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I. Introduction

Let G be a reductive group over a number field F , and let H ⊂ G be a subgroup
obtained as the fixed point set of an involution θ. Then the following period integral

ΠH(ϕ) =
∫

H(F )\H(A)1
ϕ(h) dh

converges absolutely for any cusp form ϕ on G(A). Our first goal in this paper is
to develop a method for defining and computing ΠH(ϕ) where ϕ is a more general
automorphic form such as an Eisenstein series. In this case, the integral need not
converge and we define it by means of a regularization procedure. Our second goal
is to use this regularized period to obtain explicit formulas for the (convergent)
period ΠH(ΛTE) where ΛTE is a truncated Eisenstein series.

Before describing the contents of this article, let us recall some motivation. The
periods ΠH(ΛTE) are of interest because they appear in the relative trace formula
(RTF) in a role analogous to that played by inner products of truncated Eisenstein
series in the Arthur-Selberg trace formula. They arise when one computes the
contribution of the continuous spectrum to the relative trace formula (cf. [J2],
[J3] for an overview of the RTF). The relative trace formula itself has been used
in a variety of applications, beginning with the work of Jacquet-Lai on periods
of Hilbert modular forms ([JL], [LA1], also [FH]) and Jacquet on Waldspurger’s
theorems [J1] (cf. also [GU]). It provides a general tool for studying distinguished
representations. Recall that a cuspidal representation (π, Vπ) of G is said to be
distinguished by H if ΠH(ϕ) 6= 0 for some ϕ ∈ Vπ . In some cases, periods of this
type have an interesting topological or arithmetic interpretation (cf. [HLR], [BR]).
Actually, in applications, the notion of period integral must be suitably refined: in
general, it may have the form:∫

ZH(F )\H(A)

ϕ(h)χ(h) dh

where Z is a central subgroup of the ambient group and χ is a character of H(A)
trivial on H(F ). In many cases, it should be possible to characterize the H-
distinguished cuspidal representations as images with respect to a functorial trans-
fer to G from a third group G′. General results of this type, which are known in
many cases, should eventually follow from a comparison of suitable relative trace
formulas on G and G′. The RTF thus provides a link between certain cases of the
functoriality conjecture and period integrals.

A candidate for G′ over the algebraic closure of F was proposed in [JLR]. In [G]
this has been refined to a description of G′ as an F -group. Suppose, for example,
that G = ResE/F H where E/F is a quadratic extension and θ is the involution
induced by Galois conjugation relative to E/F . This is the case we focus on in
this article (although our methods generalize; we intend to deal with the general
case in a future article). If H is also simple and split, then G′ will be either H
itself or the unique quasi-split outer form of H that splits over E, according as −1
lies in the Weyl group of H or not ([G]). Thus if H = GL(n)/F , then G′ is the
quasi-split unitary group U(n) (see also [F1] and [F2]) and if H = Sp(n)/F , then
G′ = Sp(n)/F . The relative trace formula in this situation is based on the equality
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of geometric and spectral expansions of the integral∫
H(F )\H(A)1

∫
N(E)\N(AE)

Kf(h, n) ψ(n) dh dn(1)

where Kf (x, y) is the automorphic kernel attached to a function f on G(A), N is
the unipotent radical of the standard Borel subgroup, and ψ is a non-degenerate
character ofN(E)\N(AE). In the spectral development of (1), an orthonormal basis
{ϕ} for the space of cusp forms contributes∑

{ϕ}
ΠH(ρ(f)ϕ)Wϕ(e)

where Wϕ(e) is the value at e of the Fourier coefficient of ϕ with respect to ψ. To
evaluate the contribution of the continuous spectrum, we are led to truncate the
continuous part of the kernel in the first variable and this leads to an integral involv-
ing the truncated periods ΠH(ΛTE) where E is an Eisenstein series. Of course, it is
at this stage in the development of the ordinary Arthur-Selberg trace formula that
the inner products of truncated Eisenstein series appear. Unlike the Arthur-Selberg
situation, the integral (1) itself is absolutely convergent. Nevertheless, truncation is
needed to obtain an explicit formula. See [GJR] for an example where the formulas
for ΠH(ΛTE) are used in this context. That work considers the case G = GL(3)
and compares (1) with the Kuznetzov trace formula for the group G′ = U(3). The
comparison is used in [FGJR] to characterize H-distinguished representations and
to prove that a cuspidal L -packet on U(3) (which is not a non-tempered A-packet)
contains a generic element.

We now describe our results in greater detail. The first section deals with the
meromorphic continuation of the integral of an exponential polynomial over a cone.
This is used in Section IV to show that in the case G =ResE/FH with E/F qua-
dratic, it is possible to define a regularized period ΠH(ϕ) for automorphic forms
whose exponents satisfy a certain mild restriction. The regularization is based on
Arthur’s truncation operators ([A2]) and their associated combinatorics. However,
in the context of a pair (G,H), there is more than one way to define the trunca-
tion. For example, one can apply Arthur’s truncation operator ΛT relative to G
(cf. [LE], [LA2]) or one can restrict ϕ and apply Arthur’s truncation ΛT operator
relative to H. While the former is the more natural of these two, we use a third,
mixed truncation ΛT

m, intermediate between them (in fact, this was used in [JL] in
the GL(2) case). This truncation appears to be best suited to the study of period
integrals. The next step is to compute the period of a truncated Eisenstein series.
In §8, we obtain a general formula for periods of the mixed truncation∫

H(F )\H(A)1
ΛT

mϕ(h) dh

in terms of the regularized periods of the constant terms of ϕ.
The last two sections of the article are devoted to more explicit results for

H = GL(n)/F . In Section VI, we compute the regularized period ΠH(E(g, ϕ, λ))
for all cuspidal Eisenstein series (Theorem 23) and show, in particular, that it van-
ishes unless E(g, ϕ, λ) is induced from cuspidal representation σ1⊗σ2 of a parabolic
subgroup of type (n

2 ,
n
2 ) with σ∗1 ≈ σ2. We then obtain an explicit formula express-

ing ΠH(ΛT
mE(g, ϕ, λ)), for any cuspidal Eisenstein series, in terms of certain linear

functionals J(ξ, ϕ, λ) which we call intertwining periods. They are defined for λ in
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a suitable cone by an absolutely convergent integral

J(ξ, ϕ, λ) =
∫

Hη(A)\H(A)

∫
Mη(F )\Mη(A)1

e〈λ+ρP ,HPE
(ηh)〉 ϕ(mηh) dm dh.

Here ξ, η ∈ GLn(E) are elements such that ηη̄−1 = ξ, Hη = H∩η−1PEη where PE

is the parabolic subgroup ofG from which the Eisenstein series is induced, andMη =
ηHη−1∩MPE where MPE is the Levi factor of PE . The name “intertwining period”
seems appropriate for several reasons. First, the map ϕ → J(ξ, ϕ, λ) is an H(A)-
invariant functional on the induced representation IndG

Pσ⊗eλ and so, by Frobenius
reciprocity, defines an intertwining operator. Furthermore, the J-functionals have
several properties in common with the standard intertwining operators M(s, λ).
Our explicit formula for the period integral∫

H(F )\H(A)1
ΛT

mE(h, ϕ, λ) dh(2)

is ∑
(Q,s)∈G(P,σ)

vQ
e〈(sλ)Q,T〉∏

α∈∆Q

〈
(sλ)Q , α

∨
〉J(ξQ,M(s, λ)ϕ, (sλ)Q

P ′ ),(3)

where Q and s range over certain sets of parabolic subgroups and Weyl group
elements, respectively, and vQ is a certain volume (see Section VIII for other unex-
plained notation). This formula is clearly analogous to Langlands’ formula [A2] for
the inner product of cuspidal Eisenstein series induced from parabolic subgroups P
and P ′, which expresses the inner product (ΛTE(λ, ϕ),ΛTE(µ, ψ)) as a sum∑

Q

∑
s∈Ω(P,Q)
t∈Ω(P ′,Q)

e〈sλ+tµ,T 〉∏
α∈∆Q

〈sλ+ tµ, α∨〉 (M(s, λ)ϕ,M(t, µ)ψ).(4)

Like the standard intertwining operators, the J-functionals can be meromorphically
continued and satisfy a set of functional equations. These are described in Section
VII, again for the case H = GL(n)/F . The functional equations take the form

J(ξ, ϕ, λ) = J(sξs−1,M(s, λ)ϕ, sλ)

for elements s belonging to a certain subset of the Weyl group which we describe

combinatorially in §17. For example, if n = 2 and ξ =
(

0 1
1 0

)
, then Hη = T is

a torus isomorphic to E∗ in H. In this case, the regularized period ΠH(E(g, ϕ, λ))
is equal to J(ξ, ϕ, λ). For the choice ϕ ≡ 1,

J(ξ, ϕ, λ) =
∫

T (F )\GL2(AF )

e〈λ+1,H(ηh)〉 dh

and we have the following explicit formula:

J(ξ, ϕ, λ) =
1
2
vol(Z(A)T (F )\T (A))

L(λ, 1F )
L(λ+ 1, ωE/F )

where ωE/F is the order two character attached to E/F and L(λ, 1F ) is the zeta-
function of F with archimedean Euler factors. The functional equation in this case
reduces to

J(ξ, ϕ, λ) = m(ξ, λ)J(ξ, ϕ,−λ)
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wherem(ξ, λ) = L(λ, 1E)/L(λ+1, 1E). In §20 we show that the intertwining period
factors as a product of local intertwining periods and we compute the local period
in the unramified case in terms of Asai L-functions.

It is formula (3) which will be useful for applications to the relative trace formula.
For example, if H = GL(2), then (2) is equal to

eλT

λ

∫
K

ϕ(k)dk +
e−λT

−λ
∫
K

M(ξ, λ)ϕ(k)dk

+
∫

T (F )\GL2(AF )

e〈λ+1,H(ηh)〉 ϕ(ηh)dh

for a suitable normalization of measures. Here ξ is the non-trivial Weyl group
element, ηη̄−1 = ξ, and K is a maximal compact subgroup of GL2(AF ). This
special case was first found by Jacquet and Lai.

It is possible to compute (2) using ΛT for G in place of ΛT
m. This calculation,

involving multi-dimensional residues and contour shifts, follows the main lines of
the traditional proof of Langlands inner product formula [A2], although it is sub-
stantially more complicated. We note that a similar analysis is attempted in [F3].
In the case (GL(n)/E ,GL(n)/F ), one finds that for any automorphic form ϕ, the
period integrals of ΛT

mϕ and ΛTϕ are the same.
The regularization of integrals is also useful in providing a more conceptual

approach to the formulas for inner products of truncated Eisenstein series that
occur in the Arthur-Selberg trace formula. In Section V, we describe the results
one obtains by applying the above methods to the case of arbitrary G and θ = id,
so that H = G. The problem is to define a regularization of the integral∫

G(F )\G(A)1
ϕ(g) dg.(5)

As in the case of period integrals, this is possible for automorphic forms ϕ whose
exponents satisfy a certain mild restriction. The regularized integral can then be
used to derive a formula for the (convergent) integral∫

G(F )\G(A)1
ΛTϕ(g) dg.

These results can be extended to yield a formula for the inner product of truncated
automorphic forms∫

G(F )\G(A)1
ΛTϕ(g) ΛTψ(g) dg(6)

=
∑
P⊂G

(−1)d(P )−d(G)

∫ ∗

P (F )\G(A)1
ψP (g)ϕP (g)τ̂P (H(g)− T )dg.

The terms on the right are regularized inner products of the constant terms of ϕ and
ψ and hence they are denoted with a star. This should be seen as a generalization
of Langlands’ formula for the inner product of truncated cuspidal Eisenstein series
([L], [A2]). In fact, Langlands’ formula (4) follows directly from (6), the standard
formula for the constant term of an Eisenstein series and Lemma 16. Thus (6)
provides a conceptual proof of Langlands’ formula. Note that (6) is a formula
for the period of a truncated automorphic form on G × G relative to the period
subgroup G embedded diagonally. We omit the proofs in Section V because they
are nearly identical, step-by-step, with those in Section IV. It is also possible to
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extend this method to give a new proof of Arthur’s asymptotic formula [A4] for the
inner product of truncated non-cuspidal Eisenstein series, where the main term is
what is anticipated by the cuspidal case ([LP]).

Period integrals have been investigated from different points of view in recent
years in a number of works by several authors, of which we mention the following
sample: [F2], [F4], [FJ], [GRS], [JI], [JR], [JY], [MA], [SA]. A regularized integral
for GL(2) was developed by Zagier [Z], who gave a variety of applications, and
was reformulated by Casselman [C]. As mentioned above, our general version is
based on the combinatorics of Arthur’s truncation operators. We are grateful to
J. Bernstein and W. Casselman for pointing out the relevance of regularization to
our problem. We are also grateful to J. Bernstein for helpful conversations, and for
providing the additional key insight that, in many cases, the regularized integral
of an Eisenstein series vanishes for simple representation-theoretic reasons (Lemma
16).

II. Integrals over cones

Let V be a real finite-dimensional vector space of dimension n. Let V ∗ be the
space of complex linear forms on V and V ∗

R the space of real linear forms. We
denote by S(V ∗) the symmetric algebra of V ∗, that is, the space of polynomial
functions on V . Likewise we denote by S(V ) the symmetric algebra of V ⊗ C. An
exponential polynomial function on V is a function of the form:

f(x) =
∑

1≤i≤r

e〈λi,x〉Pi(x)

where the λi are distinct elements of V ∗ and the Pi(x) are non-zero elements of
S(V ∗). The λi are then uniquely determined and called the exponents of f . We
recall the proof of uniqueness.

For X ∈ V we denote by DX the corresponding vector field:

DXg(x) =
d

dt
g(x+ tX)

∣∣∣∣
t=0

.

For λ ∈ V ∗ we have:

DXe
〈λ,x〉 = 〈λ,X〉e〈λ,x〉.

We can define the operators DX for X ∈ S(V ) by multiplicativity. Suppose that
P is in S(V ∗). There is an integer d (total degree of P ) such that for all X ∈ V :

Dd
XP = 0.

Now let g(x) = e〈λ,x〉P (x). Then

(DX − 〈λ,X〉)g(x) = e〈λ,x〉DXP (x).

Thus

(DX − 〈λ,X〉)dg(x) = 0.

We will need the analogous fact for finite difference operators. Denote by ∆X the
finite difference operator defined by:

∆Xf(x) = f(x+X)− f(x).

Then: (
∆X − (e〈λ,X〉 − 1)

)
e〈λ,x〉P (x) = e〈λ,x〉e〈λ,X〉∆XP (x).
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Thus if d is the total degree of P , then(
∆X − (e〈λ,X〉 − 1)

)d

e〈λ,x〉P (x) = 0.

Now if f has the form

f(x) =
∑

1≤i≤r

e〈λi,x〉Pi(x),

as above, choose X ∈ V such that the numbers 〈λi, X〉 are distinct. By the Chinese
remainder theorem, for each i, there exists a polynomial Qi in one variable such
that

Qi(DX)f(x) = e〈λi,x〉Pi(x).(7)

Similarly, if the numbers e〈λi,X〉 are distinct there is for each i a polynomial in one
variable Ri such that

Ri(∆X)f(x) = e〈λi,x〉Pi(x).

This shows that the λi are uniquely determined by f.
By a cone in V we shall mean a closed subset of the form

C = {x ∈ V : 〈µi, x〉 ≥ 0}(8)

where {µi} is a basis of V ∗
R . Let ei be the dual basis of V . We will say that λ ∈ V ∗

is negative with respect to C if Re 〈λ, ej〉 < 0 for each j = 1, ..., n. We will say that
λ is non-degenerate with respect to C if 〈λ, ej〉 6= 0 for each j = 1, ..., n. Our goal
is to define the regularized integral of an exponential polynomial function over a
cone.

Lemma 1. The function

f(x) =
∑

i

e〈λi,x〉Pi(x)

is integrable over C if and only if λi is negative with respect to C for all i.

Proof. The condition is clearly sufficient. Moreover it is necessary if r = 1. In
general, suppose that f is integrable over C. Choose X such that the numbers
e〈λi,X〉 are distinct, and, in addition, the numbers 〈µj , X〉 are positive. Then X+C
is contained in C. It follows that the function ∆Xf is integrable over C. Hence the
functions Ri(∆X)f are also integrable over C. Thus each term in the sum over i is
integrable over C and our assertion follows.

To define the regularized integral over C we study the integral

IC(λ)(f) :=
∫
C
f(x)e−〈λ,x〉dx.

The integral converges absolutely for λ in the open set

U = {λ ∈ V ∗ : Re 〈λi − λ, ej〉 < 0 for all 1 ≤ i ≤ r; 1 ≤ j ≤ n}.
We analytically continue this integral as follows. First, in the one-variable case, we
have for Re(λ) > 0 and any polynomial P in one variable:∫ +∞

0

e−λxP (x)dx =
∑
m≥0

(DmP )(0)
λm+1

.
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Of course the sum on the right is finite. In general, fix an index k. Let Ck be the
intersection of C and the hyperplane Vk = {x| 〈µk, x〉 = 0}. In the integral we can
write x = 〈µk, x〉 ek + y with y ∈ Vk and then, for a suitable choice of the Haar
measures:

IC(λ)(f) =
∑

1≤i≤r

∑
m≥0

1

〈λ− λi, ek〉m+1

∫
Ck

e−〈λ−λi,y〉(Dm
ek

)Pi(y)dy.

This formula gives the analytic continuation of IC(λ)(f) to the tube domain Uk

defined by:

Re 〈λi − λ, ej〉 < 0 for j 6= k , 1 ≤ i ≤ r.
The analytic continuation is a meromorphic function with hyperplane singularities,
the singular hyperplanes being:

Hk,i = {λ| 〈λ, ek〉 = 〈λi, ek〉} , 1 ≤ i ≤ r.
Since this is true for all 1 ≤ k ≤ n, the function IC(λ)(f) has analytic contin-
uation to V ∗ by Hartogs’ lemma. The continuation is a meromorphic function
with hyperplane singularities. The singular hyperplanes are the hyperplanes Hi,k,
1 ≤ k ≤ n , 1 ≤ i ≤ r. Of course, we could also use induction on n and the above
formula to obtain an explicit expression for the integral.

Lemma 2. Suppose that f is absolutely integrable on C. Then IC(λ)(f) is holo-
morphic at 0 and IC(0)(f) is the integral of f over C.
Proof. By the previous lemma, if f is integrable over C, then each exponent λi

is negative with respect to C. Thus the domain of convergence U of the integral
I(λ)(f) contains the point 0 and our assertion follows.

Lemma 3. The function IC(λ)(f) is holomorphic at λ = 0 if and only if for all i,
λi is non-degenerate with respect to C, i.e., 〈λi, ek〉 6= 0 for every pair (i, k).

Proof. If the condition of the lemma is satisfied, then 0 does not belong to any of
the hyperplanes Hi,k. Thus the function is holomorphic at 0. To show conversely
that the condition is necessary, it suffices to show that each hyperplane Hi,k is
indeed a singular hyperplane for the function IC(λ)(f). Assume that some Hi0,k is
not singular. Let c = 〈λi0 , ek〉. Then∑

{i|λi(ek)=c}

∑
m≥0

1
〈λ− λi, ek〉m+1

∫
Ck

e−〈λ−λi,y〉(Dm
ek

)Pi(y)dy

must be identically zero for λ ∈ Uk. In turn this implies:∑
{i|λi(ek)=c}

∫
Ck

e−〈λ−λi,y〉(Dm
ek

)Pi(y)dy = 0

for each m. By the Fourier inversion formula this implies:∑
{i|〈λi,ek〉=c}

e−〈λ−λi,y〉(Dm
ek

)Pi(y) = 0

for all y ∈ Vk and all m. Note that in this formula the linear forms λi have distinct
restrictions to the hyperplane Vk. It follows that for each index i with 〈λi, ek〉 = c
we have:

(Dm
ek

)Pi(y) = 0
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for each m ≥ 0 and each y ∈ Vk. This relation implies Pi = 0 for each i with
〈λi, ek〉 = c. This is a contradiction and the lemma follows.

We observe that we can obtain the analytic continuation of the integral in a
more direct way. This is useful if one wishes to study how the integral depends on
parameters. In one variable we have the formula:∫ ∞

0

e−λxDmf(x)dx =
∑

0≤u≤m−1

λm−1−u(Duf)(0) + λm

∫ ∞

0

e−λxf(x)dx.

In general if T is a polynomial in one variable and T (X) =
∑

i tiX
i we set:

T̃ (X,λ) =
∑

i

ti
∑

0≤u≤i−1

λi−1−uXu.

Then ∫ ∞

0

e−λx(T (D)f)(x)dx = T̃ (D,λ)f(0) + T (λ)
∫ ∞

0

e−λxf(x)dx.

In particular, if T (D)f = 0, then∫ ∞

0

e−λxf(x)dx = −
(
T̃ (D,λ)f

)
(0)

T (λ)
.

This formula gives the analytic continuation of the integral. If T (0) 6= 0, then the
integral is holomorphic at λ = 0. If T (0) = 0, then T (X) = XS(X) where S is
another polynomial. The value of the numerator at λ = 0 is S(D)f(0). Thus 0 is
a pole unless S(D)f(0) = 0. Since DS(D)f = 0 this is equivalent to S(D)f = 0.

The generalization to higher dimensions is straightforward. Suppose that f is
an exponential polynomial function and for k = 1, ..., n there exists a polynomial
Tk in one variable such that

Tk(Dek
)f = 0.

Then

IC(λ)(f) = −
∫
Ck

(
T̃k(Dek

, 〈λ, ek〉)f
)

(y)

Tk(〈λ, ek〉) dy.

Using induction on n we obtain:

IC(λ)(f) = (−1)n

[∏
k T̃k(Dek

, 〈λ, ek〉)f
]
(0)∏

k Tk(〈λ, ek〉) .

This can be used to give the analytic continuation of IC(λ)(f). The singular hyper-
planes have the form λ(ek) = zk where 1 ≤ k ≤ n and zk is a root of the polynomial
Tk. Thus if Tk(0) 6= 0 for 1 ≤ k ≤ n, then IC(λ)(f) is holomorphic at λ = 0.

Note that if 0 is a root of Tk, then Tk(X) = XSk(X) where Sk is another
polynomial. As in the one-variable case the hyperplane λ(ek) = 0 is then singular
unless Sk(Dek

)f = 0.
Although it is not needed in the sequel, we remark that with this approach, it is

easy to see that under appropriate assumptions the value of the integral will depend
holomorphically on a parameter if f does. To that end, consider the following
situation. Let A be a finitely generated subalgebra of S(V ) (containing 1). Suppose
that S(V ) is finitely generated as an A-module. Next suppose that Ω ⊂ Cq is a
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connected open set and for each s ∈ Ω we are given a character χs of A, that is, a
homomorphism χs : A→ C, depending holomorphically on s. This means that the
values of χs on a set of generators of A are holomorphic functions of s in Ω. Next,
let fs(x) be a smooth function on V × Ω. We assume it is holomorphic in s and
satisfies

DXfs(x) = χs(X)fs(x)

for all X ∈ A. For each k with 1 ≤ k ≤ n, let Bk be the algebra generated by ek

and A. Because A is Noetherian it is a finitely generated A-module. It follows that
there is a polynomial Tk ∈ A[X ], whose coefficient of the term of highest degree is
1, such that Tk(ek) = 0. The polynomial Tk has the form:

Tk(X) =
∑

aiX
i

with ai ∈ A. We set

Tk(X ; s) =
∑

χs(ai)X i.

