
Contemporary Mathematics

Archimedean Rankin-Selberg Integrals
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Abstract. The paper gives complete proofs of the properties of the Rankin-
Selberg integrals for the group GL(n,R) and GL(n,C).
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1. Introduction

The goal of these notes is to give a definitive exposition of the local Archimedean
theory of the Rankin-Selberg integrals for the group GL(n). Accordingly, the
ground field F is either R or C. The integrals at hand are attached to pairs of
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irreducible representations (π, V ) and (π′, V ′) of GL(n, F ) and GL(n′, F ) respec-
tively. More precisely, each integral is attached to a pair of functions W and W ′ in
the Whittaker models of π and π′ respectively and, in the case n = n′, a Schwartz
function in n variables. More generally, it is necessary to consider instead of a
pair (W,W ′) a function in the Whittaker model of the completed tensor product
V ⊗̂V ′. The integrals depend on a complex parameter s. They converge absolutely
for <s >> 0. The goal is to prove that they extend to holomorphic multiples of
the appropriate Langlands L-factor, are bounded at infinity in vertical strips, and
satisfy a functional equation where the Langlands ε factor appears. This is what
is needed to have a complete theory of the converse theorems ([6], [7], [8]). An
alternate approach may be found in [20].

More is proved. Namely, it is proved that the L-factor itself is a sum of such
integrals. At this point in time, this result is not needed. Nonetheless, it has
esthetic appeal. Indeed, it shows that the factors L and ε are determined by the
representations π and π′. Anyway, by using this general result and by following
Cogdell and Piatetski-Shapiro ([8]), it is shown that for the case (n, n − 1) and
(n, n) the relevant L-factor is obtained in terms of vectors which are finite under
the appropriate maximal compact subgroups. The result is especially simple in the
unramified situation, a result proved by Stade ([22], [23]) with a different proof.

A first version of these notes was published earlier ([18]). The present notes are
more detailed. Minor mistakes of the previous version have been corrected. More
importantly, in contrast to [18], the methods are uniform as all the results are
derived from an integral representation of the Whittaker functions, the theory of
the Tate integral, and the Fourier inversion formula. The estimates for a Whittaker
function are derived from coarse estimates which are then improved by applying
the same coarse estimates to the derivatives of the Whittaker function, a method
first used by Harish-Chandra. This is simpler than giving an explicit description of
the Whittaker functions and then deriving estimates, as was done in the previous
version. In [13], I proposed another approach to the study of the integrals. Again,
the approach of the present notes is in fact simpler. Thus I hope that these notes
can be indeed regarded as a definitive treatment of the question.

Difficult results on smooth representations and Whittaker vectors due to
Wallach ([26], Vol. II), Casselman ([3]), Casselman and his collaborators ([4]) are
used in an essential way.

Needless to say, these notes owe much to my former collaborators, Piatetski-
Shapiro and Shalika. In particular, the ingenious induction step from (n, n− 1) to
(n, n) is due to Shalika.

Finally, I would like to thank the referee for reading carefully the manuscript
and suggesting improvements to the exposition.

2. The main results

Let F be R or C. If F = R, we denote by |x|F the ordinary absolute value. If
F = C, we set |x|F = xx. We also write α(x) = αF (x) = |x|F .

In these notes we consider representations (π, V ) of GL(n, F ). We often write
Gn(F ) or even Gn for the group GL(n, F ). Furthermore, we set Kn = O(n,R) if
F = R, and Kn = U(n,R) if F = C. We let Lie(Gn(F )) be the Lie algebra of Gn(F )
as a real Lie group and U(Gn(F )) the enveloping algebra of Lie(Gn(F )). The space
V is assumed to be a Frechet space. The representation on V is continuous and C∞.
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Let V0 be the space of Kn-finite vectors in V so that V0 is a (Lie(Gn(F )),Kn))-
module. We assume that the representation of (Lie(Gn(F )),Kn) on V0 is admissible
and has a finite composition series. Finally, we assume that the representation is of
moderate growth, a notion that we now recall. For g ∈ GL(n,C) or g ∈ GL(n,R),
we set

(2.1) gι := tg−1 , ||g||H := Tr(g tg) + Tr(g−1 gι) .

Then, for every continuous semi-norm µ on V , there is M and another continuous
semi-norm µ′ such that, for every v ∈ V , g ∈ Gn(F ),

µ(π(g)v) ≤ ||g||MH µ′(v) .

It is a fundamental result of Casselman and Wallach that V is determined, up to
topological equivalence, by the equivalence class of the representation of the pair
(Lie(Gn(F )),Kn) on V0. In other words, V is the canonical Casselman-Wallach
completion of the Harish-Chandra (Lie(Gn(F )),Kn)-module V0. It will be conve-
nient to call such a representation a Casselman-Wallach representation.

If (π′, V ′) is similarly a representation of Gn′ satisfying the same conditions
and V ′

0 is the space of Kn′-finite vectors in V ′, then the representation π ⊗ π′ of
Gn ⊗ Gn′ on the (projective) complete tensor product V ⊗̂V ′ is the Casselman-
Wallach completion of the (Lie(Gn ×Gn′),Kn ×Kn′) module V0 ⊗ V ′

0 .
In addition, in these notes, the representations π at hand have a central char-

acter ωπ : F× 7→ C× defined by

ωπ(z)1V = π(z1n) .

Let ψ be a non-trivial additive character of F . If V is a real or complex finite
dimensional vector space, we will denote by S(V ) the space of complex-valued
Schwartz functions on V . Let Φ ∈ S(V ) where V = M(a × b, F ), the space of
matrices with a rows and b columns. We denote by Fψ(Φ), or simply Φ̂, the
Fourier transform of Φ. Unless otherwise specified, it is the function defined on the
same space by

Fψ(Φ)(X) =
∫

Φ(Y )ψ
(−Tr( tXY )

)
dY .

The Haar measure is self-dual so that Fψ ◦ Fψ is the identity.
We let Nn be the group of upper triangular matrices with unit diagonal and

we denote by θψ,n or simply θψ the character θψ : Nn(F ) → C× defined by

(2.2) θψ(u) = ψ
( ∑

i

ui,i+1

)
.

A ψ form on V is a continuous linear form λ such that

λ(π(u)v) = θψ(u)v ,

for each v ∈ V and each u ∈ Nn(F ). We let An be the group of diagonal matrices,
Bn the Borel subgroup Bn = AnNn. We denote by δn the module of the subgroup
Bn(F ). We often write Nn for the group tNn.

To formulate our results, we first consider certain induced representations of
GL(n, F ). Let WF be the Weil group of F and σ = (σ1, σ2, . . . , σr) an r-tuple of
irreducible unitary representations of WF (see the Appendix). Thus the degree of
σi noted di = deg(σi) is 1 or 2. Let πi or πσi be the representation of GL(di, F )
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attached to σi . Denote by Ii its space. Let u = (u1, u2, . . . , ur) be an r-tuple of
complex numbers. Let P be the lower parabolic subgroup of type

(d1, d2, . . . , dr)

with Levi-decomposition
P = MU

in GL(n, F ), n =
∑

i di. Here M is the group of matrices of the form

(2.3) m =




m1 0 . . . 0
0 m2 . . . 0
∗ ∗ ∗ ∗
0 0 . . . mr


 , mi ∈ Gdi

.

We denote by δP the module of the group P (F ).
We denote by (πσ,u, Iσ,u) the representation of GL(n, F ) induced by the repre-

sentation
(π1 ⊗ αu1 , π2 ⊗ αu2 , . . . , πr ⊗ αur )

of P . Thus Iσ,u may be viewed as a space of functions f on GL(n, F ) with values
in the projective tensor space I1⊗̂I2⊗̂ · · · ⊗̂Ir such that

f(vmg) = δ
1/2
P (m)

× π1(m1)|det m1|u1 ⊗ π2(m2)| detm2|u2 ⊗ · · · ⊗ πr(mr)| detmr|urf(g)

for v ∈ U(F ), m ∈ M(F ). The representation πσ,u is by right shifts.
For each u, there is a non zero continuous linear ψ form λ on Iσ,u and, within

a scalar factor, a unique one. Indeed if σ is irreducible of degree 1, then πσ,u is
a one dimensional character of G1(F ) = F× and our assertion is vacuous. If σ is
irreducible of degree 2, then F = R and πσ,u is a discrete series representation of
G2(R) and our assertion is then well-known ([21]). In the general case πσ,u is an
induced representation and our assertion follows from Theorem 15.4.1 in [26] II.
We often say that πσ,u is a generic induced representation.

For each f ∈ Iσ,u, we set

Wf (g) = λ(πσ,u(g)f) .

We denote by W(πσ,u : ψ) the space spanned by the functions Wf .
For every integer n, we denote by wn the n×n permutation matrix whose anti

diagonal entries are 1. In particular,

w2 =
(

0 1
1 0

)
.

We also set
gι = tg−1 .

We set
π̃i(g) = πi(wdig

ιwdi) .

Thus if di = 1, then πi is a character of F× and π̃i(x) = πi(x)−1. If di = 2, then
π̃i(g) is isomorphic to the representation contragredient to πi. In particular, it is
the representation associated to the representation σ̃i of WF contragredient to σi.
If f is in Iσ,u, then the function f̃ , defined by

f̃(g) := f(wn gι) ,
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belongs to the space of the representation induced by the representation

(π̃r ⊗ α−ur , π̃r−1 ⊗ α−ur−1 , · · · π̃1 ⊗ α−u1)

of the subgroup
P̃ := wn(P )ιwn .

Set

σ̃ = (σ̃r, σ̃r−1, . . . , σ̃1)
ũ = (−ur,−ur−1, . . . ,−u1) .

We may identify this induced representation to the space Ieσ,eu. If we do so, then f̃

belongs to Ieσ,eu. We define a ψ linear form λ̃ on Ieσ,eu by

λ̃(f̃) = λ(f) .

We see then that the function

W̃f (g) := Wf (wngι)

verifies
W̃f (g) = W ef (g)

where
W ef (g) = λ̃(πeσ,eu(g)f̃) .

Thus W̃f belongs to W(πeσ,eu : ψ).
The semisimple representations attached to πσ,u and πeσ,eu are contragredient

to one another. In general, the representations πσ,u and πeσ,eu need not be contra-
gredient to one another if they are not irreducible.

