > 0) for all $k \in K_r$. Fix k then and let us denote by f(a), $a \in (F^{\times})^{r-1} \simeq A_{r-1}$, the integrand in (3). Clearly there is an open compact subgroup, U say, of $(F^{\times})^{r-1}$ such that $f(a\epsilon) = f(a)$ for all a in $(F^{\times})^{r-1}$, ϵ in U. We deduce at once that, for all $b \in (F^{\times})^{r-1}$,

$$|f(b)| \leq c \int |f(a)| \, d^{\times} a,$$

c a positive constant. In other words the integrand in (3) is bounded. This is precisely what we wanted to prove. \Box

3. Induced representations of Langlands' type.

(3.1) Consider a representation

(1)
$$\boldsymbol{\xi} = \operatorname{Ind}(G_r, Q; \pi_1, \pi_2, \dots, \pi_m)$$

(notations as in (1.2)). A vector f in the space of ξ may be regarded as a function on G_r with values in $\bigotimes_{i=1}^m \mathfrak{W}(\pi_i; \psi)$; it may also be regarded as a scalar function on $G_r \times G_{r_1} \times \cdots \times G_{r_m}$ whose value at $(g, h_1, h_2, \ldots, h_m)$ we denote by $f(g; h_1, h_2, \ldots, h_m)$. The integral

(2)
$$W(g) = \int_{U} f(wug; e, e, \dots, e)\overline{\theta}(u) du$$

where

(3)
$$w = \begin{pmatrix} 0 & & 1_{r_1} \\ & & 1_{r_2} & \\ & \ddots & & \\ 1_{r_m} & & 0 \end{pmatrix},$$

and du is a Haar-measure on the unipotent radical U of the parabolic subgroup of type $(r_m, r_{m-1}, \ldots, r_2, r_1)$, defines an element of $\mathfrak{W}(\xi; \psi)$ provided it converges. We are going to show that it converges for all f; in fact, we are going to obtain a majorization of the function

(4)
$$h \mapsto \int f(wug; e, e, \dots, e, h) du.$$

It will be sufficient to obtain an upper bound for the integral

(5)
$$\int |f| (wug; e, e, \dots, e, h) du.$$

This integral, finite or infinite, is equal to

(6)
$$|\det h|^{-(r-r_m)/2} \int |f| \bigg[wu \bigg(\begin{matrix} h & 0 \\ 0 & 1_{r-r_m} \end{matrix} \bigg) g; e, e, \dots, e \bigg] du.$$

With notation as in (2.5), let f_0 be the function defined by

(7)
$$f_0(g) = \delta_Q^{1/2}(q) \prod_{j=1}^m \delta_{r_j}^{1/2}(g_j) \Lambda_{r_j}(g_j)^{-s_j} |\det g_j|^{u_j},$$

for g of the form $g = qk, q \in Q, k \in K_r$ and q of the form

(8)
$$q = \begin{pmatrix} g_1 & & * \\ & g_2 & & \\ & & \ddots & \\ 0 & & & g_m \end{pmatrix}, \quad g_i \in G_{r_i}.$$

Here (s_1, s_2, \ldots, s_m) is an *m*-tuple of positive numbers to be chosen below. Next we apply Proposition (2.5) to the (quasi-) tempered representations π_i $(1 \le i \le m)$ to conclude that given $g_0 \in G_r$, there is a constant c > 0 such that

(9)
$$|f|(gg_0; e, e, \dots, e) \le cf_0(g).$$

Thus all we need to do is to obtain an upper bound for the function

(10)
$$|\det h|^{-(r-r_m)/2} \int f_0 \left[wu \begin{pmatrix} h & 0 \\ 0 & 1_{r-r_m} \end{pmatrix} \right] du.$$

This is actually equal to

(11)
$$\int f_0(wu) \, du \, \delta_{r_m}^{1/2}(h) \, | \, \det h \, |^{u_m} \Lambda_{r_m}(h)^{-s_m}.$$

We are thus reduced to proving that

(12)
$$\int f_0(wu) \, du < +\infty.$$

For that let V denote the unipotent radical of the lower parabolic subgroup of G_r of type (r_1, \ldots, r_m) . Then the integral (11) is the same as the integral

(13)
$$\int_V f_0(v) \, dv.$$

Next for q a diagonal matrix of the form (8), we have

$$\delta_{B}(q) = \delta_{Q}(q) \prod_{1 \leq j \leq m} \delta_{r_{j}}(g_{j}),$$

from which we see that for $q = \text{diag}(a_1, a_2, \dots, a_r)$

(14)
$$f_0(q) = \delta_B^{1/2}(a) |a_1 a_2 \cdots a_{r_1 - 1}|^{u_1 - s_1} |a_{r_1}|^{(r_1 - 1)s_1 + u_1} \cdot |a_{r_1 + 1} \cdots a_{r_1 + r_2 - 1}|^{u_2 - s_2} |a_{r_1 + r_2}|^{(r_2 - 1)s_2 + u_2} \cdots$$