For each s ∈ Ω this is a polynomial with complex coefficients and

Tk(Dek
; s)fs = 0.

If Ω′ is a relatively compact open subset of Ω, one can use this system of differential
equations to obtain a majorization of fs on C, uniform for s ∈ Ω′, and show that
there is an open set U defined by inequalities of the form Re(〈λ, ei〉) >> 0 such
that the integral IC(λ)(fs) converges uniformly on compact subsets of U × Ω′. To
the polynomial Tk(X ; s) we associate as before the polynomial T̃k(X,λ; s). Then
the formula

IC(λ)(fs) = (−1)n

[∏
k T̃k(Dek

, 〈λ, ek〉; s)fs

]
(0)∏

k Tk(〈λ, ek〉; s)
gives the analytic continuation of the integral as a meromorphic function of (λ, s).
We have the following more precise result.

Proposition 4. With the previous notations assume that there is a point s0 ∈ Ω
such that any character χ of S(V ) which extends χs0 takes a non-zero value on the
vectors ek. Then IC(λ)(fs) is holomorphic at (0, s0).

Proof. Since S(V ) is integral over A, every character of A extends (in finitely many
ways) to S(V ) (by the going up theorem). Consider the set Ik of polynomials
P ∈ A[X ] such that P (ek) = 0. It is a (finitely generated) ideal. Let {Tα} be a
set of generators of Ik. An extension χ of χs0 to Bk is determined by a complex
number z such that Tα(z; s0) = 0 for all α and then χ(ek) = z. Our assumption is
that such an extension does not take the value 0 on ek. Thus there must be at least
one index α such that Tα(0; s0) 6= 0. Re-label such a polynomial Tk(X ; s). We thus
have

Tk(Dek
; s)fs = 0

for all s and Tk(0, s0) 6= 0. Again, the formula

IC(λ)(fs) = (−1)n

[∏
k T̃k(Dek

, 〈λ, ek〉; s)fs

]
(0)∏

k Tk(〈λ, ek〉; s)
does show that IC(λ)(fs) is holomorphic at (0, s0).
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We remark that the coefficient ak of the term of highest degree of Tk need not
be 1. Moreover we may have χs0(ak) = 0.

After these preliminaries we define the regularized integral. Denote the charac-
teristic function of a set Y by τY . Suppose that C is the cone defined relative to a
basis {µi} of V ∗

R as in (8) and let {ei} denote the dual basis. Let T ∈ V. As before,
let

f(x) =
∑

1≤i≤r

e〈λi,x〉Pi(x)(9)

be an exponential polynomial. For λ ∈ V ∗ such that λi−λ is negative with respect
to C for all i = 1, ..., r, set

f̂(λ; C, T ) =
∫

V

f(x)τC(x− T ) e−〈λ,x〉dx(10)

=
∑

1≤i≤r

∫
V

Pi(x)τC(x − T ) e−〈λ−λi,x〉dx

=
∑

1≤i≤r

e〈λi−λ,T 〉IC(λ)(Pi(•+ T )e〈λi,•〉).

The integrals are absolutely convergent and, as we have seen, f̂(λ; C, T ) extends
a meromorphic function on V ∗. We will say that the function f(x)τC(x − T ) is
#-integrable if f̂(λ; C, T ) is regular at λ = 0. In this case, we define the #-integral∫ #

V

f(x)τC(x− T ) dx

to be the value f̂(0; C, T ). Otherwise, we say that the #-integral does not exist. By
Lemma 3, the #-integral exists if and only if each exponent λj is non-degenerate
with respect to C.

Suppose that V = W1 ⊕W2 is a decomposition of V as a direct sum, and let Cj
be a cone in Wj . Write T = T1+T2 and write x = w1 +w2 relative to V = W1⊕W2.
If the exponents λj of f are non-degenerate with respect to C = C1 ⊕ C2, then the
function

w2 −→
∫ #

W1

f(w1 + w2)τC1 (w1 − T1) dw1

is defined and is an exponential polynomial, and it follows by analytic continuation
that ∫ #

V

f(x)τC(x− T ) dx

is equal to ∫ #

W2

(∫ #

W1

f(w1 + w2)τC1 (w1 − T1) dw1

)
τC2 (w2 − T2) dw2.(11)

Furthermore, we have

Lemma 5. Let f be as in (9). Then the function

T −→
∫ #

V

f(x)τC(x− T ) dx

is an exponential polynomial with the same exponents as f.
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Proof. It is clear from (10) that f̂(λ; C, T ) is an exponential polynomial as a function
of T with the same exponents as f. Hence the same is true of its value at λ = 0.

The domain of the #-integral can be extended in various ways. Without address-
ing this general question, we shall consider #-integrals of the following slightly more
general type of function which will be adequate for our later needs. Suppose that
V = W1 ⊕W2 is a decomposition of V as a direct sum. Let g(x) be a compactly
supported function on W1 and let C2 ⊂W2 be a cone in W2. Writing T = T1 + T2

and x = w1 + w2 as above, we consider functions of the form

g(w1 − T1) τC2 (w2 − T2)(12)

which, for convenience, we will call functions of type (C).
It is clear that the integral

F̂ (λ) =
∫

V

f(x) g(w1 − T1) τC2 (w2 − T2) e−〈λ,x〉 dx

converges absolutely for an open set of λ whose restriction to W2 is negative with
respect to C2. Furthermore, F̂ (λ) has a meromorphic continuation to V ∗. As before,
we say that f(x)g(x− T1)τC2 (x − T2) is #-integrable if F̂ (λ) is regular at λ = 0. If
so, we denote the value F̂ (0) by∫ #

V

f(x) g(w1 − T1) τC2 (w2 − T2) dx.(13)

Note that the function

w2 −→
∫

W1

f(w1 + w2)g(w1 − T1) dw1

is an exponential polynomial on W2 and (13) is equal to the iterated integral∫ #

W2

(∫
W1

f(w1 + w2)g(w1 − T1) dw1

)
τC2 (w2 − T2) dw2.(14)

In the next lemma, for i = 1, ..., r let V = Wi1⊕Wi2 be a direct sum decomposition
and let Ci2 be a cone in Wi2. Let gi be a compactly supported function on Wi1 and
set Gi(w1 + w2) = gi(w1)τCi2(w2) for wj ∈ Wij .

Lemma 6. Let C and C∗ be cones in V . Assume that Ci2, C ⊂ C∗ for all i. Assume
further that

τC(x) =
r∑

i=1

aiGi(x)

for some constants ai. Let f be as in (9) and assume that each of the integrals∫ #

V

f(x)Gi(x− T ) dx

exists for i = 1, . . . , r. Then f(x) τC(x− T ) is #-integrable and∫ #

V

f(x) τC(x − T ) dx =
∑

ai

∫ #

V

f(x)Gi(x− T ) dx.
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Proof. In the open set of λ such that λj − λ is negative with respect to C∗ for all
j, we have an equality of absolutely convergent integrals∫

V

f(x) τC(x) e−〈λ,x〉 dx =
∑

ai

∫
V

f(x)Gi(x− T ) e−〈λ,x〉 dx.

The assertion now follows by analytic continuation.

For future reference, we note the explicit formula∫ #

V

e〈λ,x〉τC(x− T ) dx = (−1)nv(e1, . . . , en)
e〈λ,T 〉∏n

j=1 〈λ, ej〉(15)

where, as above,

C = {
n∑

j=1

ajej : aj ≥ 0}

and v(e1, . . . , en) is the volume of the parallelepiped {∑n
j=1 ajej : 0 ≤ aj ≤ 1}. In

the case V = R we have ∫ ∞

T

eλt dt = −e
λT

λ

and hence for any cone C ⊂ R,∫ #

V

e〈λ,x〉(1− τC(x− T )) dx = −
∫ #

V

e〈λ,x〉τC(x− T ) dx,(16)

since 1− τC is the characteristic function of the cone −C.

III. Automorphic forms and truncation

Let G be a connected, reductive algebraic group over a number field F with adele
ring A. In this section, we fix some notation and recall some definitions and results
connected with Arthur’s truncation operators.

1. Roots, coroots, etc. Fix a minimal F -parabolic subgroup P0 of G and a
Levi decomposition P0 = M0N0. An F -parabolic subgroup P is called standard
if it contains P0. If P is standard, we write MP for the unique Levi factor of P
containing M0 and NP for the unipotent radical of P. A Levi factor of the form
MP will be called a standard Levi subgroup. Since we deal only with standard
subgroups, we shall usually drop the word standard and use the term parabolic
subgroup or Levi subgroup to denote a standard F -parabolic subgroup or standard
Levi subgroup.

We now recall some standard definitions and notations ([A1], [LR]). Let P be a
parabolic subgroup. We write TP for the maximal split torus in the center of MP ,
and T ′P for the maximal quotient split torus of MP . We set

ÃP = X∗(TP )⊗ R = X∗(T ′P )⊗ R,

where X∗(T ) is the lattice of 1-parametric subgroups in a torus (the two vector
spaces on the right are canonically isomorphic), and set

d(P ) = dim ÃP .
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The two descriptions of ÃP show that if Q ⊂ P is a parabolic subgroup contained
in P , then there is a canonical injection ÃP −→ ÃQ and surjection ÃQ −→ ÃP . We
obtain canonical decomposition

ÃQ = ÃP
Q ⊕ ÃP .

In particular, ÃG is a summand of ÃP for all P . Set AP = ÃP /ÃG and AP
Q = ÃQ

P /ÃG.
Then we have

AQ = AP
Q ⊕ AP .

In particular, AP is canonically identified as a subspace of AQ. Set A0 = AP0 and
AP

0 = AP
P0
. Then we also have

A0 = AP
0 ⊕ AP

for all P. We write A∗
0, A∗

P , etc. for the dual spaces (over R).
We now define the standard bases of the above spaces and their duals. Let ∆0

and ∆̂0 be the subsets of simple roots and simple weights in A∗
0, respectively. We

write ∆∨
0 for the basis of A0 dual to ∆̂0, and ∆̂∨

0 for the basis of A0 dual to ∆0.

Thus, ∆∨
0 is the set of coroots and ∆̂∨

0 is the set of coweights.
For every P, let ∆P ⊂ A∗

0 be the set of non-trivial restrictions of elements of
∆0 to AP . For each α ∈ ∆P , let α∨ be the projection of β∨ to AP , where β is the
root in ∆0 whose restriction to AP is α. Set ∆∨

P = {α∨ : α ∈ ∆P }. Then we may
also define their dual bases. Namely, we denote the dual basis of ∆P by ∆̂∨

P and
the dual basis of ∆∨

P by ∆̂P .
If Q ⊂ P, we write ∆P

Q to denote the subset of α ∈ ∆Q appearing in the action of
TQ in the unipotent radical of Q∩MP . Then AP is the subspace of AQ annihilated
by ∆P

Q. Let (∆P
Q)∨ = {α∨ : α ∈ ∆P

Q}. We then define (∆̂∨)P
Q and ∆̂P

Q to be the
bases dual to ∆P

Q and (∆P
Q)∨, respectively.

2. Inversion formulas. For convenience, we give an abstract formulation of some
inversion relations employed in Arthur’s work. Suppose that {τQ

P }, {τ̂Q
P } are sets of

constants indexed by pairs of parabolic subgroups P ⊂ Q satisfying the relations∑
Q⊂R⊂P

(−1)d(R)−d(P )τR
Q τ̂

P
R = δQP

for any P ⊂ Q.
This set of relations implies (and is equivalent to) the set of relations∑

Q⊂R⊂P

(−1)d(Q)−d(R)τ̂R
Q τ

P
R = δQP .

Indeed, ∑
Q⊂R⊂P

(−1)d(Q)−d(R)τ̂R
Q τ

P
R

=
∑

Q⊂R⊂R′⊂P

(−1)d(Q)−d(R)τ̂R
Q δRR′τP

R′

=
∑

Q⊂R⊂S⊂R′⊂P

(−1)d(Q)−d(R)+d(S)−d(R′)τ̂R
Q τ

S
R τ̂

R′
S τP

R′

=
∑

Q⊂R⊂S⊂R′⊂P

(−1)d(Q)−d(R)+d(S)−d(R′)τ̂R
Q τ

S
R τ̂

R′
S τP

R′ .
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For fixed S, the sum over R vanishes unless S = Q and the sum over R′ vanishes
unless S = P. Hence the sum vanishes unless Q = P , in which case it equals
τ̂Q
Q τ

P
Q = 1.

Given arbitrary sets of constants
{
αP

Q

}
and

{
α̂P

Q

}
, define

βP
Q =

∑
Q⊂R⊂P

(−1)d(R)−d(P )τR
Q α̂

P
R,

β̂P
Q =

∑
Q⊂S⊂P

(−1)d(Q)−d(S)αS
Qτ̂

P
S .

The following lemma is easily verified.

Lemma 7. The following relations hold:
1. α̂P

Q =
∑

Q⊂R⊂P (−1)d(R)−d(P )τ̂R
Qβ

P
R .

2. αP
Q =

∑
Q⊂R⊂P (−1)d(Q)−d(R)β̂R

Qτ
P
R .

3. If the constants
{
αP

Q

}
and

{
α̂P

Q

}
satisfy∑

Q⊂R⊂P

(−1)d(Q)−d(R)α̂R
Qα

P
R = δQP ,

then ∑
Q⊂R⊂P

(−1)d(R)−d(P )βR
Qβ̂

P
R = δQP .

3. The standard characteristic functions. We now extend the linear function-
als in ∆P

Q and ∆̂P
Q to elements of the dual space A∗

0 by means of the canonical
projection from A0 to AP

Q given by the decomposition A0 = AQ
0 ⊕AP

Q ⊕AP . Let
τP
Q be the characteristic function of the subset

{H ∈ A0 : 〈α,H〉 > 0 for all α ∈ ∆P
Q}

and let τ̂P
Q be the characteristic function of the subset

{H ∈ A0 : 〈$,H〉 > 0 for all $ ∈ ∆̂P
Q}.

We recall that τ̂P
Q ≥ τP

Q . The following is a special case of Langlands’ combinatorial
lemma [A1].

Langlands’ Lemma. If Q ⊂ P are parabolic subgroups, then for all H ∈ A0 we
have ∑

Q⊂R⊂P

(−1)d(R)−d(P )τR
Q (H)τ̂P

R (H) = δQP

and ∑
Q⊂R⊂P

(−1)d(Q)−d(R)τ̂R
Q (H)τP

R (H) = δQP .

For any pair of parabolic subgroups P ⊂ Q we define functions ΓQ
P (H,X) and

Γ̂Q
P (H,X) for H, X ∈ A0 by the formulas

ΓP
Q(H,X) =

∑
Q⊂R⊂P

(−1)d(R)−d(P )τR
Q (H)τ̂P

R (H −X),

Γ̂P
Q(H,X) =

∑
Q⊂S⊂P

(−1)d(Q)−d(S)τS
Q(H −X)τ̂P

S (H).
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These functions depend only on the projections of H and X onto AP
Q. The function

ΓG
P appears in [A3] and we follow [LR] in defining ΓP

Q, Γ̂P
Q for general Q ⊂ P. By

Langlands’ Lemma and Lemma 7, we obtain the formulas:

τ̂P
Q (H −X) =

∑
Q⊂R⊂P

(−1)d(R)−d(P )τ̂R
Q (H)ΓP

R(H,X),(17)

τP
Q (H −X) =

∑
Q⊂R⊂P

(−1)d(Q)−d(R)Γ̂R
Q(H,X)τP

R (H),

and also ∑
P

S⊂P⊂T

(−1)d(P )−d(T )ΓP
S (H,X)Γ̂T

P (H,X) = δST ,

∑
P

S⊂P⊂T

(−1)d(S)−d(P )Γ̂P
S (H,X)ΓT

P (H,X) = δST .

Finally, the following relation follows from the definitions:

Γ̂P
Q(H,X) = (−1)d(Q)−d(R)ΓP

Q(H −X,−X),

and therefore

τP
Q (H −X) =

∑
Q⊂R⊂P

ΓR
Q(H −X,−X)τP

R (H).(18)

4. Automorphic forms. We shall often write G for G(F ), P for P (F ), etc.,
when there is no risk of confusion. To define automorphic forms on G, let Z
be the center of the complexified universal enveloping algebra of G∞ and fix a
good maximal compact subgroup K ⊂ G(A). Then the Iwasawa decomposition
G(A)=NP (A)MP (A)K holds. For any g ∈ G(A), we will say that g = nmk is an
Iwasawa decomposition relative to P if n ∈ NP (A), m ∈MP (A), and k ∈ K.

A function

ϕ : G\G(A) −→ C

is called an automorphic form if
1. ϕ is smooth and of moderate growth,
2. ϕ is right K-finite,
3. ϕ is Z-finite.

Let A(G) be the space of automorphic forms on G\G(A).
We also define the space AP (G) for any parabolic subgroup P = MN . This is

the space of smooth, right K-finite functions

ϕ : N(A)M\G(A) −→ C

such that for all k ∈ K, the function m −→ ϕ(mk) is an automorphic form on
M(A). For ϕ ∈ AP (G) and any parabolic subgroup Q ⊂ P, the constant term is
defined in the standard way:

ϕQ(g) =
∫

NQ\NQ(A)

ϕ(ng)dn.

The map ϕ 7−→ ϕQ sends AP (G) to AQ(G).
For each parabolic subgroup P, we have the map

HP : G(A) −→ ÃP
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characterized by the following two conditions: (1) |χ|(m) = e〈χ,HP (m)〉 for all m ∈
M(A) and rational characters χ ∈ X∗(MP ), and (2) HP (nmk) = HP (m) for all
n ∈ N(A),m ∈M(A), and k ∈ K. We write H(g) for HP0(g). Then HP (g) is the
projection of H(g) onto ÃP . The kernel of the restriction of HP to M(A) is denoted
M(A)1.

Set F∞ = F ⊗Q R. We have an isomorphism (F ∗
∞)` ' TP (F∞) for some `. We

may embed R ↪→ F∞ via x −→ 1 ⊗ x and thus view R∗
+ as a subgroup of F ∗

∞ in
a canonical way. Let AP for P 6= G and AG denote the intersections of the image
of (R∗

+)` in TP (F∞) with G(A)1and Z(A), respectively. The map HP induces an
isomorphism of AP onto AP and we have M(A)=AG ×AP ×M(A)1. For X ∈ AP ,
we write eX for the unique element in AP such that HP (eX) = X , and for λ ∈ A∗

P ,
we write eλ for the character p→ e〈λ,HP (p)〉 of P (A).

As usual, we denote by ρP ∈ A∗
P the unique element such that e2〈ρP ,H(m)〉 =

| detAdN (m)| where AdN (m) is the adjoint action of m on Lie(N). For suitable
normalizations of Haar measure, we have∫

G(A)1
f(x) dx =

∫
N(A)

∫
AP

∫
M(A)1

∫
K

f(namk) e−2〈ρP ,H(a)〉 dn da dm dk.

5. Truncation operators. We recall the definition of Arthur’s truncation opera-
tors. Let T ∈ A0. Following [A2], we define the truncation of a smooth function ϕ
on P\G(A) by the formula

ΛT,Pϕ(g) =
∑
R⊂P

(−1)d(R)−d(P )
∑

δ∈R\P
ϕR(δg)τ̂P

R (H(δg)− T ).

The sums over δ are all finite by [A1], Lemma 5.1. Note that ΛT,Pϕ = ΛT,PϕP . For
ϕ invariant under G, Langlands’ Lemma immediately yields the inversion formula

ϕ(g) =
∑
P

∑
δ∈P\G

ΛT,Pϕ(g)τP (H(δg)− T ).

From now on, T ∈ A0 will denote a sufficiently regular element in the sense
of [A2]. In this case, the function m 7−→ ΛT,Pϕ(mk) is rapidly decreasing on
MP \MP (A)1 for all k ∈ K.

IV. Periods relative to quadratic extensions

In this section E/F is a quadratic extension of number fields. We write A for the
adeles of F and AE for the adeles of E. Let H be a split, connected reductive group
over F and let G = H/E . Then H(F ) is a subgroup of G(E). Let KF and KE

denote fixed good maximal compact subgroups of H(A) and G(AE), respectively.
If P = MN is a parabolic subgroup of H, then

H(A)1 = N(A)APM(A)1KF ,

and a Haar measure on H(A)1 is given by the integral∫
N(A)

∫
AP

∫
M(A)1

∫
KF

f(namk) e−2〈ρP ,H(a)〉 dn da dm dk.

There is a bijection between the set of parabolic subgroups of H and G. If P is
a parabolic subgroup of H (standard and defined over F ), then the corresponding
parabolic subgroup of G (also standard and defined over E) is denoted PE and is
characterized by PE(E) = P (E). Note that HE = G. We identify AP and APE and
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their dual spaces. In this identification the roots of H correspond to the roots of G
and hence ρP = ρPE . Similarly, the standard characteristic functions do not depend
on whether they are defined relative to H or G, i.e., τP

Q = τPE

QE
, τ̂P

Q =τ̂PE

QE
, etc. We

have

HPE (a) = 2HP (a)

for a ∈ H(A). We also write HE for the height function on G.
For ϕ ∈ A(G), we write

ϕPE (g) =
∫

N(E)\N(AE)

ϕ(ng)dn

for the constant term of ϕ relative to the parabolic subgroup PE in G. We also fix
Siegel domains for G and for the parabolic subgroups PE of G. Thus we choose a
compact subset Θ ⊂ N0(AE)M0(AE)1 and T0 ∈ A0 such that 〈α, T0〉 << 0 for all
α ∈ ∆0, and we let SPE be the set of elements pak where p ∈ Θ, k ∈ KE , and
a ∈ AP0 satisfies

〈α,HE(a)〉 ≥ 〈α, T0〉 for all α ∈ ∆P
0 .

We write S for SG. Let SH be the Siegel domain for H consisting of elements pak
such that p ∈ Θ ∩ H(A), k ∈ KF , and a ∈ AP0 . By a basic result of reduction
theory, we may (and shall) choose Θ and T0 such that G(AE) = PE(E)SPE . We
may also assume that H(A) = H(F )SH .

6. Mixed truncation. For T ∈ A0, we define the mixed truncation of ϕ by the
formula

ΛT,P
m ϕ(h) =

∑
R⊂P

(−1)d(R)−d(P )
∑

δ∈R\P
ϕRE (δh)τ̂P

R (HE(δh)− T ).

This is halfway between truncation on G (since we use constant terms relative to
G) and truncation on H (since the sums only involve δ lying in H). We write ΛT

m

for ΛT,H
m . Thus,

ΛT
mϕ(h) =

∑
R⊂H

(−1)d(R)−d(G)
∑

δ∈R\H
ϕRE (δh)τ̂R(HE(δh)− T ).