Let τ be a semisimple representation of WF . The factors L(s, τ), L(s, τ̃),
ε(s, τ, ψ) are defined (see the Appendix). As usual, we set

γ(s, τ, ψ) = ε(s, τ, ψ)
L(1− s, τ̃)

L(s, τ)
.

If τ is of degree 1, these are the Tate factors. In particular, the factor ε(s, τ, ψ)
is defined by the functional equation∫

Φ̂(x)τ−1(x) |x|1−s
F d×x = γ(s, τ, ψ)

∫
Φ(x)τ(x)|x|s

where the Fourier transform Φ̂, also noted Fψ(Φ), is defined by

Φ̂(x) =
∫

Φ(y)ψ(−yx)dy ,

and dy is the self-dual Haar measure. If we denote by ψa the character defined by
ψa(x) = ψ(ax), we have

γ(s, µ, ψa) = µ(a)|a|s−1/2γ(s, µ, ψ) .

In general,
γ(s, τ, ψa) = det(τ)(a)|a|d(s−1/2)γ(s, τ, ψ)

where det(τ) is regarded as a character of F× and d is the degree of τ .
We let L(τ) be the space of meromorphic functions f(s) which are holomorphic

multiples of L(s, τ) and furthermore satisfy the following condition. Let P (s) be a
polynomial such that P (s)L(s, τ) is holomorphic in the strip

A ≤ <s ≤ B .
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Then P (s)f(s) is bounded in the same strip. Then we define a semi-norm on L(τ)

µP,A,B(f) = sup
A≤<s≤B

|P (s)f(s)| .

The space L(τ) is complete for the topology defined by the semi-norms µP,A,B .
Now consider two pairs (σ, u) and (σ′, u′). We set

σu =
⊕

σi ⊗ αui

F

and define σ′u′ similarly.
We choose a ψ linear form λ on Iσ,u and a ψ linear form λ′ on Iσ′,u′ . The

integrals we want to consider are as follows. For f ∈ Iσ,u, f ′ ∈ Iσ′,u′ , set

W = Wf , W ′ = Wf ′ .

If n > n′, we set

(2.4) Ψ(s,W,W ′) =
∫

W

(
g 0
0 1n−n′

)
W ′(g)|det g|s−n−n′

2 dg .

In addition, for 0 ≤ j ≤ n− n′ − 1, we set

(2.5) Ψj(s,W,W ′) =
∫

W




g 0 0
X 1j 0
0 0 1n−n′−j


W ′(g)| det g|s−n−n′

2 dXdg .

Here X is integrated over the space M(m × j, F ) of matrices with m rows and j
columns. Thus Ψ0(s,W,W ′) = Ψ(s,W,W ′). In each integral, g is integrated over
the quotient Nn′(F )\Gn′(F ).

If n = n′, we let Φ be a Schwartz function on Fn and we set

(2.6) Ψ(s,W,W ′,Φ) =
∫

W (g)W ′(g) Φ[(0, 0, . . . , 0, 1)g] | det g|sdg .

Again, g is integrated over the quotient Nn(F )\Gn(F ).
In this paper, we prove the following results.

Theorem 2.1.
(i) The integrals converge for <s >> 0.
(ii) Each integral extends to a meromorphic function of s which is a holomor-

phic multiple of L(s, σu ⊗ σ′u′), bounded at infinity in vertical strips.
(iii) The following functional equations are satisfied. If n = n′ + 1

Ψ(1− s, W̃ , W̃ ′) = ωπσ,u(−1)n−1ωπσ′,u′ (−1)γ(s, σu ⊗ σ′u′ , ψ)Ψ(s,W,W ′) .

If n > n′ + 1,

Ψj(1− s, ρ(wn,n′)W̃ , W̃ ′)

= ωπσ,u(−1)n′ωπσ′,u′ (−1)γ(s, σu ⊗ σ′u′ , ψ)Ψn−n′−1−j(s,W,W ′) .

If n = n′,

Ψ(1− s, W̃ , W̃ ′, Φ̂) = ωπσ,u(−1)n−1γ(s, σu ⊗ σ′u′ , ψ)Ψ(s,W,W ′, Φ) .

Here

wn,n′ =
(

1n′ 0
0 wn−n′

)
.
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Recall that ωπσ,u and ωπσ′,u′ are the central characters of πσ,u and πσ′,u′ ,
respectively. Note that det σu = ωπσ,u

and det σ′u′ = ωπσ′,u′ .

Remark 2.2. The functional equations are slightly different from the ones in
earlier references. This is because the conventions are themselves different.

Following Cogdell and Piatetski-Shapiro, we remark that the assertions of the
theorem for a given ψ imply the assertions are true for any ψ. Indeed, consider for
instance the case n = n′. Set π = πσ,u, π′ = πσ′,u′ . Let a ∈ F×. Set ψa(x) := ψ(ax)
and

m = diag(an−1, an−2, . . . , a, 1) .

Then det m = a
n(n−1)

2 , δn(m) = |a| (n+1)n(n−1)
12 , and mwn = an−1wnm−1 For W ∈

W(π : ψ), W ′ ∈ W(π′ : ψ), set

Wm(g) = W (mg) , W ′
m(g) = W ′(mg) .

Then Wm ∈ W(π : ψa), W ′
m ∈ W(π′ : ψa). After changing g to m−1g, we find

Ψ(s,Wm, W ′
m, Φ) = δn(m)|a|−s

n(n−1)
2 Ψ(s,W,W ′, Φ) .

Thus the assertions about the analytic properties of the integrals are true for ψa. We
pass to the functional equation. For clarity, we define a priori a factor γ(s, π×π′, ψ)
by the functional equation

Ψ(1− s, W̃ , W̃ ′,Fψ(Φ)) = γ(s, π × π′, ψ)ωπ(−1)n−1Ψ(W,W ′,Φ) .

We have to check the relations

γ(s, π × π′, ψa) = ωπωπ′(a)n |a|n2(s−1/2)γ(s, π × π′, ψ) ,

and
γ(s, π × π′, ψ) = γ(s, π′ × π, ψ) .

We stress that
Fψa(Φ)(X) = |a|n/2Φ(aX) .

For n = 1, from the Tate functional equation, we do get

γ(s, χ, ψa) = χ(a)|a|s−1/2γ(s, χ, ψ) .

For n > 1

W̃m(g) = W (mwngι) = W (an−1wnm−1 gι) = ωπ(a)n−1W (wnm−1 gι) .

It will be convenient to use the notation

(2.7) εn =

n︷ ︸︸ ︷
(0, 0, . . . , 0, 1) .

Now

Ψ(1− s, W̃m, W̃ ′
m,Fψa(Φ))

= ωπωπ′(a)n−1|a|n
2

∫
W (wnmιgι)W ′(wnmιgι)Fψ(Φ)(aεng) |det g|1−sdg .

After changing g into a−1g and then g into m−1g, we find

δn(m)ωπωπ′(a)n |a|n2+n
2 s−n2

2 Ψ(1− s, W̃ , W̃ ′,Fψ(Φ)) .
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Applying the functional equation for ψ, this becomes

δn(m)ωπωπ′(a)n |a|n2+n
2 s−n2

2 γ(s, π × π′, ψ)ωπ(−1)n−1

×
∫

W (g)W ′(g) Φ(εng) | det g|sdg .

Changing g into mg, we get

ωπωπ′(a)n |a|n2(s− 1
2 )γ(s, π × π′, ψ)ωπ(−1)n−1Ψ(s,Wm, W ′

m, Φ) .

Comparing with the functional equation for ψa, we do find

γ(s, π × π′, ψa) = ωπωπ′(a)n |a|n2(s−1/2)γ(s, π × π′, ψ) .

In particular, for a = −1, we get

γ(s, π × π′, ψ) = ωπωπ′(−1)n γ(s, π × π′, ψ) .

Now suppose W ′ ∈ W(π′ : ψ), W ∈ W(π : ψ). Then

Ψ(1− s, W̃ ′, W̃ ,Fψ(Φ)) = ωπωπ′(−1)Ψ(1− s, W̃ , W̃ ′,Fψ(Φ)) .

Applying the functional equation for ψ, we get

ωπ′(−1)γ(s, π × π′, ψ)ωπ(−1)nΨ(s, W,W ′, Φ) .

Applying the relation between γ(s, π × π′, ψ) and γ(s, π × π′, ψ), we find

= ωπ′(−1)n−1γ(s, π × π′, ψ)Ψ(s,W ′,W,Φ) .

Thus we see that indeed

γ(s, π′ × π, ψ) = γ(s, π × π′, ψ) .

Theorem 2.3. Let the notations be as in Theorem 2.1.
(i) Suppose n > n′. Then each integral Ψj(s,Wf ,Wf ′) belongs to L(σu⊗σ′u′)

and the map
(f, f ′) 7→ Ψj(s,Wf ,Wf ′)

from Iσ,u × Iσ′,u′ to L(σu ⊗ σ′u′) is continuous.
(ii) Suppose n = n′. Then each integral Ψ(s,Wf ,Wf ′ ,Φ) belongs to L(σu ⊗

σ′u′) and the map

(f, f ′,Φ) 7→ Ψj(s,Wf ,Wf ′ ,Φ)

from Iσ,u × Iσ′,u′ × S(Fn) to L(σu ⊗ σ′u′) is continuous.

We can also consider the projective tensor product of the representations πσ,u

and πσ′,u′ . It is equivalent to an induced representation of GL(n, F )×GL(n′, F ).
The linear form λ ⊗ λ′ extends to a continuous linear form on the tensor product
Iσ,u⊗̂Iσ′,u′ . For f ∈ Iσ,u⊗̂Iσ′,u′ , we can set

W (g, g′) = λ(πσ,u(g)⊗ πσ′,u′(g′)f)

and then define integrals containing W . If n > n′,

Ψj(s,W ) =
∫

W






g 0 0
X 1j 0
0 0 1n−n′−j


 , g


 |det g|s−n−n′

2 dXdg .

If n = n′

Ψ(s,W,Φ) =
∫

W (g, g) Φ[(0, 0, . . . , 0, 1)g] | det g|sdg .
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The assertions of Theorems 2.1 and 2.3 are still true for these more general integrals.
At this point, we recall a result of [4]. The authors define a functor V 7→ Ψψ(V )

from the category of the Casselman-Wallach representation to the category of finite
dimensional complex vector spaces. The functor is exact and the dual of Ψψ(V )
can be functorially identified with the space of (continuous) ψ form on V . As a
result, we have the following extension lemma.