We have seen then that to insure the convergence of (13) it suffices to choose the $s_i > 0$ so that

(15)
$$u_1 + (r_1 - 1)s_1 > u_1 - s_1 > u_2 + (r_2 - 1)s_2 > u_2 - s_2 > \cdots$$

Each inequality in (15) is either true or can be made true by making the s_i positive and sufficiently small. We have now proved that the integral in (2) is indeed convergent and, moreover, obtained the inequality

(16)
$$\int_{U} |f| (wug; e, e, \dots, e, h) \, du \le c_v \delta_{r_m}^{1/2}(h) \Lambda_{r_m}(h)^{-v} |\det h|^{\mu_m},$$

where v is any sufficiently small positive number and w is given by (3).

(3.2) PROPOSITION. Let ξ be the representation (3.1.1). Then the map $f \mapsto W$ from the space of ξ to $\mathfrak{W}(\xi; \psi)$ defined by (3.1.2) is bijective. Moreover, if $W \in \mathfrak{W}(\xi; \psi)$ then the relation $W | P_r = 0$ implies W = 0.

Proof. Our assertion is trivial for m = 1. Thus we may assume m > 1 and our assertion proved for m - 1. Consider then the induced representation

(1)
$$\boldsymbol{\xi}^* = \operatorname{Ind}(G_r, Q^*; \boldsymbol{\xi}', \pi_m),$$

where

(2)
$$\xi' = \operatorname{Ind}(G_{r-r_m}, Q'; \pi_1, \pi_2, \dots, \pi_{m-1}),$$

where Q^* has type $(r - r_m, r_m)$ and Q' has type $(r_1, r_2, \ldots, r_{m-1})$. Furthermore, by the induction hypothesis, we may regard ξ' as acting on $\mathfrak{W}(\xi'; \psi)$. Thus we may regard an element f^* of ξ^* as a function on G_r with values in $\mathfrak{W}(\xi'; \psi) \otimes \mathfrak{W}(\pi_m; \psi)$, or as a scalar function on $G_r \times G_{r-r_m} \times G_{r_m}$. We denote its value at (g, h_1, h_2) by $f^*(g; h_1, h_2)$. Of course the representations ξ and ξ^* are equivalent. If f, as in (3.1), is in the space of ξ then the exact relation between f and f^* is given by

(3)
$$f^*[g; e, e] = \int_{V'} f\left[\begin{pmatrix} w' & 0\\ 0 & 1_{r_m} \end{pmatrix} \begin{pmatrix} v & 0\\ 0 & 1_{r_m} \end{pmatrix} g; e, e, \dots, e\right] \overline{\theta}_{r-r_m}(v) dv,$$

where

(4)
$$w' = \begin{pmatrix} 0 & & 1_{r_1} \\ & 1_{r_2} & \\ & \ddots & & \\ 1_{r_{m-1}} & & 0 \end{pmatrix},$$

and V' is the unipotent radical of the (upper) parabolic in G_{r-r_m} of type $(r_{m-1}, r_{m-2}, \ldots, r_1)$. Writing (11.2) as an iterated integral, we readily find that in terms of f^* ,

(5)
$$W(g) = \int_{V^*} f^*[w^* vg; e, e] \bar{\theta}_r(v) \, dv,$$

where now

(6)
$$w^* = \begin{pmatrix} 0 & 1_{r-r_m} \\ 1_{r_m} & 0 \end{pmatrix},$$

and V^* is the unipotent radical of the parabolic in G_r of type $(r_m, r - r_m)$. Of course the convergence of the integral (3.1.2) implies that of both integrals (3) and (5) (for all $g \in G_r$). Since the map $f \mapsto f^*$ is bijective, all of our assertions will be proved if we show

(7)
$$W|P_r = 0$$
 implies that $f^* = 0$.