The following inversion formula holds, as before, for all h ∈ H(A) :

ϕ(h) =
∑

P⊂H

∑
δ∈P\H

ΛT,P
m ϕ(δh) τP (HE(δh)− T ).(19)

Proposition 8. Assume that T is sufficiently regular. Then for fixed h, the func-
tion m −→ ΛT,P

m ϕ(mh) is rapidly decreasing on M\M(A)1.

Proof. We need only check that each step of the argument in [A2], Section 1, applies.
It suffices to treat the case M = H. If P1 ⊂ P2 are parabolic subgroups, set

φ12(h) =
∑
P

P1⊂P⊂P2

(−1)d(P )−d(G)φPE (h).

As in [A2],

ΛT,H
m ϕ(h) =

∑
P1⊂P2

∑
δ∈P1\H

F 1
H(δh,

1
2
T )σ2

1(HE(δh)− T )φ12(δh)
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(the definitions of the characteristic functions F 1 and σ2
1 are in [A1]; F 1

H denotes
that F 1 is taken with respect to H). The argument of [A2], pp. 96–97, applied to
the group H yields the bound∑

δ∈P1\H
F 1

H(δh,
1
2
T )σ2

1(HE(δh)− T ) ≤ C1||h||N1

for all h ∈ H(A), for some constants C1, N1 > 0. On the other hand, the argument
of [A2], pp. 92–96, for the group G shows that for any N > 0 there exists C > 0
such that

|φ12(δg)| ≤ C||g||−N

for all δ ∈ G(E) and g ∈ G(A)1 with F 1
G(δg, T )σ2

1(HE(δg) − T ) = 1. However, it
is clear from the definition that if F 1

H(δh, 1
2T ) = 1, then F 1

G(δh, T ) = 1. It follows
that ΛT,H

m ϕ(h) is rapidly decreasing on H(A)1.

7. The period of an automorphic form. We now define the regularized pe-
riod of an automorphic form. The first step is to define a certain integral over
P\H(A)1 where P is a parabolic subgroup of H . Let τk(X) be a function of type
(C) (as defined in Section II) on AP that depends continuously on k ∈ KE , i.e., we
assume that there is a decomposition AP = W1 ⊕W2 such that τk has the form

gk(w1 − T1) τC2k
(w2 − T2)

where the compactly supported function gk varies continuously in the L1-norm and
linear inequalities defining the cone C2k vary continuously. Let f be a function on
PE(E)NE(AE)\G(AE) of the form

f(namk) =
k∑

j=1

φj(m, k)αj(HPE (a), k)e〈λj+ρPE
,HE(a)〉(20)

for n ∈ N(A), a ∈ AP , m ∈M(A)1 and k ∈ KE , where for all j,
(a) λj ∈ A∗

P and αj(X, k) is a continuous family of polynomials on AP such that
for all k ∈ KE , αj(X, k)e〈λj ,X〉τk(X) is #-integrable;

(b) φj(m, k) is absolutely integrable on M\M(A)1 ×KF .
In this case, we define the #-integral∫ #

P\H(A)1
f(h) τk(HPE (h)) dh(21)

by
k∑

j=1

∫
KF

(∫
M\M(A)1

φj(mk) dm

)(∫ #

AP

αj(2X, k)e〈λj ,2X〉τk(2X)dX

)
dk.

Recall that HPE (a) = 2HP (a) for a ∈ AP and therefore, with our definition of the
exponents λj , no shift by ρP appears in the #-integral over AP .

We write EP (f) for the set of distinct exponents {λj} occurring in (20). This set
is uniquely determined by f, but the functions αj and φj are not. However, if we
denote by eX the element in AP such that HP (eX) = X , then the function

X −→
∫

M\M(A)1
f(eXmk) dm
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is an exponential polynomial on AP and (21) is equal to∫
KF

∫ #

AP

(∫
M\M(A)1

f(eXmk) dm

)
e−2〈ρP ,X〉τk(2X)dX dk.

This shows, in particular, that (21) is independent of the decomposition (20). If
each of the exponents λj are negative with respect to C2k for all k ∈ KF , then the
ordinary integral ∫

P\H(A)1
f(h) τk(HPE (h)) dh

is absolutely convergent and its value coincides with the #-integral by Lemma 2.
We fix a sufficiently regular element T ∈ A+

0 . Then the above construction
applies to ΛT,P

m Ψ(g) and the characteristic function τP (HE(g) − T ) where Ψ ∈
APE (G). According to [MW], I.3.2, Ψ has a decomposition of the type (20). Namely,

Ψ(namk) =
r∑

j=1

Qj(HPE (a))ψj(amk)(22)

for n ∈ N(AE), a ∈ APE , m ∈M(AE)1 and k ∈ KE , where the Qj are polynomials
and ψj ∈ APE (G) satisfies

ψj(ag) = e〈λj+ρP ,HE(a)〉ψj(g)

for some exponent λj ∈ A∗
P for all a ∈ APE . By Proposition 8, the functions

m −→ ΛT,P
m ψj(mk) are rapidly decreasing and hence absolutely integrable over

M\M(A)1 ×KF . Since τP is the characteristic function of the cone spanned by the
coweights ∆̂∨

P we see that∫ #

P\H(A)1
ΛT,P

m Ψ(h) τP (HPE (h)− T ) dh

exists if and only if

〈λj , $
∨〉 6= 0 for all $∨ ∈ ∆̂∨

P and λj ∈ EP (Ψ).(23)

The same is true for ΛT,P Ψ(h)τP (HPE (hx) − T ) for fixed x ∈ H(A). Indeed, for
h ∈ H(A), let K(h) ∈ KF be any element such that hK(h)−1 ∈ P0(A). Then

HPE (hx) = HPE (h) +HPE (K(h)x)

and hence τP (X − T + HPE (K(h)x)) is the characteristic function of a cone de-
pending continuously on h. We set

ΠH,T
P (Ψ) =

∫ #

P\H(A)1
ΛT,P

m Ψ(h) τP (HPE (h)− T ) dh.

For any automorphic form ϕ ∈ A(G), we write EP (ϕ) for the set of exponents
EP (ϕP ). Set

A(G)∗ = {ϕ ∈ A(G) : 〈λ,$∨〉 6= 0 for all $∨ ∈ ∆̂∨
P , λ ∈ EP (ϕ), P 6= H}.

If ϕ ∈ A(G)∗, then ΠH,T
P (ϕP ) exists for all P, and we can define the regularized

period ∫ ∗

H\H(A)1
ϕ(h)dh =

∑
P⊂H

ΠH,T
P (ϕP ).
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We also denote this integral by ΠG/H(ϕ). The name and notations are justified by
Theorem 9 below.

Let AEf be the finite adeles of AE . For x ∈ G(AEf ), let ρ(x) denote right trans-
lation by x : ρ(x)ϕ(g) = ϕ(gx). The space A(G) is stable under right translation by
G(Af ). Furthermore, ρ(x)ϕ has the same set of exponents as ϕ. Indeed, for k ∈ KE ,
write the Iwasawa decomposition of kx as kx = n′a′m′K(kx) and write ϕPE in the
form (22):

ϕPE (namk) =
r∑

j=1

Qj(HPE (a)) e〈λj+ρPE
,HE(a)〉ψj(mk).

Since amkx = n′′aa′mm′K(kx) for some n′′ ∈ NE(AE), ϕPE (namkx) is equal to
r∑

j=1

Qj(HPE (a) +HPE (a′)) e〈λj+ρPE
,HE(a)+HE(a′)〉ψj(mm′K(kx))

and this shows that EP (ρ(x)ϕ) = EP (ϕ) as claimed. It follows that the space A(G)∗

is invariant under right translation by G(AEf ).

Theorem 9. (i) ΠG/H defines an H(Af )1-invariant linear functional on A(G)∗.
(ii) ΠG/H is independent of the choice of T.
(iii) If ϕ ∈ A(G) is integrable over H\H(A)1, then ϕ ∈ A(G)∗ and

ΠG/H(ϕ) =
∫

H\H(A)1
ϕ(h)dh.

Proof. We first observe that for f defined by (20), we have∫ #

P\H(A)1
f(hx)τk(hx) dg =

∫ #

P\H(A)1
f(h)τk(h) dh(24)

for all x ∈ H(Af )1. To verify this, set fµ(g) = e(µ,HPE
(g))f(g) for µ ∈ A∗

P . If
〈Reµ,$∨〉 << 0 for all $∨ ∈ ∆̂∨

P , then∫
P\H(A)1

fµ(hx)τk(hx) dh =
∫

P\H(A)1
fµ(h)τk(h) dh,

by the invariance of Haar measure, since both sides are absolutely convergent. Both
sides have a meromorphic continuation whose value at µ = 0 gives (24).

Now fix x ∈ H(Af )1 and set

FP (g) = (ΛT,P
m ρ(x−1)ϕ)(gx).

Then ∫ #

P\H(A)1
(ΛT,P

m ρ(x−1)ϕ)(h)τP (HPE (h)− T ) dh

=
∫ #

P\H(A)1
FP (h) τP (HPE (hx) − T ) dh

by (24), and hence we must show that∫ ∗

H\H(A)1
ϕ(h) dh =

∑
P

∫ #

P\H(A)1
FP (h) τP (HPE (hx)− T ) dh.(25)
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Let us re-write FP using the functions ΓP
Q of §3. As before, for h ∈ H(A), we let

K(h) ∈ K be any element such that hK(h)−1 ∈ P0(A). We claim that

FP (h) =
∑
S

S⊂P

∑
η∈S\P

ΛT,S
m ϕSE (ηh)ΓP

S (HSE (ηh)− T,−HSE(K(ηh)x)).(26)

Indeed, by definition,

FP (h) =
∑
R

R⊂P

(−1)d(R)−d(P )
∑

δ∈R\P
ϕRE (δh)τ̂P

R (HE(δhx)− T )

and

HE(δhx)− T = HE(δh)− T +HE(K(δh)x).

Using (17), we may write FP (h) as the double sum over all R ⊂ S ⊂ P and δ ∈ R\P
of

(−1)d(R)−d(S)ϕRE (δh)τ̂S
R(HE(δh)− T )ΓP

S (HSE (δh)− T,−HSE(K(δh)x)).

This equals the sum over S ⊂ P and η ∈ S\P of∑
R⊂S

(−1)d(R)−d(S)
∑

δ∈R\S
ϕRE (δηh)τ̂S

R(HE(δηh) − T )


×ΓP

S (HSE (ηh)− T,−HSE(K(ηh)x))

and (26) follows.
This gives∫ #

P\H(A)1
FP (h) τP (HPE (hx)− T ) dh

=
∫ #

P\H(A)1

∑
S

S⊂P

∑
η∈S\P

ΛT,S
m ϕSE (ηh)ΓP

S (HSE (ηh)− T,−HSE(K(ηh)x))

×τP (HPE (hx) − T ) dh(27)

and our next step is to show that the sum over S can be taken outside of the integral.
Recall that the functions ΓP

S (Z,W ) depend only on the projections of Z andW onto
AP

S . According to [A3], Lemma 2.1, for W belonging to a fixed compact subset of
AP

S , there exists a compact subset Y ⊂ AP
S such that the function Z −→ ΓP

S (Z,W )
is the characteristic function of a compact set in AP

S contained in Y. In particular,
the function

h −→ ΓP
S (HSE (h)− T,−HSE(K(h)x))

is supported inside a subset of elements h for which the projection of HSE (h) onto
AP

S lies in a compact set depending only on x. Therefore∑
η∈S\P

ΛT,SϕSE (ηh)ΓP
S (HSE (ηh)− T,−HSE(K(ηh)x))

is integrable overM(F )\M(A)1. Now let h = neXmk be an Iwasawa decomposition
of h relative to P with X ∈ AP . There exist polynomials Qi on AP , automorphic
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forms ψj ∈ AP (G), and exponents λj in the EP (ϕ) such that for all S ⊂ P,
ΛT,S

m ϕSE (h) =
∑

j

Qj(2X)e〈λj+ρP ,2X〉ΛT,S
m ψj(mk).(28)

Since ΓP
S (Z,W ) depend only on the projections of Z and W onto AP

Q, we may write
(27) as the integral over k ∈ KF and sum over j of∫ #

AP

∫
M\M(A)1

∑
S

S⊂P

∑
η∈S\P

Qj(2X)e〈λj,2X〉ΛT,S
m ψj(ηmk)

×ΓP
S (HSE (ηm) − T,−HSE(K(ηmk)x))dmτP (2X +HE(kx) − T )dX

=
∫ #

AP

∑
j

Qj(2X)e〈λj,2X〉τP (2X +HE(kx) − T )dX
∫

M\M(A)1

∑
S

S⊂P

∑
η∈S\P

∑
j

×ΛT,S
m ψj(ηmk)ΓP

S (HSE (ηm)− T,−HSE(K(ηmk)x))dm

and since each term in the sum over S is separately integrable over M\M(A)1, we
may take the sum over S outside the integral as claimed.

We now claim that

∫ #

P\H(A)1

∑
η∈S\P

ΛT,SϕSE (ηh)ΓP
S (HSE (ηh)− T,−HSE(K(ηh)x))τP (HE(hx)− T ) dh

(29)

is equal to∫ #

S\H(A)1
ΛT,SϕSE (h)ΓP

S (HSE (h)− T,−HSE(K(h)x))τP (HE(hx)− T ) dh.(30)

Indeed, (29) is equal to the integral over k ∈ KF and sum over j of∫ #

AP

Qj(2X)e〈λj,2X〉τP (2X +HE(kx)− T )dX

×
∫

M\M(A)1

∑
η∈S\P

ΛT,S
m ψj(ηmk)ΓP

S (HSE (ηm)− T,−HSE(K(ηmk)x))dm

which can be written∫ #

AP

Qj(2X)e〈λj ,X〉τP (2X +HE(kx)− T )dX

×
∫

SM\M(A)1
ΛT,S

m ψj(mk)ΓP
S (HSE (m)− T,−HSE(K(mk)x))dm

where SM = S ∩M . Expressing the integral over MS\M(A)1 using the Iwasawa
decomposition m = n′eX′

m′k′ of M(A)1 relative to SM gives∫ #

AP

Qj(2X)e〈λj ,2X〉τP (2X +HE(kx)− T )dX
∫
KM

∫ #

AP
S

∫
MS\MS(A)1

×e−2〈ρP
S ,X′〉ΛT,S

m ψj(eX′
m′k′k)ΓP

S (2X ′ − T,−HSE(k′kx)) dm′dX ′dk′

where KM = KF ∩M(A)1. Since we are integrating over KF , we may drop the
integral over KM . However, each function ΛT,S

m ψj(eX′
m′k) has a decomposition
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analogous to (28) with respect to S and therefore, for fixed k, the function

(m′, X ′) −→
∑

j

ΛT,S
m ψj(eX′

m′k)ΓP
S (2X ′ − T,−HSE(kx)) dm′

is a sum of terms, each of which is the product of a function of m′ which is
absolutely integrable over MS\MS(A)1 and a function of X ′ which itself is
equal to an exponential polynomial times the compactly supported function
ΓP

S (2X ′ − T,−HSE(kx)). According to (14), we may combine the integrals over
AP

S and AP to a #-integral over AS, and we find that (29) is equal to the integral
over k ∈ KF and m′ ∈MS\MS(A)1 of∫ #

AS

e−2〈ρP ,X〉ΛT,S
m ϕSE (eXm′k)ΓP

S (2X − T,−HSE(kx)) τP (2X +HE(kx)− T )dX,

and this is equal to (30).
Summing (30) over all S and P such that S ⊂ P, we see that∑

P

∫ #

P\H(A)1
FP (h) dh

is equal to the sum over parabolic subgroups S of

∑
P

P⊃S

∫ #

S\H(A)1
ΛT,S

m ϕSE (h)ΓP
S (HSE (h)− T,−HSE(K(h)x))τP (HE(hx)− T )dh

(31)

and (25) will follow if we prove that (31) is equal to∫ #

S\H(A)1
ΛT,SϕSE (h)τS(HE(h)− T )dh.

The relation (18):

τS(Y −X) =
∑
P⊃S

ΓP
S (Y −X,−X)τP (Y )

applied to Y = HSE (hx)− T and X = HSE (hx) −HSE (h) = HSE (K(h)x) gives∑
P

P⊃S

ΓP
S (HSE (h)− T,−HSE(K(h)x)) τP (HE(hx)− T ) = τS(HE(h)− T ).

Thus we need to show that the summation over P in (31) can be taken inside the
#-integral.

Let h = neXmk with X ∈ AS be the Iwasawa decomposition of h ∈ H(A)
relative to S. Then

ΓP
S (HSE (h)− T,−HSE(K(h)x)) τP (HE(hx) − T )

is equal to

ΓP
S (2X − T,−HSE(kx)) τP (2X +HE(kx)− T ).(32)

Since the subset {HSE (kx) : k ∈ H(A)} of AS is compact, Lemma 2.1 of [A3] cited
above implies that the function Z −→ ΓP

S (Z,−HSE (kx)) is supported in a fixed
compact set independent of k. The cone defining τP is the positive Weyl chamber
in AP which is contained in the positive Weyl chamber of AS . Thus, we may apply
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Lemma 6 to take the sum over P inside the integral. This completes the proof of
(i).

The proof of (ii) is nearly identical. Suppose that T ′ ∈ A0 is regular. We have

ΛT+T ′,P
m ϕ(h) =

∑
Q

Q⊂P

∑
δ∈Q\P

ΛT,Q
m ϕ(δh)ΓP

Q(HE(δh)− T, T ′).(33)

Indeed, using the formula

τ̂P
R (H(δh)− T − T ′) =

∑
Q

R⊂Q⊂P

(−1)d(Q)−d(P ) τ̂Q
R (HE(δh)− T )ΓP

Q(HE(δh)− T, T ′),

we have

ΛT+T ′,P
m ϕ(h) =

∑
R

R⊂P

(−1)d(R)−d(P )
∑

δ∈R\P
ϕRE (δh)τ̂P

R (HE(δh)− T − T ′)

=
∑
R,Q

R⊂Q⊂P

∑
δ∈Q\P

(−1)d(R)−d(Q)
∑

γ∈R\Q
ϕRE (δh)τ̂Q

R (HE(γδh)− T )ΓP
Q(HE(δh)− T, T ′)

=
∑
Q

Q⊂P

∑
δ∈Q\P

ΛT,Q
m ϕ(δh)ΓP

Q(HE(δh)− T, T ′).

Therefore∑
P

∫ #

P\H(A)1
ΛT+T ′,P

m ϕ(h)τP (HE(h)− T − T ′) dh

=
∑
P

∫ #

P\H(A)1

∑
Q

Q⊂P

∑
δ∈Q\P

ΛT,Q
m ϕ(δh)ΓP

Q(HE(δh)− T, T ′)τP (HE(h)− T − T ′) dh

=
∑
Q,P
Q⊂P

∫ #

Q\H(A)1
ΛT,Q

m ϕ(h)ΓP
Q(HE(h)− T, T ′)τP (HE(h)− T − T ′) dh

=
∑
Q

∫ #

Q\H(A)1
ΛT,Q

m ϕ(g)
∑
P

P⊃Q

ΓP
Q(HE(h)− T, T ′)τP (HE(h)− T − T ′) dh

where the second equality is justified in the same way as the equality of (29) and
(30) and the third equality is justified as in the discussion of (31) above. The
relation ∑

P
P⊃Q

ΓP
Q(HE(g)− T, T ′)τP (HE(g)− T − T ′) = τQ(HE(g)− T )

follows from (18), and we obtain∑
Q

∫ #

Q\H(A)1
ΛT,Q

m ϕ(g)τQ(H(g)− T ) dg =
∫ ∗

H\H(A)

ϕ(g) dg

as required.
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We now prove (iii). By (19), it will suffice to check that if ϕ ∈ A(G)∗ is
integrable over H\H(A)1, then the integral∫

P\H(A)1
ΛT,P

m ϕPE (h)τP (HE(h)− T )dh(34)

converges absolutely and is equal to ΠH,T
P (ϕP ). Expand ϕPE as in (22). As shown

in [MW], top of p. 50, for all j, there exists a parabolic subgroup Q ⊂ P and a
cuspidal exponent µ of ϕcusp

QE
such that λj is equal to the restriction of µ to AP

relative to the decomposition

AQ = AP
Q ⊕ AP .

According to Lemma I.4.11 of [MW], p. 75, if ϕ is square-integrable on G\G(A)1,
then the exponent µ can be written in the form

∑
α∈∆P

xαα with xα < 0. A
nearly identical argument shows that this remains true if ϕ is assumed to be in-
tegrable over H\H(A)1. This says that µ is negative with respect to the cone
{X ∈ AP : τP (X) = 1}. Therefore the integral ΠH,T

P (ϕP ) is absolutely convergent
and coincides with the ordinary integral over P (F )\H(A)1as required.

8. Period of a truncated automorphic form. Let P = MN be a parabolic
subgroup and ϕ ∈ APE (G). We may generalize the construction of the previous
section to define the regularized integral∫ ∗

P\H(A)1
ϕ(h) τ(HPE (h)− T )dh(35)

where τ is a function of type (C) on AP . Suppose that

ϕ(namk) =
r∑

j=1

Qj(HE(a))ψj(amk)

as in (22) where Qj and ψj are as above. Then we set (35) equal to
r∑

j=1

∫
KF

ΠME/M (ψj( · k))dk
∫ #

AP

Qj(2X)e〈λj ,2X〉τ(2X − T ) dX

or ∫
KF

∫ #

AP

(∫ ∗

M\M(A)1
ϕ(eXmk) dm

)
e−2〈ρP ,X〉τ(2X − T )dX dk.

For τ = τP this is well-defined provided that the following two conditions are
satisfied:

(1*) 〈µ,$∨〉 6= 0 for all Q ⊂ P, $∨ ∈ (∆̂∨)P
Q, µ ∈ EQ(ϕ).

(2*) 〈λ, α∨〉 6= 0 for all α ∈ ∆P , and λ ∈ EP (ϕ).

Let A(G)∗∗ be the space of ϕ ∈ A(G) such that ϕPE satisfies (1*) (and then also
(2*)) for all P .

Theorem 10. For ϕ ∈ A(G)∗∗,∫
H\H(A)1

ΛT
mϕ(h)dh
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is equal to ∑
P⊂H

(−1)d(P )−d(G)

∫ ∗

P\H(A)1
ϕPE (h) τ̂P (HE(h)− T )dh.