Lemma 2.4. Let V be a Casselman-Wallach representation and V1 a closed
invariant subspace of V . Any ψ form λ1 on V1 extends into a ψ form on V .

Now let us consider an induced representation (πσ,u, Iσ,u). We state a useful
lemma.

Lemma 2.5. Suppose further that

<u1 ≤ <u2 ≤ · · · ≤ <ur .

Let V = V1/V2 be an irreducible subquotient of Iσ,u. Suppose that V is generic,
that is, admits a non-zero ψ linear form. Then V2 = 0.

Proof. Let λ be a non-zero ψ form on Iσ,u. The map

f 7→ Wf , Iσ,u →W(πσ,u : ψ)

is then injective and thus bijective. The simplest proof of this fact is to adapt the
methods of [17] where the p-adic case is treated. In particular, the linear form λ
cannot vanish identically on a closed invariant subspace of Iσ,u. Let V = V1/V2 be
an irreducible subquotient of Iσ,u. Thus V1 and V2 are closed invariant subspaces.
Suppose that V admits a non-zero ψ linear form λ1 which we can view as a linear
form on V1 which vanishes on V2. By Lemma 2.4, it extends to a ψ linear form on
Iσ,u. The extension is a scalar multiple of λ. Thus V2 = 0. ¤

In particular, consider the Langlands quotient V = Iσ,u/V0 where V0 is the
maximal invariant subspace 6= Iσ,u. We see that if V is generic then V0 = 0, that is,
Iσ,u is irreducible and generic. In general, it follows that Iσ,u has a unique minimal
invariant subspace which is generic. For an algebraic proof of these results, see [24].
See also [5] which gives analogous results for general p-adic reductive groups.

We have now a more precise result.

Theorem 2.6. Let (σ, u) and (σ′, u′) be two pairs such that

<u1 ≤ <u2 ≤ · · · ≤ <ur , <u′1 ≤ <u′2 ≤ · · · ≤ <u′r′ .

(i) Suppose n > n′. Then for every m in L(σu⊗σ′u′), there is f ∈ Iσ,u⊗̂Iσ′,u′

such that
m(s) = Ψ(s,W ) ,

with
W (g, g′) = λ(πσ,u(g)⊗ πσ′,u′(g′)f) .

(ii) Suppose n = n′. Then for every m in L(σu ⊗ σ′u′), there are elements
fi ∈ Iσ,u⊗̂Iσ′,u′ and Schwartz functions Φi such that

m(s) =
∑

i

Ψ(s, Wi, Φi)

where
Wi(g, g′) = λ(πσ,u(g)⊗ πσ′,u′(g′)fi) .
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Finally, when n′ = n − 1 or n′ = n we have an even more precise result. A
standard Schwartz function on M(a× b, F ) is a function of the form

Φ(x) = P (x) exp
(−πTr( tx.x)

)
, F = R ,

and
Φ(x) = P (x, x) exp

(−2πTr( tx.x)
)

, F = C ,

where P is a polynomial. The character ψ is said to be standard if

ψ(x) = e±2iπx , F = R
ψ(x) = e±2iπ(x+x) , F = C .

If ψ is standard and Φ is standard, then Fψ(Φ) is standard.

Theorem 2.7. Suppose the induced representations Iσ,u and Iσ′,u′ are irre-
ducible.

(i) Suppose n′ = n − 1. Then there is f ∈ Iσ,u ⊗ Iσ′,u′ , Kn × Kn−1 finite,
such that

L(s, σu ⊗ σ′u′) = Ψ(s, W ) ,

with
W (g, g′) = λ(πσ,u(g)⊗ πσ′,u′(g′)f) .

(ii) Suppose n = n′. Then there are elements fi ∈ Iσ,u ⊗ Iσ′,u′ , Kn × Kn

finite, and standard Schwartz functions Φi such that

L(s, σu ⊗ σ′u′) =
∑

i

Ψ(s,Wi, Φi)

where
Wi(g, g′) = λ(πσ,u(g)⊗ πσ′,u′(g′)fi) .

Remark 2.8. If

<u1 ≤ <u2 ≤ · · · ≤ <ur , <u′1 ≤ <u′2 ≤ · · · ≤ <u′r′ ,

the result should be true even if the representations are not both irreducible, but
we have not proved this stronger assertion.

3. Majorization of Whittaker functions

3.1. Norms. Let us introduce some convenient notations. If X is a real or
complex matrix of any size, we set

||X||e := Tr(X tX)1/2 .

The index e indicates that this is the Euclidean norm. It is useful to keep in mind
that

(1 + ||X||2e + ||Y ||2e)2 ≥ (1 + ||X||2e) (1 + ||Y ||2e) ≥ (1 + ||X||2e + ||Y ||2e) .

Thus, for g ∈ GL(n,C),
||g||H = ||g||2e + ||g−1||2e .

The index H indicates that this is a norm function in the sense of Harish-Chandra.
We often drop the index H when this does not create confusion. For g ∈ GL(n,C)
(or g ∈ GL(n,R)) ki ∈ U(n) (or k ∈ O(n)),

||g||H = ||g−1||H = ||gι||H = ||k1gk2||H ≥ 2n .
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Furthermore, if g = uak with a diagonal, u upper triangular with unit diagonal,
k ∈ U(n), then we set

||g||I = ||a||H .

The index I indicates that this definition depends on the Iwasawa decomposition.
Thus ||g||H ≥ ||g||I . When we integrate over a quotient Nn\Gn, we can take
g ∈ AnKn and then ||g||H = ||g||I .

If Z is a complex a× b matrix and h ∈ Ga(C), then

(3.1)
1

1 + ||hZ||2e
≤ ||h||H

1 + ||Z||2e
.

Indeed,
||Z||2e = ||h−1hZ||2e ≤ ||h−1||2e||hZ||2e ≤ ||h||H ||hZ||2e .

Thus
1

(1 + ||hZ||2e)
≤ 1

(1 + ||h||−1
H ||Z||2e)

=
||h||H

(||h||H + ||Z||2e)
≤ ||h||H

(1 + ||Z||2e)
.

Our assertion follows.
For Z = 1n + U ∈ Nn, there is a constant C and an integer M such that

(3.2) ||Z||H ≤ C(1 + ||U ||2e)M .

Indeed,
||Z||2e ¹ (1 + ||U ||2e) .

Recall that this notation means that there is a constant D > 0 such that, for all U ,

||Z||2e ≤ D(1 + ||U ||2e) .

Also
Z−1 = 1− U + U2 + · · · (−1)n−1Un−1 .

Thus
||Z−1||e ≤ (1 + ||U ||e + ||U ||2e + · · · ||U ||n−1

e ) .

If ||U ||e ≥ 1, then
||Z−1||2e ¹ (1 + ||U ||2e)M

for a suitable M . If ||U ||e < 1, then

||Z−1||2e ¹ 1 .

Our assertion follows.
We define three functions ξh,n, ξi,n and ξs,n on GL(n,C) (or GL(n,R)) in the

following way. If g = uak, a = diag(a1, a2, . . . , an), ai ∈ R, u upper triangular with
unit diagonal, k ∈ U(n), then

ξh,n(g) =
n−1∏

i=1

(1 + (aia
−1
i+1)

2)(3.3)

ξi,n(g) = ξh(g)(1 + (an)2)(3.4)

ξs,n(g) =
n∏

i=1

(1 + a2
i ) .(3.5)
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We will often drop the index n if this does create confusion. The index h stands
for homogeneous, the index i for inhomogeneous and the index s for simple. Note
that

(3.6)
n−1∏

i=1

(1 + (aia
−1
i+1)

2)i (1 + a2
n)n ≥

n∏

i=1

(1 + a2
i ) .

It follows that
ξi(g)n ≥ ξs(g)

and, for a suitable integer m,

(3.7) ξh(a)m(1 + a2
n)m º (1 + ||a||2e)

for a diagonal with positive (or simply real) entries. Also we have, for a suitable
constant C > 0,

ξh,n

(
g 0
0 1m

)
= Cξi,n−m(g)

and, for a suitable integer r,

(3.8) ξh,n

(
g 0
0 1m

)r

≥ ξs,n−m(g) .

A direct consequence of (3.1) is the following lemma.

Lemma 3.1. Let Φ be a Schwartz function on the space of a× b matrices with
entries in F .

(i) For every integer N , there is a constant CN , such that, for every h ∈
Ga(F ),

|Φ(hZ)| ≤ CN
||h||NH

(1 + ||Z||2e)N
.

(ii) There is an integer N and a constant C such that, for every h ∈ Ga(F ),∫
|Φ(hZ)|dZ ≤ C||h||NH .

We will also use the following elementary lemmas.

Lemma 3.2. Let Φ be a Schwartz function on the space of n× n matrices with
entries in F . There is an integer M and for each N a constant C such that, for
every diagonal matrix with positive entries a,

∫

Nn

|Φ|(aZ)dZ ≤ C
||a||MH

(1 + ||a||2e)N
.

Proof. We write Z = 1n + U with U upper triangular with 0 diagonal. Then
dZ = dU and

(1 + ||a(1 + U)||2e)2 = (1 + ||a||2e + ||aU ||2e)2 ≥ (1 + ||a||2e)(1 + ||aU ||2e) ;

|Φ(a(1n + U))| ¹ 1
(1 + ||a||2e)N

1
(1 + ||aU ||2e)M

¹ ||a||MH
(1 + ||a||2e)N (1 + ||U ||2e)M

for N >> 0,M >> 0. The lemma follows. ¤
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Lemma 3.3.
(i) Given M , there are constants A, B,C > 0 such that the integral

∫

Gn(F )

||h||MH | deth|t
(1 + ||h||2e)N

d×h

converges if N > A, CN > t > B.

(ii) Given M , there is B such that the integral∫

Gn(F )

||h||MH Φ(h) | deth|td×h

converges absolutely for all Schwartz functions Φ on M(n × n, F ) and
t > B.