Assume then that $W|P_r = 0$. Explicitly this reads

(8)
$$\int f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; e, e \right] \psi(\operatorname{tr}(\varepsilon x)) \, dx = 0$$

for all $p \in P_r$. Here

(9)
$$\epsilon = \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 $(r - r_m \text{ rows}, r_m \text{ columns}).$

Replacing p by

$$\begin{pmatrix} g_1 & 0 \\ 0 & 1_{r-r_m} \end{pmatrix} p,$$

where $g_1 \in G_{r_m}$, and changing variables, we can write this condition in the form

(10)
$$\int f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; e, g_1 \right] \psi(\operatorname{tr}(\varepsilon g_1 x)) \, dx = 0,$$

for all $p \in P_r$, $g_1 \in G_{r_w}$. We can also replace g_1 by hg_1 where $h \in P_{r_w}$. Note that $\varepsilon h = \varepsilon$. Thus if we set, for $h \in G_{r_{w}}$,

(11)
$$F(h) = \int f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; e, hg_1 \right] \psi(\operatorname{tr}(\varepsilon g_1 x)) dx,$$

then we see that the function F defined on G_{r_m} has a zero restriction to P_{r_m} . At this point we may assume $u_m = 0$. We are going to show that F is actually zero. To see that we first need a majorization of F. Using (3) to express f^* in terms of f we obtain at once from (3.1.16):

(12)
$$|F(h)| \le c_v \delta_{r_m}^{1/2}(h) \Lambda_{r_m}(h)^{-v}$$

again for v > 0 sufficiently small, and all $h \in G_{r_m}$. Thus, for $W' \in \mathfrak{M}(\pi_m; \psi)$, we have the inequality

(13)
$$\int_{N_{r_{m-1}} \setminus G_{r_{m-1}}} |FW'| \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] dh$$

$$\leq c_v \int_{N_{r_{m-1}} \setminus G_{r_{m-1}}} |W'| \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] \delta_{r_m}^{1/2} \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] \Lambda_{r_m} \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right]^{-v} dh.$$

We claim now that both integrals are finite. It suffices to check that the integral

(14)
$$\int_{\mathcal{A}_{r_{m-1}}} W' \left[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right] \delta_{r_{m-1}}^{-1}(a) \delta_{r_m}^{1/2} \left[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right] |\det a|^{-v} d^{\times} a$$

is finite for any v > 0. Now by (2.5) we have

(15)
$$\left| W'\left[\begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix} \right] \right| \le c'_{\upsilon} \delta^{1/2}_{r_m} \left[\begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix} \right] |\det a|^{-\upsilon}.$$

Moreover the support of $W'[\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}]$ is contained in the set C defined by the conditions

(16)
$$a = \operatorname{diag}(a_1 a_2 \cdots a_{r-1}, a_2 \cdots a_{r-1}, \dots, a_{r-1}), |a_i| \le c_i,$$

for suitable c_i . Since

$$\delta_{r_m}\left[\begin{pmatrix}a&0\\0&1\end{pmatrix}\right] = \delta_{r_{m-1}}(a) |\det a|,$$

we are reduced to considering the integral $\int_c |\det a|^{1-v} d^{\times} a$. This is indeed finite, provided 0 < v < 1. Our argument shows in fact that, if in

(17)
$$\int_{N_{r_{m-1}}\setminus G_{r_{m-1}}} FW'\left[\begin{pmatrix}h&0\\0&1\end{pmatrix}\right] dh,$$

we replace F by its expression (11), then the resulting double integral converges. Thus (17) can be written as

(18)
$$\int \psi(\operatorname{tr}(\varepsilon g x)) \, dx \int f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; \, e, \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} g \right] \\ \cdot \overline{W'} \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] \, dh.$$

Next, since we have taken $u_m = 0$, the representation π_m of G_r is pre-unitary. Thus (2.1.2) defines an *invariant* Hermitian form on $\mathfrak{V}(\pi_m; \psi)$. Hence the inner integral in (18) can also be written as

$$\int f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; e, \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] \overline{W'} \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} g^{-1} \right] dh$$

Since W' is arbitrary we can replace W' by any of its right translates. We get that

(19)
$$\int \overline{W'} \left[\begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] dh \int \psi(\operatorname{tr}(\varepsilon g x)) dx$$
$$\cdot \int f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; e, \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \right] = 0$$

for all $g \in G_{r_m}$ and all $p \in P_r$. Here W' can be taken arbitrary in $\mathcal{K}_0(\psi)$ (cf. (2.2.1)). Thus we finally get

(20)
$$\int \psi(\operatorname{tr}(\varepsilon g x)) \, dx \, f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; \, e, \, e \right] = 0,$$

again for all $g \in G_{r_m}$ and $p \in P_r$. But tr(εgx) = yx_1 , where y is the last row of $g \in G_{r_m}$ and x_1 is the first column of x. Thus we get at first for all $y \in F^{r_m}$ nonzero, and then for all y, the relation

(21)
$$\int \psi(yx_1) f^* \left[w^* \begin{pmatrix} 1_{r_m} & x \\ 0 & 1_{r-r_m} \end{pmatrix} p; e, e \right] dx = 0.$$

Since the integral (21) is absolutely convergent, we may apply Fourier inversion to conclude that

(22)
$$\int f^* \left[w^* \begin{pmatrix} 1_{r_m} & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1_{r-r_m-1} \end{pmatrix} p; e, e \right] dx = 0,$$

for all $p \in P_r$.