Proof. By induction on the rank, we may assume that the theorem holds for pairs
(ME ,M) where M is the Levi subgroup of a proper parabolic subgroup P of H .
We will show below that this induction hypothesis implies that∫ #

P\H(A)1
ΛT,P

m ϕPE (h)τP (HE(h)− T )(36)

is equal to∑
R

R⊂P

(−1)d(R)−d(P )

∫ ∗

R(F )\H(A)1
ϕRE (h)τ̂P

R (HE(h)− T )τP (HE(h)− T )dh.(37)

Assuming this, we may sum over P to write∫ ∗

H(F )\H(A)1
ϕ(h) dh−

∫
H(F )\H(A)1

ΛTϕ(h) dh(38)

as ∑
P 6=G
P⊃R

(−1)d(R)−d(P )

∫ ∗

R(F )\H(A)1
ϕRE (h)τ̂P

R (HE(h)− T )τP (HE(h)− T )dh.(39)

For R 6= H, Langlands’ Combinatorial Lemma gives∑
P

R⊂P 6=H

(−1)d(R)−d(P )τ̂P
R (HE(h)− T )τP (HE(h)− T )

= −(−1)d(R)−d(H)τ̂R(HE(h)− T )

and so the theorem will follow if we check that the summation can be taken inside
the integral in (39).

Consider the three cones

ĈR = {X ∈ AR : τ̂R(X) = 1},
CP = {X ∈ AP : τP (X) = 1},
ĈP

R = {X ∈ AP
R : τ̂P

R (X) = 1}.
The product CP × ĈP

R is contained in ĈR. Indeed, ĈR is the positive span of the
coroots {α∨ : α ∈ ∆R}, CP is the positive span of the coweights in ∆̂∨

P and ĈP
R is

the positive span of the coroots {α∨ : α ∈ ∆P
R}, so the assertion follows from the

fact that all coweights in ∆̂∨
P are non-negative linear combinations of coroots in

∆∨
P . Now let λ ∈ ER(ϕ) and for P containing R, write λ = λP

R + λP relative to the
decomposition AR = AP

R ⊕ AP . By our hypothesis, 〈λP , $
∨〉 6= 0 for all $∨ ∈ ∆̂∨

P

and hence λP is non-degenerate with respect to CP . Similarly,
〈
λP

R, α
∨〉 6= 0 for all

α ∈ ∆P
R and hence λP

R is non-degenerate with respect to ĈP
R . Since CP × ĈP

R ⊂ ĈR
for all P, we may apply Lemma 6 to conclude that for any polynomial Q(X),

−(−1)d(R)−d(G)

∫ #

AR

Q(X)e〈λ,2X〉τ̂R(2X − T ) dX
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is equal to∑
P

R⊂P 6=G

(−1)d(R)−d(P )

∫ #

AR

Q(X)e〈λ,2X〉τ̂P
R (2X − T )τP (2X − T ) dX.

It follows that (39) is equal to

−
∑
R6=G

(−1)d(R)−d(G)

∫ ∗

R(F )\G(A)1
ϕRE (g)τ̂R(H(g)− T )dg

and this gives the equality of the theorem.
We now prove the equality of (36) and (37). Write the constant term ϕPE as a

sum

ϕPE (namk) =
r∑

j=1

Qj(HE(a))ψj(amk)(40)

for n ∈ N(AE), a ∈ APE , m ∈M(AE)1 and k ∈ KE , where the Qj are polynomials
and ψj ∈ APE (G) satisfies

ψj(ag) = e〈λj+ρP ,HE(a)〉ψj(g)

for some exponent λj ∈ A∗
P for all a ∈ APE . Then (36) is equal to

r∑
j=1

(∫
KF

∫
M\M(A)1

ΛT,M
m ψj(mk)dm dk

)(∫ #

AP

Qj(2X)e〈λj ,2X〉τP (2X − T )dX

)

where ΛT,M
m denotes the mixed truncation with respect to M . Using our induction

hypothesis, we may write (36) as the sum over j and R ⊂ P of (−1)d(R)−d(P ) times(∫
KF

∫ ∗

RM (F )\M(A)1
(ψj)(MR)E

(mk)τ̂P
R (HE(m)− T )dm dk

)
(41)

times (∫ #

AP

Qj(2X)e〈λj ,2X〉τP (2X − T )dX

)
where RM = R ∩M . Choose a decomposition of type (40) for the constant term
(ψj)RM :

(ψj)(RM )E
(namk) =

r∑
j=1

Pj,`(HE(a))ψj,`(amk)

for n ∈ (NR ∩M)(AE), a ∈ AR ∩M(AE)1, m ∈MR(AE)1, k ∈ KE , where the ψj,`

satisfy

ψj,`(ag) = e〈λj,`+ρP
R,HE(a)〉ψj,`(g)

for some exponents λj,` ∈ (AP
R)∗. Then we may write (41) as a sum over ` of∫

KF

∫ ∗

MR(F )\MR(A)1
ψj,`(mk)dm dk

∫ #

AP
R

Pj,`(2X)e〈λj,`,2X〉τ̂P
R (2X − T )dX.
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By (11), we may combine the #-integrals over AP
R and AP into a single #-integral

over AR and we see that∫
KF

∫ ∗

RM (F )\M(A)1
(ψj)(MR)E

(mk)τ̂P
R (HE(m)− T )dm dk

×
(∫ #

AP

Qj(2X)e〈λj ,2X〉τP (2X − T )dX

)
is equal to the sum over ` of∫

KF

∫ ∗

MR(F )\MR(A)1
ψj,`(mk) dm dk

×
∫ #

AR

Pj,`(2X)Qj(2X)e〈µj,`,2X〉τ̂P
R (2X − T )τP (2X − T ) dX

where µj,` = λj + λj,`, and this equals∫ ∗

R(F )\H(A)1
Qj(HPE (g))(ψj)RM (g)τ̂P

R (HE(g)− T )τP (HE(g)− T )dg.

Summing over j gives∫ ∗

R(F )\H(A)1
ϕR(g)τ̂P

R (HE(g)− T )τP (HE(g)− T )dg.

This shows that (36) is equal to∑
R⊂P

(−1)d(R)−d(P )

∫ ∗

R(F )\H(A)1
ϕR(g)τ̂P

R (HE(g)− T )τP (HE(g)− T )dg,

as required.

Corollary 11. For all ϕ ∈ A(G)∗∗, the period integral∫
H(F )\H(A)1

ΛT
mϕ(h) dh

is an exponential polynomial function of the truncation parameter T whose expo-
nents are contained in those of ϕ.

Proof. According to the definition of∫ ∗

P\H(A)1
ϕPE (h) τ̂P (HE(h)− T )dh,

the only dependence on T is through #-integrals of the form∫ #

AP

Qj(2X)e〈λj ,2X〉τ̂P (2X − T ) dX.

The assertion now follows from Lemma 5.

In fact, one can prove the corollary, without any restrictions on ϕ by using the
relation (33).
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9. Eisenstein series. Our next goal is to verify that Theorem 10 applies to cus-
pidal Eisenstein series. To that end, we fix some notation and definitions that will
be used in the rest of the article. We work with a reductive group G over a field F.

Let P = MN be a proper parabolic subgroup and let σ be an automorphic
subrepresentation of L2(M\M(A)1). Let AP (G)σ be the subspace of functions ϕ ∈
AP (G) such that ϕ is left-invariant under AP and for all k ∈ K, the function m 7−→
ϕ(mk) belongs to the space of σ. For ϕ ∈ AP (G)σ and λ ∈ A∗

P we write E(g, ϕ, λ)
for the Eisenstein series which is given, in its domain of absolute convergence, by
the infinite series

E(g, ϕ, λ) =
∑

γ∈P\G
ϕ(γg) e〈λ+ρP ,HP (γg)〉.

Let NG(F )(A0) be the normalizer of A0 in G(F ) and let

Ω = NG(F )(A0)/CG(F )(A0)

be the Weyl group of G. Recall that a parabolic subgroup Q is said to be associate
to P if MQ is conjugate to MP under Ω. If Q is associate to P, let Ω(P,Q) be
the set of maps AP −→ AQ obtained by restriction of elements w ∈ Ω such that
wMPw

−1 = MQ.
Suppose that Q is associate to P and let w be an element of Ω(P,Q) with

representative w̃ in NG(F )(A0). We define the standard intertwining operator

M(w, λ)ϕ(g) = e−〈wλ+ρQ,HQ(g)〉
∫

Nw(A)\NQ(A)

ϕ(w̃−1ng)e〈λ+ρP ,HP (w̃−1ng)〉 dn

where Nw = NQ ∩ w̃Nw̃−1. The operator M(w, λ) depends on w but not on the
choice of representative w̃.

Assume that σ is cuspidal. Then the constant term EQ(g, ϕ, λ) relative to a
parabolic subgroup Q has a simple expression. If Q does not contain an associate
of P, then EQ(g, ϕ, λ) is identically zero. If Q is associate to P, then

EQ(g, ϕ, λ) =
∑

w∈Ω(P,Q)

M(w, λ)ϕ(g)e〈wλ+ρ
Q

,HQ(g)〉.

On the other hand, if Q properly contains an associate of P , then [A2]

EQ(g, ϕ, λ) =
∑
Q′

∑
w∈Ω(P,Q′)

w−1α>0 for α∈∆Q

Q′

EQ(g,M(w, λ)ϕ,wλ)(42)

where the sum is over the standard parabolic subgroups Q′ ⊂ Q associate to P and
EQ(g, ψ, λ) denotes an Eisenstein series induced from MQ′ to MQ :

EQ(g, ψ, λ) =
∑

γ∈Q′\Q
ψ(γg) e〈λ+ρQ′ ,HQ′ (γg)〉.

We now return to the situation where G = H/E where E/F is quadratic as
above. Consider a cuspidal Eisenstein series E(g, ϕ, λ) on G. We shall check that
E(g, ϕ, λ) belongs to A(G)∗∗ for generic values of the parameter λ. For each Q
containing an associate of P, let O be the open set where EQ and the intertwining
operators are regular. This is a complement of hyperplanes. In O, the exponents
of the Eisenstein series along a parabolic subgroup Q are the restrictions to AQ of
the linear forms wλ with P ′ associate to P and contained in Q and w ∈ Ω(P, P ′)
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with w−1∆Q
P ′ > 0. Thus for λ ∈ O the Eisenstein series belongs to A(G)∗∗ if for

every such Q and such w, and all $∨ ∈ (∆̂∨)Q′
Q with Q ⊂ Q′ we have

〈wλ,$∨〉 6= 0.

If we denote this set of such λ by O0, we see that the Eisenstein series E(g, ϕ, λ)
belongs to the space A(G)∗∗ for all λ ∈ O0.

Proposition 12. Let E(g, ϕ, λ) be a cuspidal Eisenstein series. Then the period
integral of a cuspidal Eisenstein series ΠG/H(E(ϕ, λ)) is a meromorphic function
of λ with hyperplane singularities. It is holomorphic on O0.

Proof. Assume that E(ϕ, λ) is induced from PE = MENE . It will suffice to check
the claim for each of the integrals∫ ∗

Q\H(A)1
ΛT,Q

m EQ(h, ϕ, λ) τQ(HE(h)− T ) dh.

By (42), each of these integrals is a sum of terms of the form∫ ∗

Q\H(A)1
ΛT,Q

m EQ(h,M(w, λ)ϕ,wλ) τQ(HE(h)− T ) dh,

which itself can be written as a product of∫ #

AQ

e〈wλ,2X〉τQ(2X − T )dX

and ∫
KF×MQ\MQ(A)1

ΛT,Q
m EQ(mk,M(w, λ)ϕ, λ) dm dk.(43)

The first factor depends only on the projection (wλ)Q of wλ to AQ. It can be
evaluated explicitly and is clearly meromorphic and holomorphic in O0. The second
factor depends only on the projection (wλ)Q

0 of wλ to AQ
0 . The integrand is defined

and varies analytically in O0. According to [MW], Lemma I.2.16, the rate of rapid
decrease of Arthur’s truncation ΛTψ is majorized in terms of the rate of slow
increase of finitely many derivatives of ψ and hence in terms of the exponents of
finitely many derivatives of ψ. The proof applies with little change to the mixed
truncation and thus, similarly, the rate of rapid decrease of ΛT,Q

m ψ is similarly
majorized in terms of the exponents of finitely many derivatives of ψ. In our case,
these exponents vary analytically and we may therefore conclude that the integral
(43) is uniformly convergent for λ in a compact subset of O0. Hence (43) is analytic
in O0.

Remark 1. It is not true in general that ΠG/H(E(ϕ, λ)) is analytic wheneverE(ϕ, λ)
is analytic. For example, the computations in §20 show that for the Eisenstein series
on GL(2) induced from the trivial character and ϕ ≡ 1 we have ΠG/H(E(ϕ, λ)) =
ζF (λ)/L(λ + 1, ωE/F ) up to a volume factor. The regularized period thus has a
pole at λ = 0. However E(ϕ, 0) ≡ 0 by the functional equation.
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V. Integral of an automorphic form

In this section, we describe how the considerations of the previous section can
be carried over to the case that H = G. We omit most of the proofs since they are
nearly identical, word for word, as those presented in the previous section.

Let P be a parabolic subgroup of G and let f ∈ AP (G). Then there exists a
finite set of distinct exponents EP (f) = {λ1, ..., λk} in A∗

P such that

f(namk) =
k∑

j=1

φj(mk)αj(H(a))e〈λj+ρP ,H(a)〉(44)

for n ∈ N(A), a ∈ AP , m ∈ M(A)1 and k ∈ K, where for all j, αj(X) is a
polynomial, and φj(g) is an automorphic form in AP (G) such that φj(ag) = φj(g)
for a ∈ AP .

The function τP is the characteristic function of the cone spanned by the co-
weights in ∆̂∨

P . It follows that if

〈λj − ρP , $
∨〉 6= 0

for all $∨ ∈ ∆̂∨
P and λj ∈ EP (f), then the integrals∫ #

AP

αj(X)e〈λj−ρP ,X〉τP (X − T )dX

are defined. Assuming this condition holds, we define the #-integral∫ #

P\G(A)1
ΛT,P f(g) τP (H(g)− T )dg

by the formula
k∑

j=1

∫
K

(∫
M\M(A)1

ΛT,Pφj(mk) dm

)(∫ ∗

AP

αj(X)e〈λj−ρP ,X〉τP (X − T )dX
)
dk.

We also denote this expression by IT
P (f). It coincides with the ordinary integral if

ΛT,P f(g) τP (H(g)− T ) is integrable over P\G(A)1.
As before, for ϕ ∈ A(G), we write EP (ϕ) for EP (ϕP ). Let

A(G)′ = {ϕ ∈ A(G) : 〈λ− ρP , $
∨〉 6= 0 for all $∨ ∈ ∆̂∨

P , λ ∈ EP (ϕ), P 6= G}.
For ϕ ∈ A(G)′, we define the regularized integral∫ ∗

G\G(A)1
ϕ(g)dg =

∑
P⊂G

IT
P (ϕP ).

We also denote this integral by I1
G(ϕ). For x ∈ G(Af ), let ρ(x) denote right

translation by x : ρ(x)ϕ(g) = ϕ(gx).

Theorem 13. (i) I1
G is independent of the choice of T.

(ii) The space A(G)′ is invariant under right translation by G(Af )1 and I1
G defines

an invariant linear functional on A(G)′. Explicitly, I1
G(ρ(x)ϕ) = I1

G(ϕ) for all
x ∈ G(Af ).

(iii) If ϕ ∈ A(G) is integrable over G\G(A)1, then ϕ ∈ A(G)′ and I1
G(ϕ) coincides

with the ordinary integral of ϕ over G\G(A)1.
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Proof. The proof is nearly identical to that of Theorem 9 and therefore we omit
it. However, we merely note a slight modification required for part (iii). As in
the prove of part (iii) of Theorem 9, it is necessary to check that if ϕ ∈ A(G) is
integrable over G\G(A)1, then the integral∫

P\G(A)1
ΛT,PϕP (g)τP (H(g)− T )dg(45)

converges absolutely. Expand ϕP as in (44). As shown in [MW], top of p. 50, for
all j, there exists a parabolic subgroup Q ⊂ P and a cuspidal exponent µ of ϕcusp

Q

such that λj is equal to the restriction of µ to AP relative to the decomposition

AQ = AP
Q ⊕ AP .

According to Lemma I.4.11 of [MW], p. 75, if ϕ is square-integrable, the exponent
µ can be written in the from

∑
α∈∆Q

xαα with xα < 0. This time, we modify the
argument to show that if ϕ is integrable, then

µ− ρQ =
∑

α∈∆Q

xαα

with xα < 0. The restriction of ρQ to AP is ρP and the set of non-zero restrictions
of elements in ∆Q to AP coincides with ∆P . It follows that

λj − ρP =
∑

β∈∆P

yββ

with yβ < 0 and hence ∫
AP

Qj(X)e〈λj−ρP ,X〉τP (X − T )dX

converges absolutely. This is all that is required in order that the integral (45) be
absolutely convergent.

10. Integral of a truncated automorphic form. We can now define a certain
regularized integral for automorphic functions f ∈ AP (G). Assume that f has a
decomposition as in (44) and define∫ ∗

P\G(A)1
f(g)τ̂P (H(g)− T )dg(46)

by

k∑
j=1

∫
K

∫ ∗

M\M(A)1
φj(mk) dmdk

(∫ #

AP

αj(X)e−〈ρP ,X〉τ̂P (X − T )dX

)
.

This is well-defined provided that the following two conditions are satisfied:

(1) 〈λ− ρQ, $
∨〉 6= 0 for all Q ⊂ P, $∨ ∈ (∆̂∨)P

Q, λ ∈ EQ(ϕ).
(2) 〈λ− ρP , α

∨〉 6= 0 for all α ∈ ∆P , and λ ∈ EP (ϕ).

Let A(G)′′ be the space of ϕ ∈ A(G) such that (1) (and then also (2)) is satisfied
for any P . The following Theorem and Corollary follow by the same proofs as those
of Theorem 10 and its Corollary.
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Theorem 14. For all ϕ ∈ A(G)′′,∫
G(F )\G(A)1

ΛTϕ(g) dg

is equal to ∑
P⊂G

(−1)d(P )−d(G)

∫ ∗

P (F )\G(A)1
ϕP (g)τ̂P (H(g)− T )dg.

Corollary 15. For all ϕ ∈ A(G)′′, the integral∫
G(F )\G(A)1

ΛTϕ(g) dg

is an exponential polynomial function of the truncation parameter T .

Again, the corollary can be proved directly and it applies to any ϕ ∈ A(G).

11. Integral of a truncated Eisenstein series. Let E(g, ϕ, λ) be a cuspidal
Eisenstein series. As in the proof of Proposition 12, one shows that I1

G(E(g, ϕ, λ))
is defined for generic values of the parameter λ and varies analytically in λ.

Lemma 16 (Bernstein’s principle). Let P = MN be a proper parabolic subgroup
and let σ be an irreducible cuspidal representation in L2(M(F )\M(A)1). Let
E(g, ϕ, λ) be an Eisenstein series where ϕ ∈ AP (G)σ . Then

I1
G(E(g, ϕ, λ)) = 0

for all λ such that E(g, ϕ, λ) and I1
G(E(g, ϕ, λ)) are defined.

Proof. Suppose that E(g, ϕ, λ) and its regularized integral are defined at λ0. Then
there exists an open set O containing λ0 such that I1

G(E(g, ϕ, λ)) is defined for all
λ ∈ O. The map ϕ 7−→ I1

G(E(g, ϕ, λ)) therefore defines a G(Af )1-invariant func-
tional on IndG

P (σ ⊗ eλ) for λ ∈ O. Since there does not exist any such invariant
functional for generic values of λ, the function I1

G(E(g, ϕ, λ)) must vanish identi-
cally.

Corollary 17. Let P = MN be a parabolic subgroup and let (M,σ) be a cuspidal
datum. Let E(g, ϕ, λ) be an Eisenstein series where ϕ ∈ AP (G)σ . Then∫

G(F )\G(A)1
ΛTE(g, ϕ, λ) dg

is equal to zero if P is not a minimal parabolic. If P is minimal, then it is equal to

v
∑
w∈Ω

e〈wλ−ρ,T 〉∏
α∈∆0

〈wλ − ρ, α∨〉

∫
M\M1(A)×K

M(w, λ)ϕ(mk)dm dk

where v = vol({∑α∈∆0
aαα

∨ : 0 ≤ aα < 1}).
Proof. For λ ∈ A∗

P generic, the integral∫
G(F )\G(A)1

ΛTE(g, ϕ, λ) dg

is equal to ∑
Q

(−1)d(Q)−d(G)

∫ ∗

Q(F )\G(A)1
EQ(g, ϕ, λ) τ̂Q(H(g)− T )dg.
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Since ϕ is cuspidal, EQ(g, ϕ, λ) vanishes identically unless Q contains an associate
of P. As a function of m, EQ(namk, ϕ, λ) is a sum of Eisenstein series induced
from parabolic subgroups associate to P to MQ. Therefore, by the previous lemma
and its defining formula,∫ ∗

Q(F )\G(A)1
EQ(g, ϕ, λ) τ̂Q(H(g)− T )dg

vanishes unless Q is associate to P. If Q is associate to P, then EQ is a sum of
cusp forms on MQ(A), and the integral of a cusp form over MQ(F )\MQ(A)1 is zero
unless Q is minimal. In this case, Q = P and the only non-zero term is

(−1)d(P )−d(G)

∫
P (F )\G(A)1

EP (g, ϕ, λ) τ̂P (H(g)− T )dg.

This is equal to

(−1)d(P )−d(G)
∑
w∈Ω

(∫ #

AP

e〈wλ−ρP ,H〉τ̂P (H − T ) dH

)

×
(∫

M\M1(A)×K

M(w, λ)ϕ(mk)dm dk

)
.

The lemma follows from the formula(
(−1)d(P )−d(G)

∫ #

AP

e〈wλ−ρP ,H〉τ̂P (H − T ) dH

)
= v

e〈wλ−ρP ,T 〉∏
α∈∆P

〈wλ − ρP , α∨〉
.

12. General inner product formula. The formula in Theorem 14 can be ex-
tended to a formula for the inner product∫

G(F )\G(A)1
ΛTψ(g) ΛTϕ(g) dg(47)

where ψ, ϕ ∈ A(G). Recall that ΛT is a self-adjoint projection [A2] and therefore
(47) is equal to ∫

G(F )\G(A)1
ψ(g) ΛTϕ(g) dg.

Define a bilinear form on A(G) by

BG(ψ, ϕ) =
∑
P⊂G

∫ #

P\G(A)1
ψP (g) ΛT,PϕP (g) τP (H(g)− T ) dg.

The #-integral is defined, as before, as a sum of products of absolutely convergent
integrals over M(A)1 ×K and #-integrals over AP . This reduces to the usual inner
product if either ϕ or ψ is cuspidal. In general, BG(ψ, ϕ) is well defined if, for all
P , λ ∈ EP (ϕ), and µ ∈ EP (ψ), we have 〈λ+ µ,$∨〉 6= 0 for all $∨ ∈ ∆̂∨

P . One
shows, as in Section IV that BG is invariant under G(Af ) and independent of T .

We use BG to define a regularized inner product∫ ∗

P (F )\G(A)1
ψ(g) ϕ(g) τ̂P (H(g)− T ) dg(48)
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for ϕ, ψ ∈ AP (G). Suppose that

ϕ(namk) =
∑

i

Qi(HP (a))e〈λi+ρP ,HP (a)〉ϕi(mk)

and

ψ(namk) =
∑

j

Rj(HP (a))e〈µj+ρP ,HP (a)〉ψj(mk)

in the usual notation. Then we set (48) equal to∑
i,j

(∫
K

B1
MP

(ψj( • k), ϕi( • k))dk
)(∫ #

AP

Qi(X)Rj(X)e〈λi+µj ,X〉τ̂P (X − T )dX

)
.