Proof. The second assertion follows from the first. We prove the first asser-
tion. We set

h = k(a + U)
with k ∈ Kn, a diagonal with positive entries, and U upper triangular with zero
diagonal. Then

dh = dkJ(a)dadU

where J(a) is a Jacobian character. The integrand is independent of k so we may
integrate over k. Next, for a suitable M1,

||h||H = ||a(1 + a−1U)||H
¹ ||a||H ||(1 + a−1U)||H
¹ ||a||H(1 + ||a−1U ||2e)M1

¹ ||a||H(1 + ||a||H ||U ||2e)M1

¹ ||a||M1+1
H (1 + ||U ||2e)M1 .

Also

(1 + ||a + U ||2e)N1+N2 = (1 + ||a||2e + ||U ||2e)N1+N2

≥ (1 + ||a||2e)N1 (1 + ||U ||2e)N2 .

Thus we are reduced to the convergence of a product of two integrals:∫
1

(1 + ||U ||2e)N2−MM1
dU ,

∫ ||a||M(M1+1)
H J(a)|det a|t

(1 + ||a||2e)N1
da .

The first integral converges for N2 >> 0. For the second integral, we apply the
following lemma.

Lemma 3.4. Let χ be a positive character of An(R) and M be given. There are
A,B, C > 0 such that the integrals

∫ ||a||MH χ(a)|det a|t
(1 + ||a||2e)N

da ,

∫ ||a||MH χ(a)| det a|t
ξs(a)N

da

converges for N > A, CN > t > B.



14 HERVÉ JACQUET

Proof. It suffices to prove our assertion for the second integral. Now ||a||MH
is a sum of positive characters. Thus we may assume M = 0. Then the integral is
a product

∏

i

∫

R×+

|ai|t+ti

(1 + a2
i )N

d×ai .

The integral converges for

t > max(−ti), N > max(ti), N > t .

Lemma 3.5. Let M ≥ 0 be an integer and Φ a Schwartz function on Fn.
There are A,B,C > 0 such that the following integrals converge absolutely for
N > A,NC > t > B.

(3.9)
∫

Nn\Gn

ξs,n(g)−N ||g||MI |det g|tdg ,

(3.10)
∫

Nn\Gn

ξh,n(g)−N ||g||MI Φ[(0, 0, . . . , 0, 1)g]| det g|tdg .

Proof. For the first integral, we can write g = ak. Then dg = J(a)dadk.
After integrating over Kn we are reduced to the previous lemma. For the second
integral, we again write g = ak. Then, for any N ,

|Φ[(0, 0, . . . , 0, 1)g]| ≤ CN (1 + a2
n)−N .

Now
ξh,n(g)m(1 + a2

n)m ≥ ξs,n(g)

for a suitable m. Thus we are reduced to the case of the first integral.

Lemma 3.6. If M is given and N is sufficiently large, the integral
∫

Gn

ξs,n(h−1)−N ||h||MH (1 + ||h||2e)−Nd×h

converges.

Proof. We write
h = k(b + V )

where b is diagonal with positive entries and V upper triangular with 0 diagonal.
Then d×h = J1(b)dbdV dk. For some m,

(1 + ||h||2e)m ≥ (1 + ||b||2e)(1 + ||V ||2e) .

On the other hand, for a suitable M1,

||h||MH ¹ ||b||M1
H (1 + ||U ||2e)M1 .

Finally,

ξs,n′(h−1
1 ) =

n′∏

i=1

(1 + b−2
i ) .

The convergence of the integral for N >> 0 easily follows.
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3.2. Majorization for one representation. Let F = R or F = C. Let
(π, V ) be a smooth representation of G(F ) of moderate growth on a complex
Frechet space V . Let λ be a non zero ψ form on V . To each v ∈ V , we associate
the function Wv on G(F ) defined by

Wv(g) = λ(π(g)v) .

We want to obtain a majorization of the functions Wv.
By hypothesis, there is a continuous semi-norm µ on V such that |λ(v)| ≤ µ(v).

Thus |Wv(g)| ≤ µ(π(g)v). There is another continuous ν and an integer M such
that µ(π(g)v) ≤ ||g||MH ν(v). Thus we have the following coarse majorization.

Lemma 3.7. There is M and a continuous semi-norm ν on V such that, for
all v ∈ V and all g,

|Wv(g)| ≤ ||g||MH ν(v) .

We improve on the previous majorization. For h ∈ Gn(F ),

(ρ(h)Wv)(g) = Wv(gh) = λ(π(gh)v) = λ(π(g)π(h)v) = Wπ(h)v(g) .

Similarly, for X ∈ U(G),

(ρ(X)Wv)(g) = Wdπ(X)v(g) .

Thus
|(ρ(X)Wv)(g)| ≤ ||g||M ν(dπ(X)v) .

We also note that

|Wv(uak)| = |Wv(ak)| ≤ ||ak||Mν(v) = ||a||Mν(v)

|(ρ(X)Wv)(uak)| ≤ ||a||Mν(dπ(X)v) .

Let Xi be the elements of Lie(Nn) corresponding to the simple roots αi(a) =
ai/ai+1, 1 ≤ i ≤ n− 1. Thus the only nonzero entry of Xi is the entry in the i-th
row and i + 1-th column which is equal to 1. Then

λ(dπ(Xi)v) = mv ,

where m ∈ C× depends only on the choice of ψ. Moreover,

π(a)dπ(Xi)v = dπ(aXia
−1)π(a)v = αi(a)dπ(Xi)π(a)v .

Thus
λ(π(a)dπ(Xi)v) = m αi(a)λ(π(a)v) .

More generally, if
Y = XN1

1 XN2
2 · · ·XNn−1

n−1

and N =
∑

i Ni, then

λ(π(a)dπ(Y )v) = mN
(∏

αi(a)Ni

)
λ(π(a)v) .

Let UN (G) be the subspace of U(G) spanned by the products of at most N elements
of Lie(G). Let (Xθ) be a basis of UN (G). We may write

Ad(k−1)Y =
∑

θ

ξθ(k)Xθ .
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Then, for any v,

λ(π(a)dπ(Y )π(k)v) = λ(π(a)π(k)dπ(Adk−1Y )v)

=
∑

θ

ξθ(k)λ(π(a)π(k)dπ(Xθ)v) .

Thus
mN

∏
αi(a)Ni λ(π(a)π(k)v) =

∑

θ

ξθ(k)λ(π(a)π(k)dπ(Xθ)v)

or

(3.11) mN
∏

αi(a)NiWv(ak) =
∑

θ

ξθ(k)Wdπ(Xθ)v(ak) .

Replacing v by the vector dπ(X)v with X ∈ U(G), we obtain the formula

(3.12) mN
∏

αi(a)Niρ(X)Wv(ak) =
∑

θ

ξθ(k)Wdπ(XθX)v(ak) .

Since the functions ξθ are bounded by a constant, we get
∣∣∣mN

∏
αi(a)Niρ(X)Wv(ak)

∣∣∣ ≤ C||a||M
∑

θ

ν(dπ(XθX)v) .

This gives us the result we need.

Proposition 3.1. There is an integer M ≥ 0, and, for every X ∈ U(G) and
every integer N , a continuous semi-norm νX,N on V , with the following property.
For every g ∈ G, v ∈ V ,

|ρ(X)Wv(g)| ξh(g)N ≤ ||g||MI νX,N (v) .

We will need the following more general corollary.

Lemma 3.8. For every integer N , and every X ∈ U(Gn), there are integers M1

and M2 and a continuous semi-norm ν such that

|ρ(g2)ρ(X)Wv(g1)|ξh(g1)N ≤ ||g1||M1
I ||g2||M2

H ν(v) .

Proof. Indeed,

(ρ(g2)ρ(X)Wv)(g1) = (ρ(Adg2X)ρ(g2)Wv)(g1) = (ρ(Adg2X)Wπ(g2)v)(g1) .

Suppose X ∈ UN (G). Let again Xθ be a basis of the space UN (G). Then

Adg2X =
∑

θ

ξθ(g2)Xθ .

There is M1 such that, for all θ,

|ξθ(g2)| ≤ ||g||M1 .

Thus we are reduced to estimating ρ(X)Wπ(g2)v(g1). By the previous lemma, there
is a continuous semi-norm ν such that

|ρ(X)Wπ(g2)v(g1)|ξh(g1)N ≤ ||g1||MI ν(π(g2)v) .

But
ν(π(g2)v) ≤ ||g2||M2

H ν′(v)

where ν′ is another continuous semi-norm. Our assertion follows.
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We can obtain similar majorizations for the function

W̃v(g) := Wv(wngι) .

Indeed, consider the representation πι on V defined by

πι(g) = π(gι) .

Set
λ̃(v) := λ(π(wn)v) .

Then
λ̃(πι(u)v) = θψ(u)λ̃(v) ,

that is, λ̃ is a ψ form. Then

W̃v(g) = λ̃(πι(g)v) .

Replacing π by πι, we obtain majorizations for W̃v.

3.3. Majorization for a family of representations. Let

µ = (µ1, µ2, . . . , µn)

be an n-tuple of characters of F×. We assume they are normalized, that is, they
have a trivial restriction to R×+. Let u = (u1, u2, . . . , un) ∈ Cn. We denote by
(πµ,u, Iµ,u) the representation of G(F ) induced by the character

µu(a) =
∏

i

µi(ai) |ai|ui

F

of An(F ), regarded as a character of the group of lower triangular matrices. The
space Iµ,u is the space of C∞ complex-valued functions f on G(F ) such that

f(vak) = δ−1/2
n (a)µu(a)f(k)

for all v ∈ Nn, a ∈ A(F ), k ∈ K. The representation is by right shifts. Alterna-
tively, we may identify the space of functions in Iµ,u to the space of their restrictions
to Kn. It is a space Iµ, independent of u. Then we denote by πu the representation
acting on the space Iµ. The topology of Iµ is the one given by the semi-norms

sup
k∈Kn

|ρ(X)f(k)| ,

with X ∈ U(K). We stress that Iµ is regarded as a space of functions on K and
only derivatives with respect to elements X ∈ U(K) appear in the definition of the
topology. Each representation πµ,u is a C∞ representation of moderate growth on
the space Iµ.

Recall that there is for each u a non-zero ψ form λu on Iµ. This form is unique
within a scalar factor. Moreover, one can choose the linear form in such a way that
the map

(u, f) 7→ λu(f)
is continuous and for each f , the map u 7→ λu(f) is holomorphic in u (Theo-
rem 15.4.1 in [26] II).