We shall now prove that, for any j with $1 \le j \le r - r_m - 1$, the relation

(23)
$$\int f^* \left[w^* \begin{pmatrix} 1_{r_m} & 0 & x \\ 0 & 1_j & 0 \\ 0 & 0 & 1_{r-r_m-j} \end{pmatrix} p; e, e \right] dx = 0,$$

for all $p \in P_r$, implies the same relation with *j* replaced by j + 1. For this let

$$p' = \begin{pmatrix} g & 0 \\ 0 & 1_{r-r_m-J} \end{pmatrix},$$

where g is an element of G_{r_m+j} of the form

$$g = egin{pmatrix} 1_{r_m} & 0 & 0 \ 0 & 1_{j-1} & 0 \ z & 0 & 1 \end{pmatrix},$$

z being a row of length r_m . Our hypothesis on j implies $p' \in P_{r_m}$. Thus we can replace p by p'p in (23). Then, after a simple computation, we get

(24)
$$\int f^* \left[\begin{pmatrix} 1_j & vx & 0 \\ 0 & 1_{r-r_m-j} & 0 \\ 0 & 0 & 1_{r_m} \end{pmatrix} w^* \begin{pmatrix} 1_{r_m} & 0 & x \\ 0 & 1_j & 0 \\ 0 & 0 & 1_{r-r_m-j} \end{pmatrix} p; e, e \right] dx = 0.$$

Here v is the $r_m \times j$ matrix given by

$$\boldsymbol{v} = \begin{bmatrix} 0\\ -z \end{bmatrix}.$$

Since f^* belongs to the space of ξ^* , this reduces to the relation

(25)
$$\int f^* \left[w^* \begin{pmatrix} 1_{r_m} & 0 & x \\ 0 & 1_j & 0 \\ 0 & 0 & 1_{r-r_m-j} \end{pmatrix} p; e, e \right] \psi(-zx_1) dx = 0;$$

as before x_1 is the first column of x. If we again use Fourier inversion, we arrive at (23) with *j* replaced by j + 1.

Thus we have now proved that $f^*[w^*p; e, e] = 0$ for all $p \in P_r$. Replacing p by

$$\begin{pmatrix} 1_{r_m} & 0\\ 0 & g \end{pmatrix} p, \quad g \in P_{r-r_m},$$

we get

(26)
$$f^*[w^*p; g, e] = 0$$

for all $g \in P_{r-r_m}$, $p \in P_{r_m}$. Since the function $g \mapsto f^*[w^*p; g, e]$ belongs to $\mathfrak{W}(\xi'; \psi)$, at this point we can apply the second part of our induction hypothesis to the representation ξ' to conclude that

(27)
$$f^*[w^*p; g, e] = 0$$

for all $p \in P_{r_m}$ and now for all $g \in G_{r-r_m}$. But then (27) implies that $f^*[uw^*q; e, e] = 0$ for all q in the parabolic subgroup of type $(r_m, r - r_m)$ and all u in the unipotent radical of Q^* . By continuity we get $f^*[g; e, e] = 0$ for all g, that is, f = 0.

References

- [B-Z] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups, Ann. Scient. Éc. Norm. Sup., 4^e série, t. 10 (1977), 441–472.
- [B-W] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies, No. 94, Princeton University Press, 1980.
- [G-J] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Éc. Norm. Sup., 4^e série, t. 11 (1978), 471–542.
- [G-K] J. M. Galfand and D. A. Kazdan, Representations of GL(n, K) where K is a Local Field, in Lie Groups and Their Representations, John Wiley and Sons, 1975, pp. 95–118.
- H. Jacquet, Generic Representations, in Non-commutative harmonic analysis, Marseille-Luminy, 1976, Springer-Verlag, Lecture Notes No. 587, (1976), 376– 378.
- [J-P-S] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Automorphic forms in GL(3) I, II, Annals of Math., 109 (1979), 169-212 and 213-518.
- [J-P-S] _____, On Rankin Selberg convolution, to appear.
- [K] B. Kostant, On Whittaker vectors and representation theory, Inventiones Math., 48 (1978), 101-184.

120 HERVÉ JACQUET AND JOSEPH SHALIKA

- [V] D. A. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Inventiones Math., 48 (1978), 75–98.
- [Z] A. V. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Scient. Éc. Norm. Sup., 4^e série, t. **13** (1980), 165–210.

Received October 10, 1981 and in revised form July 19, 1982. This research was partially supported by National Science Foundation Grants: MCS 79-01712 and MCS 79-13799.

COLUMBIA UNIVERSITY NEW YORK, NY 10027