This is well-defined provided that
(1′) For all Q ⊂ P , λ′ ∈ EQ(ϕ), and µ′ ∈ EQ(ψ), we have 〈λ′ + µ′, $∨〉 6= 0 for all

$∨ ∈ (∆̂∨)P
Q.

(2′) 〈λ+ µ, α∨〉 6= 0 for all α ∈ ∆P .
Again, by arguments parallel to those in the proof of Theorem 10, we obtain the
following

Theorem 18. Let ψ, ϕ ∈ A(G). Suppose that ψP and ϕP satisfy condition (1′)
(and then also (2′)) for all P. Then the integral∫ ∗

P (F )\G(A)1
ψP (g)ϕP (g)τ̂P (H(g)− T )dg

is well-defined for all P and∫
G(F )\G(A)1

ΛTψ(g) ΛTϕ(g) dg

is equal to ∑
P⊂G

(−1)d(P )−d(G)

∫ ∗

P (F )\G(A)1
ψP (g)ϕP (g)τ̂P (H(g)− T ) dg.

This theorem may be regarded as a generalization of the Langlands inner prod-
uct formula. When applied to cuspidal Eisenstein series E(g, ϕ, λ) and E(g, ψ, λ)
(induced from parabolics P and P ′) we obtain the formula∫

G(F )\G(A)1
ΛTE(g, ψ, λ)ΛTE(g, ϕ, µ) dg(49)

=
∑
Q

(−1)d(Q)−d(G)

∫ ∗

Q(F )\G(A)1
EQ(g, ψ, λ)EQ(g, ϕ, µ)τ̂Q(H(g)− T )dg.

As noted before, the constant term EQ(g, ψ, λ) vanishes unless Q contains an as-
sociate of P ′. On the other hand, if Q properly contains an associate of P or P ′,
then ∫ ∗

Q(F )\G(A)1
EQ(g, ψ, λ)EQ(g, ϕ, µ)τ̂Q(H(g)− T )dg = 0

by formula (42) and a variant of Bernstein’s principle, viz., non-existence of an
invariant pairing, either locally or globally, between IndQ

P (σ′⊗eλ) and IndQ
P ′(τ ′⊗eµ)

for generic λ, µ ∈ AP ′ and any representations σ′, τ ′ of MP ′ . Therefore (49) reduces
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to a sum over parabolic subgroups Q associate to P. Direct calculation of the ∗-
integral using formula (42) for the constant terms EQ(g, ψ, λ) immediately yields
the Langlands inner product formula [A2], Lemma 4.2.

VI. Regularized periods of a cuspidal Eisenstein series on GL(n)

For the rest of the paper, H = GL(n)/F and G = GL(n)/E . Our goal in this
section is to evaluate ∫

H(F )\H(A)1
ΛT

mE(h, ϕ, λ) dh

for the case of cuspidal Eisenstein series.

13. Weyl groups and double cosets. We take this opportunity to fix some
notation that will be used from now on. Let B = TU be the standard Borel
subgroup of upper-triangular matrices of H , T the diagonal subgroup, and U the
unipotent radical of B. We identify the Weyl groups NH(T )/T and NG(TE)/TE of
H and G, respectively and set Ω = NH(T )/T = NG(TE)/TE with length function
`. The group Ω is isomorphic to the symmetric group Sn and is naturally identified
with the group of permutation matrices in H or G (matrices whose entries are 0 or
1, with a single 1 in each row and column). For any (standard) parabolic subgroup
P = MN of H, we let ΩM = NM (T )/T be the Weyl group of the (standard) Levi
factor M. In this case, M consists of block diagonal matrices with blocks of size
n1, ..., nr for some partition n = n1 + · · ·+ nr and is thus isomorphic to a product
GL(n1)× · · · ×GL(nr) .

Let Ω(M) be the set of elements w ∈ Ω such that M ′ = wMw−1 is again a
standard Levi subgroup and w is of minimal length in the class wΩM . This latter
condition is satisfied if and only if w∆M

0 = ∆M ′
0 . Explicitly, an element w ∈ Ω(M)

is represented by a unique permutation matrix that shuffles the diagonal blocks of
M without causing any internal change within each block. The permutation matrix
itself is built out of blocks of size nj×nj (not necessarily along the diagonal) which
are either the identity matrix or the zero matrix.

If M ′ is another standard Levi subgroup, let

Ω(M,M ′) = {w ∈ Ω(M) : wMw−1 = M ′}.
We also set

ΩM = {w ∈ Ω : wMw−1 = M}.
Then Ω(M,M) is a subgroup of ΩM and we have

ΩM = Ω(M,M) n ΩM .(50)

Let Ω2 = {ξ ∈ Ω : ξ2 = e} and let

Ω2(M,M) = {w ∈ Ω(M,M) : w2 = e}
be the set of involutions in Ω(M,M). If ξ ∈ Ω2(M,M), we denote the±1 eigenspaces
of ξ in AP and A∗

P by (AP )±ξ and (A∗
P )±ξ , respectively. Let P±

ξ be the projections
onto (A∗

P )±ξ .

Lemma 19. 1. In any double coset κ of B(E)\G(E)/H(F ) there exists a rep-
resentative η so that ηη̄−1 ∈ NG(TE) and its image in Ω depends only on
κ.
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2. The map

B(E)\G(E)/H(F )→ Ω(51)

defined above is injective and its image is Ω2.
3. Let ξ ∈ Ω2. There exists a constant C such that〈

P−
ξ $,HE(η)

〉
≤ C(52)

for all $ ∈ ∆̂0 and all η ∈ G(E) such that ηη̄−1 represents ξ (i.e., ηη̄−1 ∈
ξTE).

Proof. Part 1 is proved in [S], §4 (for the split case, but the proof carries over
verbatim). Furthermore, [S] reduces part 2 to the following two statements, which
follow from Hilbert’s Theorem 90:

(a) Every ξ ∈ Ω2 can be represented by gḡ−1 for some g ∈ G(E).
(b) If ξ ∈ Ω2, then the action of Z/(2) on TE by the involution t → ξt̄ξ−1 has

trivial first cohomology.
To prove part 3, we observe that η = ξη̄ and hence if η = ank, then

HE(η) = HE(ξη̄) = ξHE(η̄) +HE(ξn).

We have HE(η̄) = HE(η) and thus P−
ξ HE(η) = 1

2HE(ξn). The result follows from
the fact that 〈$,HE(ξn)〉 is bounded for all $ ∈ ∆̂0.

We now describe P (E)\G(E)/H(F ) for general P . For any such double coset,
take a representative η so that ηη̄−1 represents w ∈ Ω2. Map w to its reduced repre-
sentative in ΩM\Ω/ΩM . Denote by ιP the resulting map from P (E)\G(E)/H(F )
to ΩM\Ω/ΩM . We identify ΩM\Ω/ΩM with MΩM – the set of left and right
ΩM -reduced elements in Ω. Let MΩM

2 be the set of involutions in MΩM . This
corresponds to the double cosets in ΩM\Ω/ΩM which contain an involution. Alter-
natively, these are double cosets D which are self-inverse (i.e. D−1 = D). Indeed, if
ξ is the reduced representative in ΩMwΩM , then ξ−1 is the reduced representative
of ΩMw−1ΩM .

Proposition 20. ιP is a bijection between P (E)\G(E)/H(F ) and MΩM
2 .

Proof. Choosing another η in the double coset changes ηη̄−1 to pηη̄−1p̄−1 for some
p ∈ P (E). Since P (E)\G(E)/P (E)←→ ΩM\Ω/ΩM , ιP is well defined. Moreover,
it is clear that the image of ιP consists of the cosets of ΩM\Ω/ΩM which contain an
involution. Suppose that PgH and Pg′H have the same image under ιP . Let ξ, ξ′ ∈
Ω2 be the image of BgH and Bg′H respectively under ιB . By assumption ξ′ ∈
ΩMξΩM . We first prove that ξ′ can be obtained from ξ by successively performing
two kinds of operations: conjugation by an element of ΩM and multiplying by a
simple reflection inside M which commutes with the involution. We may suppose,
to begin with, that ξ′ ∈ MΩM

2 . If ξ 6= ξ′, then ξ is not reduced and there
exists α ∈ ∆P so that ξα < 0, that is, `(ξsα) = `(ξ) − 1. If ξα 6= −α, then
(ξsα)−1α < 0 and hence `(sαξsα) = `(ξ)− 2. If ξα = −α, then ξ−1sαξ = sξα = sα

and ξ = (ξsα)sα. In any case, we can reduce the length of ξ by the operations
described above. Next, we show that these operations can be realized by ξ 7→ pξp̄−1

for p ∈ P (E). In other words, if ηη̄−1 represents ξ ∈ Ω2 and ξ′′ ∈ Ω2 is obtained
by one of the operations above, then ξ′′ can be represented by pηη̄−1p̄−1. This
is evident for the first operation. For the second one, suppose that sα commutes
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with ξ with α ∈ ∆M
0 . Then ξα = ±α and (possibly after interchanging ξ and

ξ′′ = sαξ) we may assume that ξα = α. We can also assume that ηη̄−1 is actually
equal to the permutation matrix of ξ and hence centralizes the rank 1 subgroup
Mα corresponding to the root α. Choose ηα ∈Mα ⊂M so that ηαηα

−1 represents
sα. Then ηαηη̄

−1ηα
−1 = ηη̄−1ηαηα

−1 represents ξ′′. Thus, there exists g′′ ∈ Pg′H
such that ιB(Bg′′H) = ξ. By the injectivity part of Lemma 19, BgH = Bg′′H ,
hence injectivity of ιP .

For any double coset in P (E)\G(E)/H(F ) choose a representative η so that
ηη̄−1 is the permutation matrix ξ ∈ MΩM

2 . Let G∗ = ResE/FH and similarly for
P ∗. Define F -subgroups of G∗ by

Hη = H ∩ η−1P ∗η,

Pη = ηHη−1 ∩ P ∗,

and set Mη = M∗ ∩ Pη , Nη = N∗ ∩ Pη. We observe that

ηHη−1 = {x ∈ G∗ : x̄ = ξ−1xξ}.
Hence the groups Pη , Mη, Nη depend only on ξ and we sometimes denote them
by Pξ, Mξ, Nξ.

In general, Pη need not equal MηNη. For example, consider the parabolic sub-
group

P =


 ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


of GL(3) and the involution ξ = (23) ∈ MΩM

2 . Then

Pη(F ) =


 x β β

0 α 0
0 0 α

 : x ∈ F ∗ and α, β ∈ E∗


and Mη(F ) is the diagonal subgroup of Pη(F ), but Nη = {e}. However, we do have
Pη = MηNη if ξ normalizes M. We now make the following definition.

Definition 1. A representative η as above is called P -admissible if ξ=ηη̄−1 modTE

lies in ΩM . We also speak about an admissible double coset in P (E)\G(E)/H(F ).

Lemma 21. Let η be a representative of a double coset in P (E)\G(E)/H(F ) such
that ξ = ηη̄−1 represents an element in MΩM

2 .
(1) In the case P = B, every η is B-admissible.
(2) If η is P -admissible, then Mη is a twisted F -form of M defined by the Galois

action m 7→ ξm̄ξ−1.
(3) If η is P -admissible, then Pη = MηNη is a Levi decomposition of Pη. The

center of Mη is contained in the center of ME.
(4) ιP induces a bijection between the P -admissible double cosets in

P (E)\G(E)/H(F ) and Ω2(M,M).

Proof. Part (1) is immediate from the definition since ΩT = Ω. Part (2) is also
immediate from the definition. Observe that

Pη(F ) = {p ∈ PE(E) : p = ξ−1pξ}.
Since ξ ∈ ΩM normalizes M, it follows that P ∩ ξNξ−1 = N ∩ ξNξ−1. Therefore, if
p = mn ∈ Pη(F ) with m ∈M(E) and n ∈ N(E), then m = ξ−1mξ and n = ξ−1nξ.
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On the other hand, Mη is the fixed point set of an involution and hence is reductive
([S]). This proves the first part of (3). The second claim follows from the fact that
the center of Mη(F ) is contained in that of Mη(E) 'M(E) since Mη(F ) is Zariski
dense in Mη(E). Finally, (4) follows from (50).

Remark 2. Explicitly, if P corresponds to the partition (n1, . . . , nr), then the ad-
missible double cosets correspond to involutions π of {1, . . . , r} so that nπ(i) = ni

and then Mη(F ) '∏π(i)=iGL(ni, F )×∏π(i)<i GL(ni, E).

14. Invariant functionals on principal series representations.

Proposition 22. Let v be a place of F where E is inert and let τ be a charac-
ter of the diagonal subgroup T (Ev). Suppose there exists a non-zero Hv-invariant
linear functional on the induced representation IndG(Ev)

B(Ev) τ . Then there exists η ∈
B(E)\G(E)/H(F ) such that the restriction of τ to Tη(Fv) is trivial.

Proof. We drop v from the notation in this proof. For x ∈ G(E), denote by πx

the representation obtained by conjugating π by x. Let δη be the modulus func-
tion on Bη. According to the geometric lemma in [BZ], Theorem 5.2, the repre-
sentation ResH(F ) IndG(E)

B(E) τ is “glued” from indH(F )
Hη(F )(δ

1/2
BE
δ
−1/2
η τ |Bη )η (induction

with compact support) where η ranges over representatives of B(E)\G(E)/H(F )
as above. The modulus factors appear because we use normalized induction. We
claim that δ1/2

BE
δ
−1/2
η = δ

1/2
η . Since δB = δ

1/2
BE

on B(F ), it suffices to check that
the restriction of δB to Bη is δη. Suppose that ηη̄−1 represents ξ ∈ Ω2. Let
u{α,ξα} = {x ∈ uα + uξα : Ad(ηη̄−1)x = x̄} where uα is the root space of α. Then
Lie(Uη) decomposes as a direct sum of u{α,ξα} over orbits {α, ξα} ⊂ Φ+ of ξ and
dimF u{α,ξα} = |{α, ξα}| . We have Lie(Aη) = (AP )+ξ where Aη is the split compo-
nent of Tη and thus for t ∈ Aη,

δη(t) =
∏

{α,ξα}⊂Φ+

∣∣detAd(t)|u{α,ξα}

∣∣ = ∏
{α∈Φ+:ξα>0}

|α(t)| .

On the other hand, since t ∈ Aη we have∏
{α∈Φ+:ξα<0}

|α(t)| = 1

because |α(t)| |(−ξα)(t)| = 1. Thus:

δη(t) =
∏

α∈Φ+

|α(t)| = δB(t)

as claimed. Thus, if IndG(E)
B(E) τ has a non-zero H(F )-invariant functional, then at

least one of the quotients indH(F )
Hη(F )(δ

1/2
η τ)η must have a non-zero H(F )-invariant

functional. In this case, the dual, which is isomorphic to IndH(F )
Hη(F )(mod−1/2

Hη
(τη)−1),

has an H(F )-invariant vector. By Frobenius reciprocity this occurs if and only if
the restriction of τη to Hη(F ) is trivial as claimed.

15. The regularized period. The next theorem describes the regularized period
of a cuspidal Eisenstein series. We write x −→ x̄ for the conjugation of E over
F and if π is a representation of G(AE) or a Levi subgroup, we write π̄ for the
representation g −→ π(ḡ). Let P be the parabolic subgroup of H corresponding
to the partition (n1, . . . , nr) of n. Assume that P is a proper subgroup. If σ =
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σ1 ⊗ σ2 ⊗ · · · ⊗ σr is a representation of ME(AE)1 and λ ∈ A∗
P , we write σ(λ) for

the representation that extends σ to ME(AE) by σ(λ)(am) = e〈λ,HPE
(a)〉σ(m). We

write σ∗ for the contragredient of σ.

Theorem 23. Let ϕ ∈ AP (G)σ where σ = σ1⊗σ2⊗· · ·⊗σr is a cuspidal represen-
tation of ME(AE)1, and let E(ϕ, λ) = E(g, ϕ, λ) be the associated Eisenstein series.
Suppose that E(ϕ, λ) is regular at λ = λ0 and that ΠG/H(E(ϕ, λ0)) is defined and
non-zero. Then either r = 1 and ϕ = E(ϕ, λ0) is a distinguished cusp form on
G(AE), or r = 2 and σ∗2 = σ1. In this case, if 〈Reλ, α∨〉 >> 0 for the unique root
α ∈ ∆P , then the period is given by the following absolutely convergent integral:

ΠG/H(E(ϕ, λ)) =
∫

Hη(F )\H(A)1
e〈λ+ρP ,HPE

(ηh)〉 ϕ(ηh) dh

where ηη̄−1 = ξ is the unique non-trivial element in Ω(M,M). Furthermore,
ΠG/H(E(ϕ, λ)) extends to a meromorphic function of λ.

Remark 3. More precisely, it can be proved that the right hand side of the above
formula converges absolutely in the domain 〈Reλ− ρP , α

∨〉 > 0 ([LP]).

Proof. We may suppose that r > 1 and hence that E(g, ϕ, λ) is a true Eisenstein
series. If ΠG/H(E(ϕ, λ0)) 6= 0, then ΠG/H(E(ϕ, λ)) is non-zero for generic λ ∈ A∗

P,C.

This implies that there exists a dense open set O ⊂ A∗
P,C such that IndG

P (σ(λ))
admits an H(Af )1-invariant functional for all λ ∈ O. Choose a place v where Ev is
inert and σv is unramified, induced from an unramified character t 7→ e〈α,HE(t)〉 of
TE for some α ∈ A∗

0,C. We observe that for ξ ∈ Ω2, Tξ = {t ∈ T (E) : t = ξtξ−1}
and A+

ξ is the Lie algebra of the split component of Tξ modulo the center. From
the previous proposition, we see that for all λ ∈ O, there exists ξλ ∈ Ω2 such
that

〈
λ+ α,A+

ξλ

〉
= 0. Since Ω2 is a finite set, there exists ξ ∈ Ω2 and a subset

O′ ⊂ O with non-empty interior such that ξλ = ξ for all λ ∈ O′. Therefore A+
ξ is

orthogonal to A∗
P and hence A∗

P ⊂ (A∗)−ξ . We claim that P must be a maximal
parabolic subgroup of type (m,m) where m = n

2 and ξ is a Weyl group element that
interchanges the two blocks. Indeed, ξ acts by −1 on A∗

P and therefore normalizes
MP , acting as a transposition on its blocks. But if MP has more than two blocks,
then A∗

P ∩ (A∗)+ξ 6= 0 since ξ necessarily fixes certain non-scalar elements in the
center of MP .

Assume now that P is of type (m,m). Then its associate class consists only of P
itself. In particular, the constant term EQE (h, ϕ, λ) vanishes for all proper parabolic
subgroups Q 6= P. Therefore

ΛT
mE(h, ϕ, λ) = E(h, ϕ, λ) −

∑
δ∈P\H

EPE (δh, ϕ, λ) τ̂P (HPE (δh)− T ),

ΛT,P
m E(h, ϕ, λ) = EPE (h, ϕ, λ)

and

ΠG/H(E(ϕ, λ)) =
∫

H\H(A)1
ΛT

mE(h, ϕ, λ)dg(53)

+
∫ ∗

P\H(A)1
EPE (h, ϕ, λ)τ̂P (HPE (h)− T )dh.
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Now assume that 〈Reλ, α∨〉 >> 0 where α is the unique root in ∆P . Using the
formula

EPE (h, ϕ, λ) = ϕ(h)e〈λ+ρP ,HPE
(h)〉 +M(ξ, λ)ϕ(h)e〈−λ+ρP ,HPE

(h)〉
we see that ΛT

mE(h, ϕ, λ) is equal to I(h) + II(h) + III(h) where

I(h) =
∑

δ∈PE\G−P\H
ϕ(δh)e〈λ+ρP ,HPE

(δh)〉,

II(h) =
∑

δ∈P\H
ϕ(δh)e〈λ+ρP ,HPE

(δh)〉(1− τ̂P (HPE (δh)− T )),

III(h) = −
∑

δ∈P\H
M(ξ, λ)ϕ(δh)e〈−λ+ρP ,HPE

(δh)〉τ̂P (HPE (δh)− T ).

The sum II(h) + III(h) is absolutely integrable over H\H(A)1 and the integral is
equal to ∫

P\H(A)1
ϕ(h)e〈λ+ρP ,HPE

(h)〉(1− τ̂P (HPE (h)− T ))dh

−
∫

P\H(A)1
M(ξ, λ)ϕ(h)e〈−λ+ρP ,HPE

(h)〉τ̂P (HPE (h)− T ) dh.

Indeed, using the Iwasawa decomposition, we bound them by∫
AP

∫
M(F )\M(A)1×K

e〈Re λ−ρP ,HPE
(X)〉|ϕ(mk)|(1 − τ̂P (HPE (X)− T )) dX dm dk

and∫
AP

∫
M(F )\M(A)1×K

e〈−Re λ−ρP ,HPE
(X)〉|M(ξ, λ)ϕ(mk)|τ̂P (HPE (X)− T ) dX dm dk.

The integrals over AP are finite since 〈Reλ− ρP , α
∨〉 > 0, as are the integrals over

M(F )\M(A)1 ×K since ϕ and M(ξ, λ)ϕ are integrable on M(F )\M(A)1. On the
other hand, the relation (16) yields the equality∫

P\H(A)1
ϕ(g)e〈λ+ρP ,HPE

(h)〉(1− τ̂P (HPE (h)− T ))dh

= −
∫ ∗

P\H(A)1
ϕ(g)e〈λ+ρP ,HPE

(h)〉 τ̂P (HPE (h)− T )dh,

and so the contribution of II(h) + III(h) is equal to

−
∫ ∗

P\H(A)1
EPE (h, ϕ, λ)τ̂P (HPE (h)− T )dh.

Now (53) shows that

ΠG/H(E(ϕ, λ)) =
∫

H(F )\H(A)1
I(h) dh,

where we recall that

I(h) =
∑

δ∈PE\G−P\H
ϕ(δh)e〈λ+ρP ,HPE

(δh)〉.
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We know that I(h) is absolutely integrable, but we do not yet know that the series

|I|(h) =
∑

δ∈PE\G−P\H
|ϕ(δh)|e〈Re λ+ρP ,HPE

(δh)〉

is integrable. We will show in fact that it is bounded. Assume that λ is real for
simplicity of notation, and set

IT (h) =
∑

δ∈PE\G−P\H
|ϕ(δh)|e〈λ+ρP ,HPE

(δh)〉τ̂P (HPE (δh)− T ),

IT (h) =
∑

δ∈PE\G−P\H
|ϕ(δh)|e〈λ+ρP ,HPE

(δh)〉(1 − τ̂P (HPE (δh)− T )).

Then |I|(h) = IT (h) + IT (h). We shall bound IT (h) and IT (h) separately.
By [A1], Lemma 5.1, the number of δ ∈ PE\G such that τ̂P (HPE (δh)−T ) = 1 is

bounded by C ‖h‖N for some constants C, N > 0. To bound IT (h), it will therefore
suffice to prove the following proposition.