For every f ∈ Iµ, we set

Wu,f (g) = λu(πu(g)f) .

We need to obtain majorizations of the functions Wu,f , similar to the ones of the
previous subsection, but uniform with respect to u, for u in a compact set. To do so,
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we need to show that the representations πµ,u are of moderate growth, uniformly
for u in a compact set. This is known, but for the sake of completeness we
provide complete details. We begin with a series of lemmas on semi-norms.

Lemma 3.9. Set
ν0(f) = sup

K
|f(k)| .

Given a compact set Ω ⊂ Cn, there is M such that for u ∈ Ω and any f ∈ Iµ

ν0(πu(g)f) ≤ ||g||Mν0(f) .

Proof. Indeed, we may write

kg = vak1 , v ∈ Nn , a ∈ A(F ) , k, k1 ∈ Kn .

Then
fu(kg) = µu(a)δ−1/2

n (a)f(k1) .

Now for
a = diag(a1, a2, . . . , an)

and u ∈ Ω, we have ∣∣∣µu(a)δ−1/2
n

∣∣∣ ≤
∏

(a2
i + a−2

i )N

for a suitable N . In turn ∏
(a2

i + a−2
i )N ≤ ||a||M

for a suitable M . Moreover

||a|| ≤ ||va|| = ||kgk−1
1 || = ||g|| .

Our assertion follows.

Lemma 3.10. Let Ω be a compact set of Cn. For every X ∈ U(g), there is a
continuous semi-norm νX on Iµ such that , for every u ∈ Ω, f ∈ Iµ,

ν0(dπu(X)f) ≤ νX(f) .

Proof. Say X ∈ UN (G). Let φ be an element of Iµ. Then

dπu(X)φ(k) = ρ(X)φ(k) = λ(Ad(k)(X̌))φ(k) .

Let Xθ be a basis of UN (G). Then

Ad(k)(X̌) =
∑

θ

ξθ(k)Xθ

where the functions ξθ are uniformly bounded on K. Thus it suffices to bound

λ(X)φ(k), X ∈ UN (G) .

We can write X has a sum of terms of the form

Y HZ , Y ∈ UN (Nn),H ∈ UN (A), Z ∈ UN (K) .

Now λ(Y )φ = 0 if Y is a product of elements of Lie(N). Thus we may as well
assume Y = 1. Now

λ(H)φ = τu(H)φ
where τu : U(A) → C is an homomorphism depending on u. If u ∈ Ω, τu(H) is
bounded. Thus we are reduced to estimate

λ(Z)φ(k)
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for Z ∈ UN (K). As before, if Zθ is a basis of UN (K), this has the form
∑

θ

ξθ(k)ρ(Zθ)φ(k)

where the ξθ are bounded. This is bounded by a constant times
∑

θ

sup
K
|ρ(Zθ)φ(k)| .

The lemma follows.

Lemma 3.11. Let ν be a continuous semi-norm on Iµ. Let Ω be a compact
subset of Cn. Then there is an integer M and a continuous semi-norm ν̃ on Iµ

such that
ν(πu(g)f) ≤ ||g||M ν̃(f)

for all f , all u ∈ Ω, and all g ∈ G.

Proof. We may assume

ν(f) = ν0(ρ(Y )f)

with Y ∈ UN (K) because the topology of Iµ is defined by these semi-norms. Then

ν(πu(g)f) = ν0(dπu(Y )πu(g)f) .

Let Xθ be a basis of UN (G). Then

dπu(Y )πu(g) = πu(g)dπu(Ad(g−1)Y ) = πu(g)
∑

θ

ξθ(g)dπu(Xθ) .

Each function ξθ is bounded by a power of ||g||. Thus ν(πu(g)f) is bounded by a
power of ||g|| times ∑

θ

ν0(πu(g)dπu(Xθ)f) .

By the first lemma, for u ∈ Ω, this is bounded by

||g||M
∑

θ

ν0(dπu(Xθ)f) .

Now we apply the previous lemma.

Lemma 3.12. Let ν be a continuous semi-norm on Iµ and Ω be a compact
subset of Cn. There is an integer M with the following property. For X ∈ U(G),
there is a continuous semi-norm ν̃ such that, for all u ∈ Ω and f ∈ Iµ,

ν(πu(g)dπu(X)f) ≤ ||g||M ν̃(f) .

Proof. By the penultimate lemma,

ν(πu(g)f) ≤ ||g||Mµ(f)

for a suitable M and a suitable continuous semi-norm µ. Thus

ν(πu(g)dπu(X)f) ≤ ||g||Mµ(dπu(X)f) .

To continue we may assume that

µ(f) =
∑
α

ν0(ρ(Yα)f)



20 HERVÉ JACQUET

with Yα ∈ U(K). Then

µ(dπu(X)f) =
∑
α

ν0(dπu(YαX)f)

and our assertion follows from the previous lemma.

Now we obtain coarse majorizations for the Whittaker functions, uniform for
u in a compact set.

Proposition 3.2. Let Ω be a compact set of Cn. There is an integer M with
the following property. For every X ∈ U(G), there is a continuous semi-norm νX

on Iµ such that, for all u ∈ Ω,

|ρ(X)Wu,f (g)| ≤ ||g||MνX(f) .

Proof. First, because the map (u, f) 7→ λu(f) is continuous, for every u ∈ Ω,
there is Au > 0 and a continuous semi-norm µu such that for ||u′ − u|| < Au, we
have |λu′(f)| ≤ µu(f). Choose ui, 1 ≤ i ≤ r, such that the balls ||u − ui|| < Aui

cover Ω. Let

ν =
∑

i

µi .

Then

|λu(f)| ≤ ν(f)

for u ∈ Ω. Then

ρ(X)Wu,f (g) = λu(πu(g)dπu(X)f)

is bounded in absolute value by

|ν(πu(g)dπu(X)f)| .

Our assertion follows from the previous lemma.

Now we improve on the majorizations.

Proposition 3.3. Given a compact set Ω of Cn, there is an integer M , and
for every integer N and every element X ∈ U(G), a continuous semi-norm νX,N

such that, for all u ∈ Ω, all g ∈ G and f ∈ Iµ,

|ρ(X)Wu,f (g)ξh(g)N | ≤ ||g||MνX,N (f) .

Proof. We proceed as in the previous section. With the notations of for-
mula (3.12), we have

(3.13) mN
∏

αi(a)Ni(ρ(X)Wu,f )(ak) =
∑

θ

ξθ(k) (ρ(XθX)Wu,f ) (ak) .

Since the functions ξθ are bounded, our assertion follows at once from this formula
and the previous proposition.
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3.4. Majorization for a tempered representation. Now assume that π is
a unitary irreducible tempered representation and λ is again a continuous ψ form
on π. Thus π is equivalent to an induced representation of the form πσ,u where σ
is a t-uple of irreducible unitary representations of the Weil group and u is purely
imaginary. Then we have a more precise majorization. First we recall a result of
Wallach. Recall that δn is the module of the group Bn(F ).

Proposition 3.4. There is a continuous semi-norm µ and d ≥ 0 such that,
for all vectors v,

|Wv(ak)| ≤ δ1/2
n (a)(1 + || log a||2e)dµ(v) .

This follows from Theorem 15.2.5 of [26] II. The proof is the same as the proof
of Lemma 15.7.3 in the same reference.

We improve on this majorization.

Proposition 3.5. For any integer N and any X ∈ U(G), there is a continuous
semi-norm νX,N such that, for all vectors v,

|ρ(X)Wv(ak)| ≤ ξh(a)−Nδ1/2
n (a)(1 + || log a||2e)dνX,N (v) .

Indeed, we proceed as before. Our assertion follows from the result just recalled
and formula (3.13).

3.5. Majorizations for a tensor product. Now let (π, V ) and (π′, V ′) be
Casselman Wallach representations of Gn and G′n, respectively. Let λ be a ψ linear
form on V and λ′ a ψ linear form on V ′. On the projective tensor product V ⊗̂V ′,
consider the linear form λ⊗ λ′. To each v̂ ∈ V ⊗̂V ′, we associate the function

Wv̂(g, g′) = λ⊗ λ′(π(g)⊗ π′(g′)v̂) .

We can obtain majorizations for these functions similar to the ones obtained above.
We can argue as before, since our arguments are really valid for any quasi-split
group, or simply use an argument of continuity and density. For instance, suppose

|Wv(g)|ξh(g)N ≤ ||g||M ′
µ(v)

|Wv′(g′)| ≤ ||g′||M ′
µ′(v′)

where µ, µ′ are continuous semi-norms on V and V ′, respectively. Let ν be the
largest semi-norm on V ⊗̂V ′ such that

ν(v ⊗ v′) ≤ µ(v)µ′(v′) .

Then, for every v̂ ∈ V ⊗̂V ′,

|Wv̂(g, g′)|ξh(g)N ≤ ||g||M ||g′||M ′
ν(v̂) .

Analogous majorizations are true for a tensor product Iµ,u⊗̂Iµ′,u′ . The majoriza-
tions are uniform for u, u′ in compact sets.

4. (σ, ψ) pairs

The main result of these notes is that certain integrals, depending on a complex
parameter s, converge for <s > 0, have analytic continuation as meromorphic
functions of s, with prescribed poles, and satisfy a functional equation. It turns out
that these assertions are equivalent to a family of identities relating integrals which
converge absolutely. This is technically very convenient. In particular, when the
data at hand depend on some auxiliary parameters, this allows us to prove our
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assertions by analytic continuation with respect to the auxiliary parameters. In
this section, we develop the tools which allow us to establish this equivalence.

4.1. Spaces of rapidly decreasing functions. We denote by S(R×+) the
space of C∞ functions φ on R×+ such that for every integers n ≥ 0, m ≥ 0,

sup(t2 + t−2)n

∣∣∣∣
(

t
d

dt

)m

φ(t)
∣∣∣∣ < +∞ .

We introduce the Mellin transform of such a function:

Mφ(s) :=
∫ +∞

0

φ(t)ts
dt

t
.