Proposition 24. For any M > 0 there exists a constant K > 0 such that for h in
the Siegel domain SH we have

|ϕ(δh)| e〈λ+ρP ,HPE
(δh)〉 ≤ K ‖h‖−M

if δ ∈ PE\G− P\H and τ̂P (HPE (δh)− T ) = 1.

We begin the proof of Proposition 24 with the following lemma. We write C1, C2,
etc. for the positive constants that appear in the arguments below. Let (AP

0 )∗+

denote the positive Weyl chamber in (AP
0 )∗.

Lemma 25. There exists µ ∈ (AP
0 )∗ and a constant C with the following property.

For all h ∈ SG ∩H(A)1 and δ ∈ G(E) − PEH such that δh ∈ SPE , we have

〈α,HPE (δh)〉 ≤ 〈µ,HE(δh)〉+ C.

Proof. Let h ∈ SG ∩H(A)1 and δ ∈ G(E)−PEH. We do not assume at the outset
that δh ∈ SPE . However, multiplying δ on the left by PE(E) if necessary, we can use
Proposition 20, to assume that δδ

−1 ∈ NG(TE) represents % ∈ MΩM
2 . According

to Lemma 19, (52), we have
〈
P−

% $,HE(δh)
〉
< C1 for some constant C1 where

∆̂P = {$}. There exist a unique a ∈ R and ν ∈ (AP
0 )∗ such that P−

% α = aα + ν.

Since δ /∈ PEH, % does not lie in ΩM and a > 0 because a = 1
2

〈
P−

% α, α
∨〉 =

1
2

〈
P−

% α, P
−
% α

∨〉. Also,
〈
P−% $, β

∨〉 = 1
2 〈$,−%β∨〉 ≤ 0 for any β ∈ ∆P , since % is

reduced, so that ν ∈ −(AP
0 )∗+. Using 〈α,HE(δh)〉 < a−1C1 − a−1 〈ν,HE(δh)〉 and

setting κ = −a−1ν, we obtain

e〈α,HPE
(δh)〉 ≤ C2e

〈κ,HE(δh)〉.(54)

Now we observe that for any µ′ ∈ (AP
0 )∗+ there exists µ′′ ∈ (AP

0 )∗ such that for all
g ∈ G(AE) and p ∈ PE such that pg ∈ SPE we have

e〈µ′,H(g)〉 ≤ C3e
〈µ′′,H(pg)〉.(55)
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To prove this, write p−1 = δ′u with δ′ ∈ ME(E), u ∈ N(E) and pg = namk where
m lies in the Siegel domain of M1

E . Then

e〈µ′,H(g)〉 = e〈µ′,H(δ′m)〉 ≤ C4 ‖m‖N ≤ C5e
〈µ′′,H(m)〉

where the first inequality can be found in [A1], equation (5.2) in the proof of Lemma
5.1, and the second inequality for some µ′′ is proved in [MW], p. 20 (vi). Now apply
(55) with µ′ = κ and g = δh. Since HPE (δh) = HPE (pδh), we obtain

e〈α,HPE
(pδh)〉 ≤ C6e

〈µ′′,HE(pδh)〉

where pδh ∈ SPE .

We now prove Proposition 24. Let µ be as in Lemma 25 and let h ∈ SG∩H(A)1

and δ ∈ G(E) − PEH . Since the conclusion of the proposition does not change if
we replace δ by pδ for p ∈ PE , we may assume that δh belongs to SPE . We get

|ϕ(δh)| e〈λ+ρP ,HPE
(δh)〉 ≤ C7 |ϕ(δh)| e〈µ,H(δh)〉.

The functionm −→ ϕ(mk) is cuspidal for all k ∈ K and therefore rapidly decreasing
on M(E)\M(AE)1. For any ν ∈ (AP

0 )∗ there exists C8 such that

|ϕ(δh)| e〈µ,H(δh)〉 ≤ C8e
〈ν,H(δh)〉

and thus

|ϕ(δh)| e〈λ+ρP ,HPE
(δh)〉 ≤ C9 e〈ν,H(δh)〉.

Now, since δh ∈ SPE ,

〈β,HE(δh)〉 > 〈β, T0〉 for β ∈ ∆M
0 .

The hypothesis τ̂P (HPE (δh) − T ) = 1 is equivalent to 〈α,HE(δh)〉 ≥ 〈α, T 〉 and
therefore

‖δh‖ ≤ C10e
〈ζ,HE(δh)〉ek〈α,HE(δh)〉(56)

for some ζ ∈ (AP
0 )∗ and k > 0. Again, using Lemma 25, given N, we may choose

ν ∈ (AP
0 )∗ so that

e〈ν,H(δh)〉 ≤ C11 ‖δh‖−N .

By [MW], p. 21, (vii), there exists C12 > 0 such that

‖g‖ ≤ C12 ‖γg‖(57)

for all g ∈ SG and γ ∈ G(E), and hence

|ϕ(δh)| e〈λ+ρP ,HPE
(δh)〉 ≤ C13 ‖h‖−N

.

This completes the proof of Proposition 24.
It remains to bound IT (h). In fact we will show that

g →
∑

δ∈PE\G
|ϕ(δg)|e〈λ+ρP ,HPE

(δg)〉(1− τ̂P (HPE (δg)− T ))
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is bounded for λ positive enough. We can assume that g ∈ SG. In analogy to (56),
there exist k1 > 0 and ν ∈ (AP

0 )∗ such that

‖δg‖ ≤ C14e
〈ν,HE(δg)〉e−k1〈α,HPE

(δg)〉

for all δg ∈ SPE and τ̂P (HPE (δg) − T ) = 0. Since ϕ is rapidly decreasing we infer
that for any N2, k2 > 0

|ϕ(δg)|e〈λ+ρP ,HPE
(δg)〉(1 − τ̂P (HPE (δg)− T )) ≤ C15 ‖δg‖−N2 e−k2〈α,HPE

(δg)〉
(58)

provided that λ is positive enough. For x ∈ Z, x < T is the number of δ such
that δg ∈ SPE and x ≤ 〈α,HPE (δg)〉 < x + 1 is bounded by C16 ‖g‖N3 ek3x for
some N3, k3 > 0. In fact, according to Lemma 5.1 of [A1], this is true also for
x ≤ 〈α,HPE (δg)〉. The claim now follows from (58) taking into account (57).

We now compute the integral of I(h). Let {γ} be a set of representatives for the
double cosets PE\G/H other than the trivial coset PEH . We may choose them so
that γγ−1 ∈ NG(TE). We also assume that η ∈ {γ} is one of the representatives.
Set

Eγ(h, ϕ, λ) =
∑

δ∈PE\PEγH

ϕ(δh)e〈λ+ρP ,HPE
(δh)〉.

Then

I(h) =
∑
{γ}

Eγ(h, ϕ, λ).

We have shown that the series

|Eγ | (h, ϕ, λ) =
∑

δ∈PE\PEγH

|ϕ(δh)| e〈Re λ+ρP ,HPE
(δh)〉

are integrable for 〈Reλ, α∨〉 >> 0. We will show that

∫
H\H(A)1

Eγ(h, ϕ, λ) = 0

for γ 6= η.
As before, we let Pγ be the subgroup of H such that

Pγ(F ) = PE(E) ∩ γH(F )γ−1
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and let R = Rγ be the unipotent radical of Pγ . Then we have∫
H\H(A)1

Eγ(h, ϕ, λ) dh =
∫

Pγ(F )\γH(A)1γ−1
ϕ(hγ)e〈λ+ρP ,HPE

(hγ)〉 dh

=
∫

Pγ(F )R(A)\γH(A)1γ−1
e〈λ+ρP ,HPE

(hγ)〉
(∫

R(F )\R(A)

ϕ(uhγ)du

)
dh.

We will show that the inner integral vanishes due to the cuspidality of ϕ.
Let w = γγ̄−1 represent an element in Ω2 and set K = PE ∩w−1PEw. Define an

involution Ξ on G(E) by the formula Ξ(x) = w−1xw. Then Pγ is the set of fixed
points of Ξ in PE . Thus Pγ ⊂ K and therefore Pγ is also equal to the set KΞ of
fixed points of Ξ in K. Now K contains four subgroups

K0 = ME ∩ w−1MEw, K2 = NE ∩w−1MEw,

K1 = ME ∩ w−1NEw, K3 = NE ∩w−1NEw.

The subgroups K1 and K2 normalize K3 and the set of commutators [K1, K2] is
contained in K3. Hence U = K1K2K3 is a unipotent subgroup of K which is
normal in K since K0 normalizes K1, K2, and K3. Furthermore, K = K0 n U and
Pγ = KΞ

0 n UΞ. In particular, Rγ = UΞ.
We claim that for any u1 ∈ K1, there exists u3 ∈ K3 such that u1Ξ(u1)u3 ∈ R.

Indeed, u1Ξ(u1)u3 is fixed by Ξ if and only if

Ξ(u3)u−1
3 = u−1

1 Ξ(u1)−1u1Ξ(u1).

This equation has a solution u3 in K3 since the right-hand side belongs to K3

and satisfies the equation xΞ(x) = 1. The coset u3K
Ξ
3 is uniquely determined by

u1. Set m(u1) = Ξ(u1)u3. Then the map u1 −→ u1m(u1)KΞ
3 defines a bijection

K1 −→ R/KΞ
3 . This is an isomorphism of algebraic groups whose inverse is the

canonical projection onto ME . It follows that the formula∫
K1(A)

(∫
KΞ

3 (A)

f(u1m(u1)t) dt

)
du1

defines an invariant measure on R(A). Here du1 and dt are Haar measures onK1(A)
and KΞ

3 (A), respectively. If f is left-invariant under R(F ),∫
R(F )\R(A)

f(r) dr =
∫

K1(F )\K1(A)

(∫
KΞ

3 (F )\KΞ
3 (A)

f(u1m(u1)t) dt

)
du1

where dr is an invariant measure on R(F )\R(A). If f is a function on G(AE) which
is left invariant under NE(A), then this formula simplifies to∫

R(F )\R(A)

f(r) dr =
∫

K1(F )\K1(A)

f(u1m(u1)) du1

since KΞ
3 ⊂ NE and then to∫

R(F )\R(A)

f(r) dr =
∫

K1(F )\K1(A)

f(u1) du1

since u1m(u1)u−1
1 ∈ NE(A).
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The function ϕ above is NE(A)-invariant, and therefore∫
H\H(A)1

Eγ(h, ϕ, λ) dh

is equal to∫
Pγ(F )R(A)\γH(A)1γ−1

e〈λ+ρP ,HPE
(hγ)〉

(∫
K1(F )\K1(A)

ϕ(u1hγ)du

)
dh.

However K1 is the unipotent radical of a (not necessarily standard) parabolic sub-
group of ME . If γ is not admissible (i.e. γ 6= η according to Lemma 21), then
K1 6= 0. Since ϕ is cuspidal, the inner integral over K1vanishes as desired. We
remark that the idea that these terms vanish already appears in [F3].

We have shown that

ΠG/H(E(ϕ, λ)) =
∫

H(F )\H(A)1
Eη(h, ϕ, λ) dh

=
∫

Hη(F )\H(A)1
e〈λ+ρP ,HPE

(ηh)〉 ϕ(ηh) dh.

Note that this integral is absolutely convergent. To complete the proof, i.e. to show
that σ∗2 = σ1, we rewrite the expression for ΠG/H(E(ϕ, λ)) slightly as follows. Let

ξ =
(

0 1m

1m 0

)
.

We may choose η to be

η =
(

1m i1m

1m −i1m

)
where i ∈ E − F and i2 ∈ F. Then

Mη = {m = diag(g, g) : g ∈ GLm(E)}
and Hη = η−1Mηη. For future reference, we write this as a separate proposition.
Henceforth, we assume that ϕ(ag) = ϕ(g) for a ∈ AP .

Proposition 26. With the previous notation, we have, for 〈Re λ, α∨〉 >> 0,

ΠG/H(E(ϕ, λ)) =∫
Hη(A)\H(A)

e〈λ+ρP ,HPE
(ηh)〉

(∫
Mη\Mη(A)1

ϕ(mηh) dm

)
dh,(59)

where the integral on the right is absolutely convergent.

Example 1. We illustrate the decomposition of the group Pγ used above in the
case that P corresponds to (2, 1, 1, 1) and w = (13)(24) :

PE =




# # ∗ ∗ ∗
# # ∗ ∗ ∗
0 0 # ∗ ∗
0 0 0 # ∗
0 0 0 0 #


 , wPEw

−1 =




# ∗ 0 0 ∗
0 # 0 0 ∗
∗ ∗ # # ∗
∗ ∗ # # ∗
0 0 0 0 #


 .
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Then

K = PE ∩ w−1PEw =




K0 K1 0 0 K3

0 K0 0 0 K3

0 0 K0 K2 K3

0 0 0 K0 K3

0 0 0 0 K0




where we have indicated which entries belong to the subgroups Kj . In this case

Pγ =




α ε 0 0 ν
0 β 0 0 µ
0 0 α ε ν

0 0 0 β µ
0 0 0 0 a

 : α, β ∈ E∗, ε, µ, ν ∈ E and a ∈ F ∗

 .

The integral over ε will lead to vanishing of the integral when ϕ is in the induced
space of a space of cusp forms on MP .

The proof of Theorem 23 establishes the convergence of the integral in the previ-
ous Proposition. However, we will need to establish the convergence of the integral
for functions ϕ which are not necessarily cuspidal, in fact, for ϕ a constant function.
If ϕ = 1, then the inner integral is just the volume of the quotientMη(F )\Mη(AF )1.
The remaining integral is described in the next Lemma.

Lemma 27. Let the notations be as in the previous proposition, except that λ is
real and ϕ = 1. If 〈Reλ, α∨〉 >> 0 is sufficiently large, then the following integral
is finite: ∫

Hη(A)\H(A)

e〈λ+ρP ,HPE
(ηh)〉 dh.

Proof. It will be convenient to change notations and write the function in the
integrand as f(g, s) where s is real and f is defined by:

f

[(
a x
0 b

)
k, s

]
=
∣∣∣∣det a
det b

∣∣∣∣s+m/2

.

Here the matrices a, b, x, 0 are m ×m matrices and k is in KE . We have to show
that the integral ∫

Hη(A)\H(A)

f(ηh, s)dh

is finite for s sufficiently large. To that end we use the familiar device of representing
f by an integral. Recall the Zeta integral for the trivial representation 1mE of
GL(m,AE): ∫

GL(m,AE)

φ(t) | det t |s+ m−1
2 dt,

where φ is a Schwartz-Bruhat function on M(m×m,AE). The integral converges
for s sufficiently large and is a holomorphic multiple of the Godement-Jacquet
L−function L(s, 1mE). In fact, it equals L(s, 1mE) for a suitable choice of φ. We
can write:

f(g, s) =
1

L(2s+ m+1
2 , 1mE)

∫
GL(m,AE)

Φ [(0, t)g] | det t |2s+m
E dt | det g |s+m/2

E ,
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where Φ is a suitable Schwartz-Bruhat function on M(2m×m,AE). We can write
this integral as an integral over Mη:

f(g, s) =
1

L(2s+ m+1
2 , 1mE)

∫
Mη(A)

Φ [(0, 1m)mg] | detm |2s+m
F dm | det g |s+m/2

E .

After a change of variables we get, for h ∈ H(A):

f(ηh, s) =
1

L(2s+ m+1
2 , 1mE)

∫
Hη(A)

Φ [(0, 1m)ηhηh] | det(hηh) |2s+m
F dhη.

Combining the integral overHη(A) with the integral over the quotient Hη(A)\H(A)
we get for our integral:

1
L(2s+ m+1

2 , 1mE)

∫
H(A)

Φ [(0, 1m)ηh] | det(h) |2s+m
F dh.

If

h =
(
a b
c d

)
,

then

Φ [(0, 1m)ηh] = Φ(a− ic, b− id).
This is a Schwartz-Bruhat function on M(m×m,AF ) and thus the integral is now
a Zeta integral for the trivial representation 1mF of GL(m,A). In particular, it
converges for s sufficiently large and the Lemma is proved.

VII. Intertwining periods

Fix a Levi subgroup M of H and a cuspidal representation σ of ME(AE) trivial
on APE . For ξ ∈ Ω2(M,M), ϕ ∈ AP (G)σ and λ ∈ (A∗

P,C)−ξ , we claim that the
following intertwining period attached to ξ is well-defined:

J(ξ, ϕ, λ) =
∫

Hη(A)\H(A)

e〈λ+ρP ,HPE
(ηh)〉

(∫
Mη(F )\Mη(A)1

ϕ(mηh) dm

)
dh

where η ∈ G(E) is any element satisfying ηη̄−1 = ξ. Recall that Pη = MηNη,
Hη = η−1Pηη and that the center of Mη is contained in the center of ME . It
follows that the inner integral defines a function of h invariant on the left under
the subgroup Hη(A). The function h 7−→ e〈λ,HPE

(ηh)〉 is also left-invariant under
Hη(A), for if x ∈ Hη(A), then

〈λ,HPE (ηxh)〉 = 〈λ,HPE (yηh)〉 = 〈λ,HPE (y)〉+ 〈λ,HPE (ηh)〉
where y = ηxη−1 ∈ Pη(A). But 〈λ,HPE (y)〉 = 0 since HPE (y) lies in the subspace
A+

P of AP fixed by ξ for all y ∈ Pη(A). Moreover, the function h 7−→ e〈ρP ,HPE
(ηh)〉

is the right modulus of the subgroup Hη(A) (cf. the proof of Proposition 22)
while the group H(A) is unimodular. Finally it depends only on the double coset
P (F )ηH(F ) corresponding to ξ. We prove below that the integral defining J(ξ, ϕ, λ)
converges absolutely for λ in a suitable cone and can be analytically continued to
a meromorphic function of λ ∈ (A∗

P )−ξ .
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Example 2. In the special case where P = B and ξ = e, we may take η = e.
Note that λ is necessarily 0. In this case, Hη = P, Mη = M, and the Iwasawa
decomposition yields

J(e, ϕ, λ) = vol(M(F )\M(A)1)
∫
KH

ϕ(k) dk

where KH is a maximal compact subgroup of H(A).

Example 3. Let the notation be as in Theorem 23. Then we find:

ΠG/H(E(ϕ, λ)) =
∫

Hη(F )\H(A)1
e〈λ+ρP ,HPE

(ηh)〉ϕ(ηh) dh = J(ξ, ϕ, λ)

where Hη = η−1Mηη and Mη = {diag(g, g) : g ∈ GLm(E)}.
16. Minimal involutions. To investigate the functionals J(ξ, ϕ, λ), we use induc-
tion beginning with the minimal involutions, defined as follows.

Definition 2. We say that ξ ∈ Ω2(M,M) is minimal if (A∗
P )−ξ is spanned by simple

roots in ∆P .

This definition as well as several results below apply to groups other than GL(n).
In our case, P corresponds to a partition (n1, . . . , nr) of n such that M ' GL(n1)×
· · · × GL(nr). An involution ξ ∈ Ω2(M,M) permutes the factors of M and hence
induces a permutation of order two on {1, 2, . . . , r}. It is easy to see that ξ is
minimal if and only if the permutation is a product of disjoint transpositions of the
form (j, j + 1).

Let Y be the set of j ∈ {1, 2, . . . , r − 1} such that nj = nj+1. For each subset
X ⊂ Y such that j + 1 /∈ X if j ∈ X , there is a unique minimal involution ξ
that interchanges GL(nj) and GL(nj+1) for j ∈ X and fixes the remaining factors.
Let Q be the parabolic subgroup containing P that corresponds to the partition
obtained from (n1, . . . , nr) by replacing the pair of entries nj , nj+1 by the single
entry nj + nj+1 for j ∈ X. In other words, ∆Q

P spans (A∗
P )−ξ . Then Q uniquely

determines X and we may denote the minimal involution associated to X by ξQ.
Let Ξ be an associate class of standard Levi subgroups. Since each M ∈ Ξ lies in

a unique standard parabolic subgroup P, there is no ambiguity if we use the index
M instead of P. For example, we shall write ∆M for ∆P , etc. Let ΦM be the set
of roots of AP and let Φ+

M be the subset of positive roots (those that occur in NP

where M = MP ). For w ∈ Ω(M) we define the length `M (w) to be the number
of roots in Φ+

M sent to negative roots in ΦwMw−1 by w. For all α ∈ ∆M , there is
an elementary symmetry sα ∈ Ω(M) uniquely characterized by the property that
α is the only positive root sent to a negative root by sα (cf. [MW], Section 1.1.7).
Furthermore, for w ∈ Ω(M) and α ∈ ∆wMw−1, we have

`M(sαw) =
{
`M (w) + 1 if w−1α > 0,
`M (w) − 1 if w−1α < 0.(60)

17. Graph of involutions. We will consider a directed graph Γ whose vertices
are elements (ξ,M) where M ∈ Ξ and ξ ∈ Ω2(M,M). To define the edges, observe
that for all α ∈ ∆M , the pair (sαξs

−1
α , sαMs−1

α ) is also a vertex of Γ. We define an
edge

(ξ,M) α−→ (sαξs
−1
α , sαMs−1

α )(61)
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provided that ξ(α) 6= α. Note that an edge may start and end at the same vertex.
By Lemma 28 below, this occurs if and only if ξ(α) = −α. Furthermore, if the edge
(61) has distinct vertices, then there is also an edge in the opposite direction:

(ξ,M) −sαα←− (sαξs
−1
α , sαMs−1

α ).

Let Γ0 be the subgraph whose vertices are the same at Γ, but containing those edges
(61) for which ξ(α) 6= ±α. In other words, Γ0 is obtained from Γ by removing the
loops.

Example 4. Consider the case G = GL(3), Ξ = {M} the class of the Levi sub-
group of the Borel subgroup. Set ξ1 = (12), ξ2 = (23), ξ3 = (13). Then Γ is the
following graph with two connected components:

α2� (ξ2,M) α1−→ (ξ3,M) α2−→ (ξ1,M)
α1	 (e,M).

Here we have not drawn the two interior edges directed from right to left. The
graph Γ0 is obtained by removing the loops.

Example 5. Consider the case G = GL(4), Ξ = {M} the class of the Levi sub-
group of the Borel subgroup. Set ξ1 = (12)(34), ξ2 = (13)(24), ξ3 = (14)(23). Then
Γ contains the component

α1�
α3�

(ξ1,M) α2−→ (ξ2,M)
α1−→
α3−→ (ξ3,M)

α2	 .

Again, we have not drawn the interior edges directed from right to left.

Each path

(ξ1,M1)
α1−→ (ξ2,M2)

α2−→ . . .
αl−1−→ (ξ`,M`)

in Γ defines a word s = sα`−1 · · · sα1 ∈ Ω(M1,Ml) such that ξ` = sξ1s
−1 and

M` = sM1s
−1. If M1 and M2 are standard Levi subgroups and ξi ∈ Ω2(Mi,Mi)

for i = 1, 2, let Ω(ξ1, ξ2) be the set of all words defined by paths from (ξ1,M1) to
(ξ2,M2) in Γ. Let Ω0(ξ1, ξ2) be defined similarly relative to the graph Γ0.

Lemma 28. Assume ξ ∈ Ω2(M,M) and α ∈ ∆M . Then
(1) The following are equivalent:

(i) sαξs
−1
α = ξ;

(ii) ξ(α) = ±α;
(iii) `sαMs−1

α
(sαξs

−1
α ) = `M (ξ).

Furthermore, if ξ(α) = ±α, then sαMs−1
α = M.

(2) If ξα 6= ±α, then the following are equivalent:
(i) `sαMs−1

α
(sαξs

−1
α ) = `M (ξ)− 2;

(ii) ξ(α) < 0.

Proof. We first prove (1). SinceG = GL(n), M is isomorphic to a productGL(n1)×
· · · × GL(nr) where (n1, . . . , nr) is a partition of n. The elementary reflection
sα interchanges two adjacent factors GL(nk) and GL(nk+1) for some k, and ξ
interchanges certain pairs of factors of equal size. Therefore sαξs

−1
α = ξ if and

only if either ξ fixes the factors GL(nk) and GL(nk+1) (in which case ξα = α) or
interchanges them (in which case ξα = −α). Therefore (i) and (ii) are equivalent.
By (60), (iii) occurs if and only if either ξ(α) > 0 and sαξ(α) < 0, or ξ(α) < 0 and
sαξ(α) > 0. But this is the case precisely when ξ(α) = ±α. Therefore (ii) and (iii)
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are equivalent. To prove part (2), observe that `sαMs−1
α

(sαξs
−1
α ) = `M (ξ)−2 if and

only if ξ−1α and sαξ
−1α are both negative, but if ξα 6= ±α, this is equivalent to

the condition ξ−1α < 0. We remark that (1)(ii),(iii) and (2)(i),(ii) are equivalent
for general groups but (1)(i) is sharper than (1)(ii) in general (unless P = P0).

This lemma implies, in particular, that an edge begins and ends at (ξ,M) if and
only if ξ(α) = −α. Therefore Γ0 is the graph obtained from Γ by removing the
loops.

We shall use the following characterization of minimal involutions.

Proposition 29. Let ξ ∈ Ω2(M,M). Then

(1) ξ is minimal if and only if the length function ` has a local minimum at ξ (i.e.,
`M (ξ) ≤ `M ′(ξ′) for all neighbors (ξ′,M ′) of (ξ,M) in Γ).

(2) ξ is conjugate to a minimal involution by an element in Ω(M).
(3) (A∗

P )−ξ is spanned by roots in ΦP .

Proof. Suppose that ξ is a local minimum for ` on Γ. Lemma 28 implies that
ξ(α) = −α whenever α ∈ ∆M and ξ(α) < 0. Let I = {α ∈ ∆M : ξ(α) = −α}.
If β ∈ Φ+

M is any root which is not in the span of the roots in I, then ξ(β) > 0
because ξ(β) contains positive multiples of simple roots outside I. Therefore (A∗

M )−ξ
is contained in the span of I and hence coincides with the span of I. Therefore ξ is
a minimal involution in Ω2(M,M).

On the other hand, if ξ is minimal in Ω2(M,M), then for any 0 < β /∈ (A∗
M )−ξ we

have ξ(β) > 0. Indeed, we may decompose β as β+
ξ + β−ξ where ξβ±ξ = ±β±ξ . Since

β+
ξ 6= 0, it contains in its decomposition relative to ∆M some positive multiple

of a simple root α such that ξα > 0, and this multiple is also present in the
decomposition of ξ(β) = β+

ξ − β−ξ . In particular, if β ∈ ∆M and ξ(β) < 0, then
ξβ = −β. It follows from Lemma 28 that ` has a local minimum at ξ.

Part (2) follows immediately from (1) by the description of the edges in Γ. Part
(3) follows from (2).

Part (1) of the previous proposition implies

Corollary 30. Let ξ ∈ Ω2(M,M). If (ξ,M) is not minimal, then there exists
α ∈ ∆M such that the element ξ′ = sαξs

−1
α satisfies `(ξ′) = `(ξ)− 2.

18. The functional equations. Fix a parabolic subgroup P = MN and ξ ∈
Ω2(M,M). Let Φ+

P be the set of positive roots of AP in NP and set

Φξ
P = {β ∈ Φ+

P : ξβ < 0}.
We shall set

DP,ξ = {λ ∈ (A∗
P )−ξ : 〈λ, β∨〉 >> 0 for β ∈ Φξ

P }
where >> denotes sufficiently large, but we shall not specify the implied constants.
However, observe that DP,ξ is non-empty because it contains P−

ξ λ if λ is sufficiently
positive in A∗+

P . Indeed, if β ∈ Φ+
P , then P−

ξ β
∨ = 1

2 (β∨ − ξβ∨) is a sum of positive
roots and hence 〈

P−
ξ λ, β

∨
〉

=
〈
λ, P−

ξ β
∨
〉
>> 0.
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Our main result in this section is the following

Theorem 31. Let ξ ∈ Ω2(M,M). Then

(1) J(ξ, ϕ, λ) is defined by an absolutely convergent integral for Reλ ∈ DP,ξ.
(2) J(ξ, ϕ, λ) has a meromorphic continuation to (A∗

P )−ξ ⊗ C.
(3) If s ∈ Ω(ξ1, ξ2), then

J(ξ1, ϕ, λ) = J(ξ2,M(s, λ)ϕ, sλ).(62)

In the case of minimal involutions, parts (1) and (2) of this Theorem as well as
certain cases of (3) follow from the previous section. Indeed,

Lemma 32. If ξ = ξQ is minimal and Q = Qξ, then (A∗
P )−ξ = (AQ

P )∗ and DP,ξ is
the half-space

DP,ξ = {λ ∈ (AQ
P )∗ : 〈Reλ, α∨〉 >> 0 for all α ∈ ∆Q

P }.
In this case,

(1) The integral defining J(ξQ, ϕ, λ) is absolutely convergent if Reλ ∈ DP,ξ.

(2) J(ξQ, ϕ, λ) has a meromorphic continuation to (AQ
P )∗ ⊗ C.

(3) J(ξQ, ϕ, λ) = J(ξQ,M(sα, λ)ϕ, sαλ) for all α ∈ ∆Q
P .

Proof. We can take η = ηQ ∈MQ(E). Then H(A) = NQ(A)MQ(A)KH with dh =
e−〈ρQ,HE(m)〉dndmdk and Hη = Hη,QNQ where Hη,Q = Hη ∩MQ. Therefore, since
ρP = ρQ + ρQ

P

J(ξQ, φ, λ)

=
∫

Hn,Q(A)NQ(A)\H(A)

e〈λ+ρP ,HPE
(ηQh)〉

(∫
Mη(F )\Mη(A)1

φ(lηQh)dl

)
dh

=
∫

Hn,Q(A)\MQ(A)

e〈λ+ρQ
P ,HPE

(ηQm)〉
(∫

Mη(F )\Mη(A)1
φKF (lηQh)dl

)
dm

= JMQ(ξQ, φKF , λQ
P ),

where we set

φKF (g) =
∫
KF

φ(gk)dk.

By Proposition 26 (applied to a product of linear groups, namely MQE ) this in-
tegral is absolutely convergent in the indicated domain and equal to the period
ΠMQE

/MQ

(
E(φKH , λQ

P )
)

of the Eisenstein series on MQE for the parabolic sub-
group P ∩MQE . This shows that the integral extends to a meromorphic function.
The stated functional equation is inherited from the functional equation of the
Eisenstein series.

The next proposition provides functional equations that can be verified by direct
calculation.
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Proposition 33. Let ξ ∈ Ω2(M,M) and let α ∈ ∆M be a root such that ξ(α) < 0
but ξ(α) 6= −α. Then for λ ∈ DP,ξ we have an equality

J(ξ, ϕ, λ) = J(sαξs
−1
α ,M(sα, λ)ϕ, sαλ)(63)

where both sides are defined by absolutely convergent integrals.

Proof. We first establish the integral formula (66) below. Let wα be a representative
for sα and set:

ξ′ = wαξw
−1
α , η′ = wαη, M ′ = wαMw−1

α .

Then M ′ is the standard Levi-subgroup of a (standard) parabolic subgroup P ′ =
M ′N ′. We have sαα = −α′ with α′ ∈ ∆P ′ . We also introduce the parabolic
subgroup R such that R ⊃ P and ∆R

P = {α}. Note that R ⊃ P ′ and ∆R
P ′ = {α′}.

The standard Levi-decomposition of R reads R = MRNR and wα belongs to MR

and hence normalizes NR. On the other hand, we have N = NαNR and N ′ =
Nα′NR. Here we denote by Nα the abelian subgroup exponential of the eigenspace
of the Lie algebra corresponding to α. Likewise for Nα′ .

Define an involution θ by θ(x) = (ξ′)−1x′ξ′. The subgroup N ′
η′ is the set of fixed

points of θ in N ′. We claim that

wαNηw
−1
α = N

′
η′ ∩NR.(64)

To prove this, observe first that Nη is contained in NR. Indeed, Nη is the space
of u ∈ N such that ξ−1uξ = u and therefore is contained in N ∩ ξ−1Nξ. However,
N ∩ ξ−1Nξ is contained in NR, for if not, then Nα would intersect
N ∩ ξ−1Nξ non-trivially and then ξNαξ

−1 ⊂ N , contradicting our assumption
that ξ(α) < 0. Since wα normalizes NR, we also conclude that wαNηw

−1
α is con-

tained in NR. If an element x satisfies ξ−1xξ = x, then the element x′ = wαxw
−1
α

is fixed by θ. Therefore wαNηw
−1
α is contained in NR ∩N ′

η′ . Similarly we find that
w−1

α (NR ∩N ′
η′)wα is contained in Nη and the equality (64) follows.

The involution θ maps Nα′ to NR. Indeed, if u ∈ Nα′ , then

θ(u) = wαξ
−1w−1

α uwαξw
−1
α .

The element w−1
α uwα is in N−α and thus ξ−1w−1

α uwαξ lies in some Nβ with β > 0,
β 6= α. It follows that β′ = sαβ is a positive root in ∆P ′ different from α′ and
hence θ(u) lies in Nβ′ ⊂ NR.

We now claim that given any element u ∈ Nα′ , there exists s(u) ∈ NR, unique
modulo N

′
η′ ∩NR, such that uθ(u)s(u) ∈ N ′

η′ . Furthermore, the map

Nα′ −→ N
′
η′/N

′
η′ ∩NR(65)

u 7→ uθ(u)s(u)
(
N

′
η′ ∩NR

)
defines an algebraic group isomorphism (locally, globally), whose inverse is the
projection on the MR part. To prove the claim, observe that the element t =
u−1θ(u)−1uθ(u) belongs to NR and satisfies θ(t)t = 1. Hence t = θ(s)s−1 for some
s ∈ NR which is unique modulo N

′
η′ ∩NR. Since uθ(u)s is fixed by θ, we may set

s(u) = s.
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The isomorphism (65) can be used to compute the Haar measure on N
′
η′ (locally

or globally) as:∫
N
′
η′
f(z)dz =

∫
Nα′

(∫
N
′
η′∩NR

f(uθ(u)s(u)n)dn

)
du.(66)

To continue the proof, we start with the intertwining period

J(sαξs
−1
α ,M(sα, λ)φ, sαλ),

which is equal to∫
Hη′ (A)\H(A)

∫
Mη′ (F )\Mη′ (A)1

∫
Nα′(A)

e〈λ+ρP ,HPE
(w−1

α nm′η′h)〉φ(w−1
α nm′η′h)dndm′dh.

We will check below that this triple integral is absolutely convergent. The integrand,
viewed as a function of n ∈ N ′(A), is left-invariant under NR(A). It follows that
the integral over Nα′(A) can be rewritten as an integral over the quotient

wαNηw
−1
α (A)\N ′

η′(A).

Now we have Pη′ = Mη′N
′
η′ and Mη′ = wαMηw

−1
α . Also N

′
η′ ⊃ wαNηw

−1
α . Thus

Pη′ = wαPηw
−1
α N

′
η′ with N

′
η′ normal and the intersection of the two subgroups is

wαNηw
−1
α . Conjugating by (η′)−1, we obtain

Hη′ = Hη

(
η′−1N

′
η′η

′
)
.

The second group is normal and the intersection of the two groups is η−1Nηη. Using
the fact that m′ normalizes both N

′
η′(A) and wαNηw

−1
α (A) and conjugation by m′

does not change the Haar measures, we see that

J(sαξs
−1
α ,M(sα, λ)φ, sαλ)

can be written as∫ ∫ ∫
e〈λ+ρ,HPE

(w−1
α m′η′uh)〉 φ(w−1

α m′η′uh) dm′dudh.

The integral in the h variable is taken over Hη′(A)\H(A) and the integral in the
u variable is taken over η−1Nηη(A) \(η′)−1N

′
η′η

′(A). We may now combine the
integrations over u and h into an integration over H(A) modulo Hη(A) to obtain∫

Hη(A)\H(A)

∫
Mη′ (F )\Mη′ (A)1

e〈λ+ρP ,HPE
(w−1

α m′η′h)〉 φ(w−1
α m′η′h) dm′dh.

Finally, using that w−1
α m′η′ = mη withm ∈Mη, we obtain equation (63) as desired.

It remains to verify that the triple integral defining J(ξ′,M(sα, λ)φ, sαλ) is ab-
solutely convergent. To this end, we take the variable λ to be real and φ to be the
constant 1, and define a “scalar” intertwining period:

j(ξ, λ) = vol(Mη(F )\M1
η (A))

∫
Hη(A)\H(A)

e〈λ+ρP ,HPE
(ηh)〉dh

(with positive integrand). Computing formally as above, we find a formula:

j(ξ, φ) = j(sαξs
−1
α , sαλ)m(sα, λ)
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where

m(sα, λ) =
∫

Nα′(A)

e〈λ+ρP ,HPE
(w−1

α n)〉dn

is a scalar intertwining operator. The integral defining m(sα, λ) is known to con-
verge absolutely in a domain

C = {λ : 〈λ, α∨〉 >> 0} .
By Lemma 27 above, we know that if ξ is minimal, then j(ξ, λ) converges in some
domain DP,ξ. By induction on the length of ξ we may assume that j(ξ′, λ′) con-
verges in DP ′,ξ′ . Now

DP,ξ ⊂ s−1
α DP ′,ξ ∩ C.

Thus for λ ∈ DP ,ξ we find that both j(sαξs
−1
α , sαλ) and m(sα, λ) are defined by

absolutely convergent integrals and our assertion follows: the integral j(ξ, λ) is
absolutely convergent for λ ∈ DP ,ξ. The same is therefore true of J(ξ, φ, λ), and
the proof is complete.

We now prove parts (1) and (2) of Theorem 31 by induction on `M (ξ). If ξ is not
minimal, there exists a root α ∈ ∆M such that ξ(α) < 0 and ξ′ = sαξs

−1
α has length

`(ξ)−2 by Corollary 30. Let P ′ be the parabolic subgroup with A∗
P ′ = sαA

∗
P . Then

DP,ξ = s−1
α (DP ′,ξ′) ∩ {λ ∈ (A∗

P )−ξ : 〈λ, α∨〉 , 〈λ,−ξα∨〉 >> 0}

since Φξ
P = sαΦξ′

P ′ ∪ {α,−ξ(α)}. We may assume by induction that the integral
defining J(ξ′, ϕ, λ) converges absolutely inDξ′ and has a meromorphic continuation.
Then J(ξ, ϕ, λ) converges absolutely in Dξ and has a meromorphic continuation by
Proposition 33.

It remains to prove part (3) of Theorem 31. The functional equations corre-
sponding to s ∈ Ω0(ξ, ξ′) are a consequence of Proposition 33 and the functional
equations M(s−1

α , sαλ)M(sα, λ) = I. It remains to examine the case of a loop. So
assume that ξ = sαξsα−1 where α is a root such that ξα = −α. By Lemma 29, (2),
there exists a minimal involution ξ′ such that ξ′ = wξw−1 with w ∈ Ω0(ξ, ξ′), i.e.,
w is equal to a word associated to a path in Γ0 (start with any w ∈ Ω(ξ, ξ′) and re-
move loops in the path attached to w). Since sαξs

−1
α = ξ, the element s = wsαw

−1

lies in Ω(ξ′, ξ′). In fact, since s acts trivially on (A∗
P ′)+ξ′ and ξ′ is minimal, s must be

a product of commuting elementary symmetries sγ for roots γ contained in (A∗
P ′)−ξ′ .

We deduce that

J(ξ,M(sα, λ)ϕ, sαλ) = J(ξ′,M(w, sαλ)M(sα, λ)ϕ,wsαλ)
= J(ξ′,M(wsα, λ)ϕ,wsαλ)

by the functional equation M(wsα, λ) = M(w, sαλ)M(sα, λ). On the other hand,
by Lemma 32

J(ξ′,M(wsα, λ)ϕ,wsαλ) = J(ξ′,M(swsα, λ)ϕ, swsαλ)
= J(ξ′,M(w, λ)ϕ,wλ).

Finally J(ξ′,M(w, λ)ϕ,wλ) = J(ξ, ϕ, λ), again since w ∈ Ω0(ξ, ξ′).
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19. A description of Ω(ξ, ξ′). Since the sets Ω(ξ, ξ′) determine the functional
equations of the intertwining periods, it is of interest to have a description of them
independent of the graphs. We do this in the next proposition. For ξ ∈ Ω2(M,M),
set

Cξ = {x ∈ A∗
M : 〈x, β∨〉 > 0 for β ∈ Φ+

M ∩ (A∗
M )+ξ }.

Proposition 34. Let M and M ′ be standard Levi subgroups, ξ ∈ Ω2(M,M), and
ξ′ ∈ Ω2(M ′,M ′). Suppose that wξw−1 = ξ′. Then the following are equivalent:

(a) w ∈ Ω(ξ, ξ′).
(b) w ∈ Ω(M,M ′) and wCξ = Cξ′ .
(c) w ∈ Ω(M,M ′) and w−1β > 0 for all β ∈ Φ+

M ′ ∩ (A∗
M ′)+ξ′ .

Proof. The equivalence of (b) and (c) follows immediately from the definitions. To
prove the equivalence of (a) and (c), assume first that w = sα is an elementary
symmetry. Then w−1β > 0 for all β ∈ Φ+

M ′ ∩ (A∗
M ′)+ξ′ if and only if α /∈ (A∗

M )+ξ .
But α /∈ (A∗

M )+ξ if and only if ξ α−→ ξ′. Notice that when (c) holds, w−1 maps
Φ+

M ′ ∩ (A∗
M ′)+ξ′ bijectively to Φ+

M ∩ (A∗
M )+ξ .

Now assume (a) holds. Then we may write w as a product w = sαk
· · · sα1 of

elementary symmetries arising from a path in Γ. Set wj = sαj−1 · · · sα1 , ξj =
wjξw

−1
j and Mj = wjMw−1

j . By induction, w−1
k maps Φ+

Mk
∩ (A∗

Mk
)+ξk

bijectively
to Φ+

M ∩ (A∗
M )+ξ and s−1

αk
maps Φ+

M ′ ∩ (A∗
M ′)+ξ′ bijectively to Φ+

Mk
∩ (A∗

Mk
)+ξk
. Hence

w−1 maps Φ+
M ′ ∩ (A∗

M ′)+ξ′ bijectively to Φ+
M ∩ (A∗

M )+ξ and (c) holds.
Finally, assume (c) holds and let w = sαk

· · · sα1 be a reduced decomposition of
w. Set wj = sαj−1 · · · sα1 . Since the decomposition is reduced, w−1

j αj > 0 and
ww−1

j αj < 0 for j = 1, . . . , k ([MW], p. 14). In particular, the root β = −sαk
αk

lies in Φ+
M ′ and w−1β = −w−1

k αk < 0. Our hypothesis implies that β /∈ (A∗
M ′)+ξ′ .

Therefore ξk
αk−→ ξ′ is an edge in Γ. It also follows that wk satisfies condition (c)

with Mk in place of M ′ and, by induction, wk ∈ Ω(ξ, wkξw
−1
k ). Hence w = sαk

wk

belongs to Ω(ξ, ξ′) as required.

Corollary 35. Let w ∈ Ω(ξ, ξ′). Then every reduced decomposition w = sαk
· · · sα1

is obtained from a word in the graph Γ.

Remark 4. Assume that M = M0 and let {β1, . . . , βr} be the positive roots con-
tained in (A∗

M )−ξ . It is straightforward to check that Ω(ξ, ξ) ∼= (Z/2)r o Sr. The
group Ω(ξ, ξ) acts by signed permutations on (A∗

0)
−
ξ , i.e., Sr permutes the βj and

the jth factor of (Z/2)r acts by sending βj to −βj. The subgroup Ω+
ξ of Ω generated

by reflections about roots contained in (A∗
0)

+
ξ is isomorphic to Sn−2r and

{w ∈ Ω : w(A∗
0)
−
ξ = (A∗

0)
−
ξ } = Ω(ξ, ξ)× Ω+

ξ .

It is sufficient to check these facts for ξ = (1, 2) · · · (2r − 1, 2r).

20. Unramified computations. In this section we consider a local analogue of
the intertwining period in the unramified case. Assume that n = 2m and let
P = MN be the standard parabolic subgroup of type (m,m). We use the notation
of Section V I. Thus ξ is the non-trivial element in Ω(M,M) and η ∈ GLn(E) is
such that ηη−1 = ξ. The subgroup Mη consists of the matrices diag(h, h) where
h ∈ GLm(E).
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Assume that σ = σ1 ⊗ σ2 is a cuspidal representation of ME(AE) trivial on AM

such that σ2 ' σ∗1. There is a unique (up to scalars) non-zero linear form L′ on the
space of σ which is invariant under Mη(A), namely

L′ (ϕ) =
∫

Mη(F )\Mη(A)1
ϕ(m)dm.

For j = 1, 2, we choose an identification of σj with a restricted tensor product
⊗′σjv where the product is over places v of F. This identification presupposes the
choice of Kv-fixed vectors xjv in the space of σjv for almost all v. Thus, σjv is
a representation of GLm(Ev) where Ev = E ⊗ Fv. We set σv = σ1v ⊗ σ2v. Since
σ2v ' σ∗1v, there exists a non-zero linear map

L
′
v : σ1v ⊗ σ2v −→ C

invariant under Mη. It is also unique up to scalar multiples. We may assume that
L′v(x1v⊗x2v) = 1 for almost all v. Then for a suitable normalization of L′, we have

L′(ϕ) =
∏
v

L′v(ϕv)

whenever ϕ corresponds to a pure tensor ⊗ϕv.
Set

πv = IndGv

Pv
σv, π = IndG(A)

P (A) σ

and let V (πv) and V (π) denote the space of πv and π, respectively. If ϕv ∈ V (πv),
then ϕv(g) lies in the space of σ1v ⊗ σ2v for all g ∈ Gv and hence we may define
a function Lv(ϕv)(g) whose value is the image of ϕv(g) under L′v. This function is
left-invariant under Mη(Ev). Similarly, for ϕ belonging to the space V (π) of π, we
may set L(ϕ)(g) equal to the image of ϕ(g) under L′. Then

L(ϕ)(g) =
∏
v

Lv(ϕv)(gv).