Clearly, the Mellin transform of a function φ ∈ S(R×+) is entire and bounded in
any vertical strip of finite width. The Mellin transform of tdφ

dt is sMφ(s) and the
Mellin transform of taφ(t) is Mφ(s+a). In particular, for any polynomial P (s), the
product P (s)φ(s) is also bounded in any vertical strip of finite width. Conversely
if m(s) is an entire function of s such that, for any polynomial P , the product
P (s)m(s) is bounded at infinity in vertical strips, then the function defined by

φ(t) :=
1

2iπ

∫ a+∞

a−i∞
m(s)t−sds

is in S(R×+) and Mφ(s) = m(s).
We define similarly the space S(F×). It is the space of C∞ functions on F×

such that for any X ∈ U(F×) and any m

sup
∣∣(t2 + t−2)mρ(X)φ(t)

∣∣ < +∞ if F = R ,

sup
∣∣(zz + z−1z−1)mρ(X)φ(z)

∣∣ < ∞ if F = C .

If φ is in S(R×+), the function x 7→ φ(|x|F ) is in S(F×). The Mellin transform Mf
of a function f ∈ S(F×) is defined by

Mf(s) :=
∫

F×
f(x) |x|sF d×x .

4.2. Definition of (σ, ψ) pairs. Let σ be a complex, finite dimensional, semi-
simple representation of the Weil group WF of F . Let σ̃ be the contragredient
representation. Let ψ be a non-trivial character of F . The factors

L(s, σ), L(s, σ̃), ε(s, σ, ψ)

are defined. Let P be a quadratic polynomial of the form

P (s) = As2 + Bs + C , A > 0 , B ∈ R , C ∈ C .

Then there exist two functions h(t), k(t) in S(F×), depending only on |t|F , such
that ∫

F×
h(t)|t|−s

F d×t =
ε(s, σ, ψ) eP (s)

L(s, σ)
,

∫

F×
k(t)|t|−s

F d×t =
eP (1−s)

L(s, σ̃)
.

Indeed, P (1− s) is a polynomial of the same form as P . In a vertical strip

{s = x + iy : −a ≤ x ≤ a} ,
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the reciprocals of the L-factors are bounded by an exponential factor eD|y| while
eP (s), eP (1−s) are bounded by a factor e−Cy2

with C > 0. Thus the right hand sides
are entire and their product by any polynomial are bounded in a vertical strip. We
say that (h, k) is a (σ, ψ) pair.

This notion has some simple formal properties. If (h, k) is a (σ, ψ) pair then,
for every a ∈ F×, the functions

x 7→ h(xa) , x 7→ |a|k(xa−1)

form a (σ, ψ) pair. Indeed,
∫

h(xa)|x|−sd×x =
ε(s, σ, ψ) eP (s)+s log |a|

L(s, σ)

|a|
∫

k(xa−1)|x|−sd×x =
eP (1−s)+(1−s) log |a|

L(s, σ̃)
.

Also (k, h) is a (σ̃, ψ) pair.
Similarly, let σi, i = 1, 2, be two representations of the Weil group. Set τ =

σ1 ⊕ σ2. If (hi, ki), i = 1, 2, are (σi, ψ) pairs, then (h1 ∗ h2, k1 ∗ k2) is a (τ, ψ) pair.
Indeed,

∫
hi(x)|x|−sd×x =

ε(s, σi, ψ) ePi(s)

L(s, σi)∫
ki(x)|x|−sd×x =

ePi(1−s)

L(s, σ̃i)

with
Pi(s) = Ais

2 + Bis + Ci , Ai > 0 .

Set
Q(s) = P1(s) + P2(s) = (A1 + A2)s2 + (B1 + B2)s + C1 + C2 .

Then A1 + A2 > 0 and
∫

h1 ∗ h2(x)|x|−sd×x =
ε(s, σ1, ψ)ε(s, σ2, ψ) eP1(s)eP2(s)

L(s, σ1)L(s, σ2)

=
ε(s, τ, ψ)eQ(s)

L(s, τ)
,

∫
k1 ∗ k2(x)|x|−sd×x =

eQ(1−s)

L(s, τ̃)
.

4.3. The main lemmas.

Proposition 4.1. Let σ be a representation of the Weil group. Suppose f, f ′

are measurable functions on F×. Suppose that there is N such that, for s ≥ N ,∫
|f(x)| |x|sd×x < +∞ ,

∫
|f ′(x)| |x|sd×x < +∞ .

Suppose further that, for any (σ, ψ) pair (h, k),∫
f(x)h(x)d×x =

∫
f ′(x)k(x)d×x .

Then the Mellin transform of f , defined a priori for <s >> 0, extends to a holo-
morphic multiple of L(s, σ), bounded at infinity in any vertical strip. Likewise, the
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Mellin transform of f ′ extends to a holomorphic multiple of L(s, σ̃), bounded at
infinity in any vertical strip. Finally, the equation∫

f ′(x)|x|1−sd×x

L(1− s, σ̃)
=

ε(s, σ, ψ)
∫

f(x)|x|sd×x

L(s, σ)
holds in the sense of analytic continuation.

Proof. We first remark that, for any N ,

|h(x)| ≤ C|x|N , |k(x)| ≤ C|x|N .

So the integrals of the proposition do converge. We set

θ(a) :=
∫

f(x)h(ax)d×x .

Applying the given identity to the pair

(x 7→ h(ax) , x 7→ |a|k(a−1x)),

we get

(4.1) θ(a) =
∫

f(x)h(ax)d×x = |a|
∫

f ′(x)k(a−1x)d×x .

Since h(x) is majorized by a constant times |x|M for any M ≥ N , the first expression
for θ(a) is majorized by∫

|f(x)| |h(ax)|d×x ≤ C|a|M
∫
|x|M |f(x)|d×x .

Thus θ(a) is rapidly decreasing for |a| → 0. By equation (4.1), it is also rapidly
decreasing for |a| → ∞. Thus ∫

θ(a)|a|−sd×a

is convergent for all s and defines an entire function of s, bounded in any vertical
strip. For <s >> 0, we use the first expression for θ to compute this integral. We
obtain ∫

θ(a)|a|−sd×a =
∫∫

f(x)h(xa)|a|−sd×xd×a

or, changing a to ax−1, ∫
f(x)|x|sd×x

∫
h(a)|a|−sd×a .

The absolute convergence of this expression for <s large enough justifies this com-
putation. Thus

∫
θ(a)|a|−sd×a =

∫
f(x)|x|sd×x

ε(s, σ, ψ)eP (s)

L(s, σ)
.

Set
m(s) :=

∫
f(x)|x|sd×x .

Then
m(s) = e−P (s)L(s, σ)ε(s, σ, ψ)−1

∫
θ(x)|x|−sd×x .

This shows that m(s), defined a priori for <s >> 0, extends to a meromorphic
function of s which is a holomorphic multiple of L(s, σ).
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On the other hand, using the second expression for θ(a), we get
∫

θ(a)|a|−sd×a =
∫∫

f ′(x)k(a−1x)|a|1−sd×xd×a

=
∫∫

f ′(x)k(ax)|a|−(1−s)d×xd×a

=
∫

f ′(x)|x|1−sd×x

∫
k(a)|a|−(1−s)d×a .

Again the computation is justified for <s small enough. Thus
∫

θ(a)|a|−sd×a =
∫

f ′(x)|x|1−sd×x
eP (s)

L(1− s, σ̃)
.

We conclude that∫
f(x)|x|sd×x

ε(s, σ, ψ)
L(s, σ)

=
∫

f ′(x)|x|1−sd×x
1

L(1− s, σ̃)
,

in the sense of analytic continuation. Both sides extend to entire functions of s.
Now we prove that m(s) is bounded at infinity in vertical strips. Indeed,

consider a half strip

S = {s = x + iy : a ≤ x ≤ b, y ≥ y0 ≥ 1} .

We can choose y0 so large that L(s, σ) has no pole in S. Thus in S

|m(s)| ≤ CeDy2

with D > 0, or enlarging y0,
|m(s)| ≤ Cey3

.

Now if b is large enough, the integral defining m(s) converges for <s = b. Thus
|m(s)| is bounded on the line <s = b. Now

m(s) =
L(s, σ)

L(1− s, σ̃)ε(s, σ, ψ)

∫
f ′(x)|x|1−sd×x .

We may assume a so small (negative) that the integral on the right converges for
<s = a. We may also assume a so small and y0 so large that on the half line

s = a + iy , y ≥ y0

the ratio
L(s, σ)

L(1− s, σ̃)ε(s, σ, ψ)
is bounded (see the lemma below). By the Phragmen-Lindelöf principle, m(s) is
bounded in the strip S, as claimed.

Remark 4.1. In applications the functions f, f ′ will be C∞ and for each X ∈
U(F×), there will be X ′ ∈ U(F×) such that the functions ρ(X)f, ρ(X ′)f ′ satisfy
the assumptions of the proposition. Then for each integer M ≥ 0,

sMm(s) =
∫

ρ(X)f(x)|x|sd×x

for a suitable X ∈ U(F×). By the proposition, m(s)sM is bounded at infinity on
vertical strips.
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Lemma 4.2. Given σ if a is sufficiently small (a << 0), there is y0 such that

L(s, σ)
L(1− s, σ̃)ε(s, σ, ψ)

is bounded on the the half vertical line

s = a + iy , y ≥ y0 .

Proof. It suffices to prove the lemma when σ is irreducible. Say F = R.
Recall, for x fixed and |y| → +∞,

|Γ(x + iy)| ∼ (2π)1/2|y|x−1/2e−
π
2 |y| .

If σ is a character of F×, then σ(x) = |x|u+iv( x
|x| )

ε with u, v real and ε = 0, 1.

In the definition of L(s, σ) the factor π−
s+u+iv+ε

2 has a fixed absolute value for
s = a + iy, y ≤ y0. Likewise for L(1− s, σ̃). Thus we can ignore these exponential
factors. Then, apart from exponential factors, the absolute value of the ratio is
equal to

∣∣∣∣∣∣
Γ

(
ε+u+a+i(v+y)

2

)

Γ
(

ε+1−u−a−i(v+y)
2

)
∣∣∣∣∣∣
∼ |v + y| ε+u+a−1

2

|v + y| ε+1−u−a−1
2

= |v + y|a+u− 1
2 .

If a + u− 1
2 < 0, this tends to 0 as y → +∞. Our assertion then follows.

Assume σ is induced by a character Ω of C×, say

Ω(z) = (zz)u+iv−n
2 zn

with u, v real and n ≥ 0 integer. Then, apart from exponential factors the absolute
value of the ratio is equal to

∣∣∣∣
Γ(n + u + a + i(v + y))

Γ(n + 1− u− a− i(v + y))

∣∣∣∣ ∼
|v + y|n+u+a− 1

2

|v + y|n+1−u−a− 1
2

= |v + y|2u+2a−1 .

Again, if 2u+2a−1 < 0, this tends to 0 as y → +∞ and we obtain our assertion.

We have also a converse to the previous proposition.

Proposition 4.2. Suppose that f, f ′ are measurable functions on F×. Suppose
that the Mellin transforms

∫
f(x)|x|sd×x ,

∫
f ′(x)|x|sd×x

converge absolutely for <s >> 0 and extend to holomorphic multiples of L(s, σ)
and L(s, σ̃), respectively, bounded at infinity in any vertical strip. Finally, suppose
that the equation

∫
f ′(x)|x|1−sd×x

L(1− s, σ̃)
=

ε(s, σ, ψ)
∫

f(x)|x|sd×x

L(s, σ)

holds in the sense of analytic continuation. Then for any (σ, ψ) pair (h, k)
∫

f(x)h(x)d×x =
∫

f ′(x)k(x)d×x .
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Proof. Set

θ(a) =
∫

f(x)h(ax)d×x , κ(a) = |a|
∫

f ′(x)k(a−1x)d×x .

We will show that

θ(a) = κ(a) .

Note that θ(a) and κ(a) depend only on |a|. As before

|θ(a)| ≤ C|a|N

for any large enough N . Thus the Mellin transform
∫

θ(a)|a|−sd×a

is defined by a convergent integral for <s >> 0. Computing formally at first, we
get

∫
θ(a)|a|−sd×a =

∫∫
f(x)h(ax)|a|−sd×ad×x

=
∫

f(x)|x|sd×x

∫
h(a)|a|−sd×a .

Again the computation is justified because the final result is absolutely convergent
for <s >> 0. In turn this is

∫
f(x)|x|sd×x

ε(s, σ, ψ)eP (s)

L(s, σ)
.

By assumption, this extends to an entire function of s. Moreover, since the Mellin
transform of f is bounded at infinity in vertical strips, this entire function is
bounded in any vertical strip.

Likewise, for <s << 0,
∫

κ(a)|a|−sd×a =
∫∫

f ′(x)k(a−1x)|a|1−sd×ad×x

=
∫∫

f ′(x)k(ax)|a|−(1−s)d×ad×x

=
∫

f ′(x)|x|1−sd×x

∫
k(a)|a|−(1−s)d×a .

This is equal to
∫

f ′(x)|x|1−sd×x
eP (s)

L(1− s, σ̃)
.

Again this is an entire function of s bounded at infinity in vertical strips. We
conclude that ∫

θ(a)|a|−sd×a =
∫

κ(a)|a|−sd×a

in the sense of analytic continuation. Since both sides are bounded in any vertical
strip, this is enough to conclude that θ(a) = κ(a).
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4.4. Two variables generalization.

Proposition 4.3. Let σi, i = 1, 2, be two representations of the Weil group.
Suppose f, f ′ are measurable functions on F× × F×. Suppose that the integrals∫∫

f(x, y)|x|s1 |y|s2d×xd×y ,

∫∫
f ′(x, y)|x|s1 |y|s2d×xd×y

converge absolutely for <s1 >> 0, <s1 >> 0. Suppose further that for any (σ1, ψ)
pair (h1, k1) and any (σ2, ψ) pair (h2, k2)∫

f(x, y)h1(x)h2(y)d×xd×y =
∫

f ′(x, y)k1(x)k2(y)d×xd×y .

Then the integral ∫
f(x, y)|xy|sd×xd×y ,

defined a priori for <s >> 0, extends to a holomorphic multiple of

L(s, σ1)L(s, σ2) ,

bounded at infinity in any vertical strip. Likewise, the integral∫
f ′(x, y)|xy|sd×xd×y

extends to a holomorphic multiple of L(s, σ̃1)L(s, σ̃2), bounded at infinity in any
vertical strip. Finally, the equation∫

f ′(x, y)|xy|1−sd×xd×y

L(1− s, σ̃1)L(1− s, σ̃2)
=

ε(s, σ1, ψ)ε(s, σ1, ψ)
∫

f(x, y)|xy|sd×xd×y

L(s, σ1)L(s, σ2)
holds in the sense of analytic continuation.

Proof. Clearly,∫
f(x, y)|xy|sd×xd×y =

∫
|x|s

(∫
f(xy−1, y)d×y

)
d×x .

Likewise for f ′. Now (h1 ∗ h2, k1 ∗ k2) is a (σ1 ⊕ σ2, ψ) pair. Conversely, any
(σ1 ⊕ σ2, ψ) pair is a sum of such convolutions. Thus it suffices to check that

∫ (∫
f(xy−1, y)d×y

)
h1 ∗ h2(x)d×x =

∫ (∫
f ′(xy−1, y)d×y

)
k1 ∗ k2(x)d×x .

A simple manipulation gives∫ (∫
f(xy−1, y)d×y

)
h1∗h2(x)d×x =

∫ (∫∫
f(x, y)h1(xt−1)h2(yt)d×xd×y

)
d×t .

Since (
x 7→ h1(xt−1), x 7→ |t|−1k1(xt)

)
(
y 7→ h2(yt), y 7→ |t|k1(xt−1)

)

are (σ1, ψ) and (σ2, ψ) pair respectively, we see this is equal to
∫ (∫∫

f ′(x, y)k1(xt)k2(yt−1)d×xd×y

)
d×t

=
∫ (∫

f ′(xy−1, y)d×y

)
k1 ∗ k2(x)d×x .

Our assertion follows.
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4.5. Holomorphic families of pairs. Let σi, 1 ≤ i ≤ r, be r unitary repre-
sentations of the Weil group of F . Let u = (u1, u2, . . . , ur) be an r-tuple of complex
numbers. Set

σu :=
∑

1≤i≤r

σi ⊗ αui

F .

Fix a quadratic polynomial

P (s) = As2 + Bs + C , A > 0 .

For every u, let (hu, ku) be the (σu, ψ) pair defined by σu and P . We say that
(hu, ku) is a holomorphic family of (σu, ψ) pairs.

Lemma 4.3. The functions hu(x), ku(x) are continuous functions of (x, u). For
each x, they are holomorphic functions of u. If Ω is a compact set of Cr and a ∈ Z,
there is a constant C such that

|hu(x)| |x|a ≤ C , |ku(x)| |x|a ≤ C

for u in Ω and x ∈ F×.

Proof. From the Mellin inversion formula

hu(x)|x|a =
1

2iπ

∫ i∞

−i∞

eP (s−a)

L(s− a, σu)
|x|sds .

Suppose u is in a compact set. Then on the line s = iy, the integrand is bounded
by e−Dy2

with D > 0. Our assertion follows.

More generally, suppose σ′j , 1 ≤ j ≤ r′, are another r′ unitary representations
of the Weil group and v = (v1, v2, . . . , vr′) an r′-tuple of complex numbers. Then
we can define a holomorphic family of (σu ⊗ σ′v, ψ) pairs.

4.6. Example: the Tate functional equation. Let Φ be a Schwartz func-
tion on F . Denote by Φ̂ its Fourier transform. Let µ be a normalized character of
F×. Tate’s theory asserts that∫

Φ(x)µ(x)|x|sd×x ,

∫
Φ(x)µ−1(x)|x|sd×x

defined a priori for <s >> 0, extend to holomorphic multiples of L(s, µ) and
L(s, µ−1) respectively, bounded at infinity in vertical strips. Moreover, the func-
tional equation

∫
Φ̂(x)µ−1(x)|x|1−sd×x

L(1− s, µ−1)
=

ε(s, µ, ψ)
∫

Φ(x)µ(x)|x|sd×x

L(s, µ)

holds in the sense of analytic continuation.
Set F 0 = {x ∈ F : |x| = 1}. We can apply the propositions of Section 4.3 to

the functions

f(x) =
∫

F 0
Φ(xu)µ−1(xu)du , f ′(x) =

∫

F 0
Φ̂(xu)µ(xu)du .

We see that the properties of the Tate integral are equivalent to the assertion that
the functional equation

(4.2)
∫

Φ̂(x)µ−1(x)k(x)d×x =
∫

Φ(x)h(x)µ(x)d×x
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holds for all (µ, ψ) pairs (h, k). We stress that now both integrals are absolutely
convergent.

4.7. Example: generalization of Tate’s integral to GL(n). Let

µ = (µ1, µ2, . . . , µn)

be an n-tuple of normalized characters of F× and u = (u1, u2, . . . , un) ∈ Cn. Set

σu := ⊕µiα
ui

F .

Let (πµ,u, Iµ,u) be the corresponding induced representation. We define a con-
tinuous invariant pairing on Iµ,u × Iµ−1,−u by

〈φ1, φ2〉 =
∫

Kn

φ1(k)φ2(k)dk .

Let ξ be an elementary idempotent for the group Kn. Let Iµ,u(ξ) be the range of
the operator

∫
πµ,u(k)ξ(k)dk. Recall that the pairing is perfect when restricted to

the product Iµ,u(ξ)× Iµ−1,−u(ξ̌). Let Φ be in S(Mn(F )). If

f(g) =
∫

K

φ1(kg)φ2(k)dk,

then the integral

Z(s, f, Φ) :=
∫

Φ(g)f(g)|det g|s+ n−1
2 dg

has the following properties ([11]). It converges for <s >> 0. It has analytic
continuation to a holomorphic multiple of

L(s, σu) .

It is bounded at infinity in vertical strips. Finally, it satisfies the following functional
equation

(4.3)
∫

Φ̂(g)f(gι)| det g|1−s+ n−1
2 dg = γ(s, σu, ψ)

∫
Φ(g)f(g)| det g|s+ n−1

2 dg .

We recall that the Fourier transform Φ̂ of Φ is defined by

Φ̂(X) =
∫

Φ(Y )ψ(Tr(− tXY ))dY ,

which is not the convention adopted in [11]. According to our previous discussion,
these assertions are equivalent to the identities

(4.4)
∫

Φ̂(g)f(gι)κ(det g)| det g|n−1
2 dg =

∫
Φ(g)f(g)θ(det g)| det g|n−1

2 dg ,

where (θ, κ) is any (σu, ψ) pair.