In the global theory we used unnormalized induction. However, it will be more
convenient to us to use normalized induction for the local computation. Thus, we
now have

J(ξ, ϕ, λ) =
∫

Hη(A)\H(A)

e〈λ,HPE
(ηh)〉 L(ϕ)(ηh) dh.

(The ρP is already absorbed in ϕ because we use normalized induction.) Define the
following local intertwining period:

Jv(ξ, ϕv, λ) =
∫

Hη(Fv)\H(Fv)

e〈λ,HPE
(ηhv)〉 Lv(ϕv)(ηhv) dhv

for λ ∈ (A∗
P )−ξ . Then we have the factorization (for a suitable normalization of

measures):

J(ξ, ϕ, λ) =
∏
v

Jv(ξ, ϕv, λ).

In this sense, the global intertwining period is equal to the product of the local
intertwining periods. We shall now compute the local factor Jv(ξ, ϕv, λ) in the
unramified case.

For the rest of this section, assume that v is a finite place such that σjv is
unramified for j = 1, 2. We shall show below that the integral converges absolutely
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for Reλ >> 0 and compute its value assuming that ϕv is a Kv-fixed vector in
V (πv). To this end, we recall the definition of the Asai L-function of an unramified
representation of GLm(E) ([AS], [F1]). We view GL(m)E as a group over F . Its
L-group is then

LGL(m)E = GLm(C)×GLm(C)oGal(E/F )

where the non-trivial element σE/F ∈ Gal(E/F ) acts on the connected component
by interchanging the factors. Let V = Cm and let T be the automorphism of V ⊗V
sending x⊗ y to y ⊗ x. We identify GL(V ⊗ V ) with GLm2(C) and define

ρA : LGL(m,E) −→ GLm2(C),

where ρA(g×h×1) = g⊗h and ρA(1×1×σE/F ) = T. Write ωE/F for the character
of LGL(m)E obtained by pulling back the non-trivial character of Gal(E/F ). Then
ρA⊗ωE/F is also defined. If σv is an unramified representation, we may define the
local Langlands L-factors L(λ, σv, ρA) and L(λ, σv, ρA⊗ωE/F ) attached to ρA and
ρA ⊗ ωE/F respectively. Note that the direct sum ρA ⊕ ρA ⊗ ωE/F is isomorphic
to the representation of LGL(m)E induced from the tensor product representation
of GLm(C)×GLm(C). Since formation of L -functions is invariant under induction,
we obtain

L(σv, s, ρA) L(σv, s, ρA ⊗ ωE/F ) = L(s, σv × σv)

where L(s, σv × σv) is the Rankin-Selberg convolution of σv and σv ([JS]).
Actually, we shall need to use the contragredient representation ρ∗A. Let us write

down the local factors explicitly. Recall that σv is a representation of GLm(Ev)
where Ev = E⊗Fv. If v splits in E, then GLm(Ev) = GLm(Ew1)×GLm(Ew2) and
σv = σw1 ⊗ σw2 where w1 and w2 are the place of E dividing v. For j = 1, 2, σwj

corresponds to a Langlands class g(σwj ) ∈ GLm(C) and the Langlands class of σv

in LGL(m,E) is g(σv) = g(σw1)× g(σw2)× 1. In this case,

L(λ, σv, ρ
∗
A) = L(λ, σv, ρ

∗
A ⊗ ωE/F ) = det(1− q−λ

v g(σw1)
∗ ⊗ g(σw2)

∗)

where qv is the order of the residue field of Fv and g∗ = tg−1. This is the local
factor in the Rankin-Selberg product σ∗w1

× σ∗w2
. If v remains prime in E, let w

be the unique place of E dividing v. Then Ev is a field and σv = σw corresponds
to a Langlands class g(σw) ∈ GLm(C). It also corresponds to a Langlands class in
LGL(m,E), namely g(σw)× 1× σE/F , and we have

L(λ, σv, ρ
∗
A) = det(1− q−λ

v (g(σw)∗ ⊗ 1)T ).

If g(σw) has eigenvalues qλ1
w , ..., qλn

w (where qw = q2v), then

L(λ, σv, ρ
∗
A) =

∏
1≤i<j≤n

(1 − q−λi−λj
w q−λ

w )−1
n∏

i=1

(1− q−λi
w q−λ

v )−1,

L(λ, σv, ρ
∗
A ⊗ ωE/F ) =

∏
1≤i<j≤n

(1 − q−λi−λj
w q−λ

w )−1
n∏

i=1

(1 + q−λi
w q−λ

v )−1.

We now begin our computation of Jv(ξ, ϕv, λ) for ϕv fixed by Kv. Suppose
that σ1v is the unramified constituent of IndGLm(Ev)

Bm(Ev) χ where Bm is the stan-
dard upper-triangular Borel subgroup of GL(m) and χ = (χ1, ..., χm) is an m-
tuple of unramified characters of E∗

v . Then σ2v is the unramified constituent
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of IndGLm(Ev)
Bm(Ev) χ−1. Let χ∗ be the character of the upper-triangular Borel sub-

group B(Ev) of G(Ev) defined by the n -tuple (χ1, ..., χm, χ
−1
1 , ..., χ−1

m ). We iden-
tify IndGLm(Ev)

Bm(Ev) χ ⊗ IndGLm(Ev)
Bm(Ev) χ−1 with IndM(Ev)

B(Ev) χ∗. For ψ in the space of

IndM(Ev)
B(Ev) χ

∗, set

L′v(ψ) =
∫

Bη(Fv)\Mη(Fv)

ψ(m) dm.

Here we use that the modulus function of Bη(Fv) is equal to the restriction of
the character e〈ρB ,HBE

(m)〉. This linear functional is Mη(Fv)-invariant and, up to
multiples, it is the unique such functional. We may identify πv with the unramified
constituent of the induced representation Σv = IndG(Ev)

B(Ev) χ
∗ and on the induced

space of Σv, the functional Lv can be written

Lv(ϕ)(g) =
∫

Bη(Fv)\Mη(Fv)

ϕ(mg) dm

where dm is the semi-invariant measure on Bη\Mη(Fv). The local intertwining
period can be written

Jv(ξ, ϕ, λ) =
∫

Hη(Fv)\H(Fv)

e〈λ,HPE
(ηh)〉 Lv(ϕ)(ηh) dh

=
∫

Hη(Fv)\H(Fv)

∫
Bη\Mη(Fv)

e〈λ,HPE
(ηh)〉 ϕ(mηh) dm dh

=
∫

B′
η(Fv)\H(Fv)

e〈λ,HPE
(ηh)〉 ϕ(ηh) dh

where B′
η(Fv) = η−1Bη(Fv)η = H(Fv) ∩ η−1BE(Ev)η.

The essential vector is the unique function ϕv in the space Σv which is right-
invariant under GLn(Ov) (where Ov is the ring of integers in Ev) and satisfies
ϕv(e) = 1. We identify A∗

P,C with C by sending $ to 1, where ∆̂P = {$}.

Theorem 36. Assume that v /∈ S and let ϕv be the essential vector. For a suitable
normalization of measures we have

Jv(ξ, ϕv, λ) =
L(λ, σ1v, ρ

∗
A)

L(λ+ 1, σ1v, ρ∗A ⊗ ωE/F )
.

We first prove this theorem in the case that v splits in E. Then we may identify
G(Ev) with GLn(Ew1) × GLn(Ew2 ) where w1, w2 are the places of E dividing v.
We have σjv = σjw1 ⊗ σjw2 where σ1w1 ' σ∗2w2

and σ1w2 ' σ∗2w1
. Conjugation

acts by (x, y) −→ (y, x) and H(Fv) is imbedded diagonally. We may also take
η = (1, ξ). Then Hη(Fv) is the Levi factor of the parabolic subgroup P = MN type
(m,m) in H(Fv) and B′

η(Fv) = B(Fv)∩Hη(Fv). Using the Iwasawa decomposition
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H(Fv) = B′
η(Fv)N(Fv)KF we obtain

Jv(ξ, ϕ, λ) =
∫

B′
η(Fv)\H(Fv)

e〈λ,HP (ηh)〉 ϕ(ηh) dh

=
∫

B′
η(Fv)\H(Fv)

e〈λ,HP (h)+HP (ξh)〉 ϕ1(h)ϕ2(ξh) dh

=
∫

N(Fv)

e〈λ,HP (ξn)〉 ϕ2(ξn) dn.

In other words, Jv(ξ, ϕv, λ) coincides with the standard intertwining operator ap-
plied to the essential vector in IndGw2

Pw2
(σ1w2 ⊗ σ2w2). By the Gindikin-Karpelevic

formula, the integral is equal to

L(λ, σ∗1w2
⊗ σ2w2)

L(λ+ 1, σ∗1w2
⊗ σ2w2)

=
L(λ, σ∗1w2

⊗ σ∗1w1
)

L(λ+ 1, σ∗1w2
⊗ σ∗1w1

)

and this is equal to L(λ, σ∗1v, ρA)/L(λ+ 1, σ∗1v, ρA ⊗ ωE/F ) as claimed.
We now suppose that v remains prime in E, and, for simplicity, we drop v from

the notation. We first consider the case H = GL2(F ) and G = GL2(E) where E/F
is an unramified extension of p-adic fields. We also assume that p 6= 2. We write
| · | and || · || for the absolute values on F and E, respectively, q for the order of the
residue field of F, and qE = q2 for the order of the residue field of E. Fix i ∈ E∗

such that TrE/F (i) = 0 and set

η =
(

1 i
1 −i

)
.

Then

ηη−1 =
(

1 i
1 −i

)(
1
2

1
2−1

2i
1
2i

)
=
(

0 1
1 0

)
and the subgroup T = H∩η−1B(E)η is a torus isomorphic to E∗. We shall compute∫

T\H
ϕ(ηh) dh

where

ϕ(
(

a ∗
0 b

)
k) = ||a

b
||λ+1

2 .

Thus ϕ is the essential vector in the unramified representation GL2(E) with Lang-
lands class (

q
λ
2
E 0

0 q
−λ

2
E

)
∈ GL2(C).

To fix the quotient measure on T \H, we observe that every h ∈ H can be written
uniquely in the form

h = t

(
1 b
0 1

)(
a 0
0 1

)
with t ∈ T. In these coordinates, a right-invariant measure on T \H is given by
da
|a|db. Assume that the measures da and db assign measure 1 to the ring of integers
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OF . With this normalization, we have the following result. It is proved in [JL] using
the method of Lemma 27 above. Here we give a direct computational proof.

Proposition 37. We have∫
T\H

ϕ(ηh)dh = ||i|| 12 1 + q−λ−1

1− q−λ
.

Proof. Since

η

(
1 b
0 1

)(
a 0
0 1

)
=
(
a b+ i
a b− i

)
,

we have

ϕ(
(
a b+ i
a b− i

)
) = ||2ai||λ+1

2 (max{||a||, ||b− i||})−λ−1

= ||i||λ+1
2 ||a||λ+1

2 max{||a||, ||i − b||}−λ−1

and hence ∫
T\H

ϕ(ηh) dh = ||i||λ+1
2

∫
F∗
f(a)||a||λ+1

2
da

|a|
where

f(a) =
∫

F

max{||a||, ||i− b||}−λ−1 db.

We now compute f(a). Set

X = 1 +
∫
|b|>1

|b|−2λ−1 db

|b| .

It is easily checked that

X =
1− q−2λ−2

1− q−2λ−1

with the normalization vol(OF ) = 1.

Lemma 38. f(a) = |a|−2λ−1X if ||a|| ≥ ||i|| and f(a) = ||i||−λ− 1
2X if ||a|| < ||i||.

Proof. If ||a|| ≥ ||i||, then

f(a) =
∫
|b|≤|a|

||a||−λ−1 db+
∫
|b|>|a|

||b||−λ−1 db

= |a|−2λ−2vol({b : |b| ≤ |a|}) + |a|−2λ−1

∫
|b|>1

|b|−2λ−1 db

|b|
= |a|−2λ−1X.

If ||a|| < ||i||, then

f(a) =
∫

F

||i − b||−λ−1 db

= ||i||−λ−1vol({b : ||b|| ≤ ||i||}) +
∫
||b||>||i||

|b|−2λ−1 db

|b|
= ||i||−λ− 1

2 + ||i||−λ− 1
2

∫
|b|>1

|b|−2λ−1 db

|b|
= ||i||−λ− 1

2X.
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Now we have∫
F∗

f(a)||a||λ+1
2
da

|a| =
∞∑

n=−∞
f(pn)q−n(λ+1)

= qr(2λ+1)X
∑
n>r

q−n(λ+1) +X
∑
n≤r

qn(2λ+1)q−n(λ+1)

and it is easily checked that this equals

qrλ

(
1 + q−λ−1

1− q−λ

)
and the result follows.

The next proposition is the inert case of Theorem 36.

Proposition 39. Let E/F be an unramified quadratic extension of p-adic fields
and let σ1 be an unramified representation of GLm(E). For the unique normalized
K-invariant ϕ ∈ IP (σ1 × σ∗1) we have

J(ξ, ϕ, λ) =
L(λ, σ1, ρ

∗
A)

L(λ+ 1, σ1, ρ∗A ⊗ ωE/F )
.

Proof. In the above notation, suppose that σ1 =IndGLm(E)
Bm(E) χ where χ=(χ1, ..., χm)

with χi = | · |λi

E . As before, σ2v = IndGLm(Ev)
Bm(Ev) χ−1 and we view ϕ as an element of

IndGnv

Bnv
(χ1, . . . , χn, χ

−1
1 , . . . , χ−1

n ). To compute

Jv(ξ, ϕ, λ) =
∫

B′
η(Fv)\H(Fv)

e〈λ,HBE
(ηh)〉 ϕ(ηh) dh,

we shall regard it as a local intertwining period for an Eisenstein series induced from
the Borel subgroup and reduce to the case n = 2 by making use of the functional
equations. Let ξ′ = (1, 2) · · · (2n − 1, 2n). Then ξ′ is a minimal involution and
ξ = w−1ξ′w where w is defined by w(i) = 2i− 1 and w(i+n) = 2i for i = 1, . . . , n.
Then w has the following reduced decomposition:

w = (s2n−2)(s2n−4s2n−3) · · · (s4 · · · snsn+1)(s2 · · · sn−1sn).

We observe that an analogue of Proposition 33 holds in the local case. It is proved
in the same way, by re-writing the absolutely convergent integral. Therefore

Jv(ξ, ϕ, λ) = Jv(ξ′,M(w, λ)ϕ,wλ).

As in the proof of Lemma 32, the right hand side can be written as a local in-
tertwining period with respect to the group GL2 × · · · × GL2 (m times) and the
induction from (χ1, χ

−1
1 , . . . , χm, χ

−1
m ). By Proposition 37 we have

J(ξ′, ϕ, λ) =
n∏

i=1

(1− q−λi

E q−λ
F )−1(1 + q−λi

E q
−(λ+1)
F ).

By the formula of Gindikin and Karpelevic, M(w, λ)ϕ = c(λ)ϕ where

c(λ) =
∏

1≤i<j≤n

(1− q−λi−λj

E q−λ
E )−1

(1− q−λi−λj

E q
−(λ+1)
E )−1

.

This completes the proof.
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VIII. Periods of truncated Eisenstein series

The next theorem gives our formula for ΠG/H(ΛT
mE(ϕ, λ)). Let P be a parabolic

subgroup, let (n1, . . . , nr) be the corresponding partition of n, and fix a cuspidal
representation σ of MPE (AE)1. Let G(P, σ) be the set of pairs (Q, s) consisting
of a parabolic subgroup Q and an element s ∈ Ω(MP ,MP ′) with P ′ ≤ Q such
that s−1α > 0 for all α ∈ ∆Q

P ′ and there exists a set X ⊂ {1, 2, . . . , r − 1} of
indices satisfying conditions (1), (2), (3) below. Let (n′1, . . . , n′r) be the partition
corresponding to M ′ = MP ′ , and set sσ = σ′ = σ′1 ⊗ σ′2 ⊗ · · · ⊗ σ′r. Then

(1) For all j ∈ X we have j + 1 /∈ X, n′j = n′j+1 and (σ′j+1)
∗ ' σ′j .

(2) For all j such that j, j−1 /∈ X , σ′j is distinguished with respect to GLn′j (AF ).
(3) Q corresponds to the partition obtained from (n′1, . . . , n

′
r) by replacing the

pair of entries n′j, n
′
j+1 by the single entry n′j + n′j+1 for all j ∈ X.

Let GP (σ) be the set of all parabolic subgroups Q that appear in some pair (Q, s) ∈
G(P, σ).

The Levi subgroup M ′ of P ′ is isomorphic to GLn′1 × · · · × GLn′r . Let ξQ be
the unique element in Ω(M ′,M ′) such that ξ interchanges the jth and (j + 1)th

factors of M ′ for j ∈ X and fixes all other factors. We write λ = λQ + λQ
P ′ for the

decomposition of an element λ ∈ A∗
P ′ relative to the direct sum A∗

P ′ = A∗
Q ⊕ (AQ

P ′)∗.
Let

vQ = 2d(H)−d(Q) vol{
∑

α∈∆Q

aαα
∨ : 0 ≤ aα ≤ 1}.

Theorem 40. Let ϕ ∈ APE (G)σ where σ is a cuspidal representation of ME(AE),
and let E(g, ϕ, λ) be the associated Eisenstein series. Then as a meromorphic
function of λ, ∫

H(F )\H(A)1
ΛT

mE(h, ϕ, λ)dh

is equal to

∑
(Q,s)∈G(P,σ)

vQ
e〈(sλ)Q,T〉∏

α∈∆Q

〈
(sλ)Q , α

∨
〉J(ξQ,M(s, λ)ϕ, (sλ)Q

P ′ ).

Proof. Since σ is cuspidal, EQE (g, ϕ, λ) vanishes unless Q contains an associate of
P and we obtain ∫

H(F )\H(A)1
ΛT

mE(g, ϕ, λ) dg

=
∑
Q

(−1)d(Q)−d(H)

∫ ∗

Q(F )\H(A)1
EQE (g, ϕ, λ) τ̂Q(HQE (g)− T ) dg

where Q ranges over such parabolics. Let Ω(P,Q) be the union over all P ′ ⊂ Q of
the subset of elements s ∈ Ω(MP ,MP ′) such that s−1α > 0 for all α ∈ ∆Q

P ′ . Then

EQE (g, ϕ, λ) =
∑

s∈Ω(P,Q)

EQE (g,M(s, λ)ϕ, sλ)
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where EQE (g,M(s, λ)ϕ, λ) is the Eisenstein series on QE induced from the function
M(s, λ)ϕ. We must therefore compute the integrals∫ ∗

Q(F )\H(A)1
EQE (g,M(s, λ)ϕ, sλ) τ̂Q(HQE (g)− T ) dg(67)

for s ∈ Ω(P,Q). By definition, (67) is equal to

ΠMQE
/MQ

(
EQE

(
· , (M(s, λ)φ)KF , (sλ)Q

P ′

))∫ ∗

AQ

e〈(sλ)Q,2X〉τ̂Q(2X − T )dX(68)

where we have set:

(M(s, λ)φ)KF (m) =
∫
KF

M(s, λ)φ(mk)dk

and EQE is an Eisenstein series for the parabolic subgroup PE ∩MQE of the group
MQE . By Theorem 23 (applied to a product of linear groups), the first factor in
(67) vanishes unless (Q, s) belongs to G(P, σ). If (Q, s) ∈ G(P, σ), then it is equal
to the following intertwining period integral for the group MQ:

JMQ

(
ξQ, (M(s, λ)φ)KF , (sλ)Q

P ′

)
.

As in the proof of Lemma 32, this is the same as the following intertwining period
for the group G:

J(ξQ,M(s, λ)φ, (sλ)Q
P ′).

On the other hand,∫ ∗

AQ

e〈(sλ)Q,2X〉τ̂Q(2X − T )dX = vQ
e〈(sλ)Q,T 〉∏

α∈∆Q
〈(sλ)Q, α∨〉 .

The required formula follows.

As an example, consider the case P = B, the Borel subgroup. Then the integral
(67) vanishes unless Q is a parabolic of type (m1, . . . ,mk) with mj = 1 or 2. Thus
MQ is isomorphic to a product of copies of GL1 and GL2. Given such a Q, let
ξQ be a representative for the longest element in the Weyl group of MQ, and let
η = ηQ ∈ Q(E) be such that ηη̄−1 = ξQ. Then we have

Proposition 41. Let σ be a character of TE(E)\TE(AE)1 and let E(g, ϕ, λ) be an
Eisenstein series where ϕ ∈ ABE (G)σ . Then∫

H(F )\H(A)1
ΛT

mE(h, ϕ, λ) dh

is equal to the sum of the terms

vQ
e〈(wλ)Q,T〉∏

α∈∆Q

〈
(wλ)Q , α

∨
〉J(ξQ,M(w, λ)ϕ, (wλ)Q

0 )
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where Q ranges over the parabolic subgroups of type (n1, . . . , nr) with nj = 1 or
2 and w ranges over the elements of the Weyl group Ω such that wσ is trivial on
TηQ(A)1, and w−1α > 0 for α ∈ ∆Q

0 .

In this proposition, the intertwining integral J(ξQ,M(w, λ)ϕ,wλQ
0 ) reduces to

vol(HηQ(F )AMQ\HηQ(A))
∫

HηQ
(A)\H(A)

e〈(wλ)Q
0 +ρB ,H(ηQh)〉 M(w, λ)ϕ(ηQh) dh.

Example 6. Consider the case G = GL(2), and E(g, ϕ, λ) is an Eisenstein series
induced from a character σ of BE(F )\BE(AE) trivial on A0. Here we identify A∗

0,C
with C by sending the fundamental weight to 1 and thus we view λ as a complex
parameter. Let w be the non-trivial element in the Weyl group. There are three
possible pairs (Q,w) : (B, e), (B,w), and (G, e). If Q = B, then ξ = η = e and
Bη = Hη = B. The pairs (B, e) and (B,w) occur if and only if σ is trivial on
B(AF ). Identifying σ with a pair of Hecke characters (σ1, σ2) of A∗

E , the condition
is that σ1 and σ2 are trivial on A∗

F . If so, the contribution of the pairs (B, e) and
(B,w) is equal to 1

2 vol(T (F )A0\T (A)) times

eλT

λ

∫
KF

ϕ(k) dk +
e−λT

−λ
∫
KF

M(w, λ)ϕ(k) dk.

If Q = G, then ξ = w and Bη is the torus

Bη =
{(

α 0
0 α

)
: α ∈ E∗

}
.

The pair (G, e) contributes if and only if σ2(α) = σ1(α)−1. If so, the contribution
is

vol(Bη(F )A0\Bη(A))
∫

Hη(A)\H(A)

e〈λ+1,H(ηh)〉 ϕ(ηh) dh.
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