Remark 4.4. In passing, we remark that if φ1 and φ2 are Kn finite and Φ is
a standard Schwartz function, then∫

Φ(g)f(g)|det g|s+ n−1
2 dg = L(s, σu)P (s)

where P is a polynomial.
In addition, we remark that both sides in (4.4) are continuous functions of

(Φ, φ1, φ2). Using this continuity and an argument of density, we see that to
prove (4.4), we may assume that Φ is standard and φ1, φ2 Kn-finite. Applying
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again the propositions of Section 4.3, we see that to prove that Z(s, f, Φ) is a holo-
morphic multiple of L(s, σu) and (4.3) is satisfied we may assume φ1, φ2 Kn-finite
and Φ standard. Both assertions were indeed established in this case in [11].

It will be necessary to obtain the functional equations (4.3) and (4.4) for a more
general type of coefficients. In a precise way, let λ be a continuous linear form on
Iµ,u. For φ in Iµ,u, set

f(g) = λ(πµ,u(g)φ) .

Note that
|λ(πµ,u(g)φ)| ≤ ν(πµ,u(g)φ) ≤ ||g||Mν1(φ)

where ν, ν1 are suitable continuous semi-norms. Thus |f(g)| ¹ ||g||M for a suit-
able M .

Proposition 4.4. With the previous notations, for any Φ,∫
Φ(g)f(g)θ(g)| det g|n−1

2 dg =
∫

Φ̂(g)f(gι)κ(g)| det g|n−1
2 dg .

Moreover,∫
Φ̂(g)f(gι)|det g|1−s+ n−1

2 dg = γ(s, σu, ψ)
∫

Φ(g)f(g)| det g|s+ n−1
2 dg ,

in the sense of analytic continuation.

Proof. Since |f(g)| ¹ ||g||M , the integral∫
Φ(g)f(g)| det g|sdg

converges absolutely for <s >> 0 by Lemma 3.3. It suffices to prove the first
assertion. By our estimates, both sides of the first equality are continuous functions
of Φ, that is, are tempered distributions. Thus it suffices to prove the identity when
Φ is a standard Schwartz function. Then there is an elementary idempotent ξ of
Kn such that

Φ(g) =
∫∫

Φ(k1gk2)ξ(k1)ξ(k2)dk1dk2 .

It follows that
Φ̂(g) =

∫∫
Φ(k1gk2)ξ(kι

1)ξ(k
ι
2)dk1dk2 .

Set
f1(g) =

∫
f(k−1

1 gk−1
2 )ξ(k1)ξ(k2)dk1dk2 .

Then f1 has the form
f1(g) = 〈πµ,uφ1, φ2〉

where φ1 is a K-finite element of Iµ,u and φ2 a K-finite element of Iµ−1,−u. Thus
the required equality is true for the function f1. We have∫

Φ(g)f(g)θ(det g)| det g|n−1
2 dg =

∫
Φ(g)f1(g)θ(det g)|det g|n−1

2 dg

∫
Φ̂(g)f(gι)κ(g)| det g|n−1

2 dg =
∫

Φ̂(g)f1(gι)κ(g)|det g|n−1
2 dg .

Our assertion follows.

Similar arguments of continuity and density will be used extensively below.
Often, they will allow us to reduce our assertions to the case of Kn-finite datum.
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5. Convergence of the integrals

5.1. Integrals (n, n′). Let (π, V ) and (π′, V ′) be smooth representations of
GL(n, F ) and GL(n′, F ), respectively, of moderate growth. Let λ (resp. λ′) be a
ψ (resp. ψ) linear form on V (resp. V ′).

Suppose n > n′. For v ∈ V , v′ ∈ V ′, set

Wv(g) = λ(π(g)v),Wv′ = λ(π(g′)v′)

and consider the integral

Ψ(s,Wv,Wv′) =
∫

Wv

(
g 0
0 1n−m

)
Wv′(g)| det g|s−n−m

2 dg .

We claim this integral converges for <s >> 0. Indeed, for some M and all N >> 0,
∣∣∣∣Wv

(
g 0
0 1n−m

)∣∣∣∣ ≤ ξh,n

(
g 0
0 1n−m

)−N ∣∣∣∣
∣∣∣∣
(

g 0
0 1n−m

)∣∣∣∣
∣∣∣∣
M

I

.

Now, up to a scalar factor,

ξh,n

(
g 0
0 1n−m

)
= ξi,m(g) º ξr

s,m(g)

for some r > 0. Moreover
∣∣∣∣
∣∣∣∣
(

g 0
0 1n−m

)∣∣∣∣
∣∣∣∣
M

I

¹ ||g||MI ,

|Wv′(g)| ¹ ||g||M ′
I .

Thus we are reduced to the convergence of the integral
∫

Nm\Gm

ξs,m(g)−N ||g||MI | det g|sdg .

By Lemma 3.5, given M , there are A, B,C > 0 such that the integral converges for
N > A, s > B, CN > s. Our assertion follows.

Now consider the case n = n′. Then

Ψ(s,Wv, W ′
v, Φ) =

∫
Wv(g)Wv′(g)Φ[(0, 0, . . . , 0, 1)g]| det g|sdg .

Now we are reduced to the convergence of
∫

Nn\Gn

ξh,n(g)−N ||g||M |Φ[(0, 0, . . . , 0, 1)g]| | det g|sdsg .

By Lemma 3.5, given M , there are A, B,C > 0 such that the integral converges for
N > A, s > B, CN > s. Our assertion follows.

In both cases, the proof gives a result of continuity. For instance, for n = n′,

|Ψ(s,Wv,W ′
v, Φ)| ≤

∫
|Wv|(g) |Wv′(g)| |Φ[(0, 0, . . . , 0, 1)g]| |det g|<sdg

≤ µ(v)µ′(v′)ν(Φ)
(5.1)

where µ, µ′, ν are suitable continuous semi-norms. Thus Ψ(s,Wv, W ′
v, Φ) depends

continuously on (v, v′, Φ).
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5.2. Integrals involving a unipotent integration. To prove convergence
of the integrals Ψj(s,W,W ′), we need a few elementary lemmas.

Consider a matrix v ∈ tNn(F ). Let us write its rows as

(X1, 1, 0), (X2, 1, 0), (X3, 1, 0), . . . (Xn, 1)

where each Xi is a row matrix of size i − 1 and 0 represents a string of zeros of
variable length. For instance if

v =




1 0 0
x 1 0
z y 1


 ,

then
X1 = ∅, X2 = x, X3 = (z, y) .

Lemma 5.1. Consider the Iwasawa decomposition of v ∈ tNn(F ):

v = ubk ,

u ∈ Nn, k ∈ Kn,
b = diag(b1, b2, . . . , bn) , bi > 0 .

Then
b2
1b

2
2 · · · b2

n = 1 .

For 2 ≤ i ≤ n,
b2
i b

2
i+1 · · · b2

n ≥ 1 + ||Xi||2e
and

b2
n = 1 + ||Xn||2e .

There exist an integer M and constants C > 0, D > 0 such that, for all i,

C
1∏n

j=i+1(1 + ||Xj ||2e)M
≤ b2

i ≤ D

n∏

j=i

(1 + ||Xj ||2e)M .

Proof. Here we drop the index e from ||Xi||e. Let ei, 1 ≤ i ≤ n, be the
canonical basis of the space of row vectors. Then

b2
i b

2
i+1 · · · b2

n = ||(ei ∧ · · · ∧ en) v||2 .

The entries of (ei ∧ · · · ∧ en) v are polynomials in the entries of the matrices Xj ,
i ≤ j ≤ n. Thus

b2
i b

2
i+1 · · · b2

n ≤ D

n∏

j=i

(1 + ||Xj ||2)M

for a suitable M and D. On the other hand, up to sign, the entries of Xi are among
the entries of (ei ∧ · · · ∧ en) v. Thus

b2
i b

2
i+1 · · · b2

n = ||(ei ∧ · · · ∧ en) v||2 ≥ 1 + ||Xi||2 ≥ 1 .

Moreover
b2
n = 1 + ||Xn||2 .

Now

b2
i ≥

1
b2
i+1 · · · b2

n

≥ D−1
n∏

j=i+1

(1 + ||Xj ||2)−M ,

b2
i ≤ D

∏n
j=i(1 + ||Xj ||2)M

b2
i+1 · · · b2

n

≤ D

n∏

j=i

(1 + ||Xj ||2)M .
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The lemma follows.

An immediate consequence of the lemma is the following observation.

Lemma 5.2. There exist an integer r and a constant C such that, for any
a ∈ Am(R), any X ∈ M(n−m×m,F ),

ξr
s,n

(
a 0
X 1n−m

)
≥ C

m∏

i=1

(1 + a2
i )

n∏

i=m+1

(1 + ||Xi||2) .

Proof. Indeed, write the Iwasawa decomposition
(

1m 0
X 1n−m

)
= vbk .

Then

ξs,n

(
a 0
X 1n−m

)
=

m∏

i=1

(1 + a2
i b

2
i )

n∏

i=m+1

(1 + b2
i ) .

Thus for any integer r ≥ 1,

ξr
s,n

(
a 0
X 1n−m

)
≥

m∏

i=1

(1 + a2
i b

2
i )

n∏

i=m+1

(1 + b2
i )

r .

For 1 ≤ i ≤ m,

b2
i ≥ C

n∏

j=m+1

(1 + ||Xj ||2)−M ,

for some constant C. Since we may decrease C, we may assume C < 1. Thus

1 + a2
i b

2
i ≥ C

(
1 +

a2
i∏n

j=m+1(1 + ||Xj ||2)M

)
.

On the other hand, for a suitable integer r,
n∏

j=m+1

(1 + b2
j )

r ≥
n∏

j=m+1

(1 + b2
jb

2
j+1 · · · b2

n) ≥
n∏

j=m+1

(1 + ||Xj ||2) .

The lemma follows.

Now we establish the convergence of the integrals Ψj(s,W,W ′) for <s >> 0.
We only treat the case j = n− n′ − 1. The other cases are similar. The integral at
hand is

∫
Wv




ak 0 0
X 1n−n′−1 0
0 0 1


 Wv′(ak)δn′(a)−1|det a|sdadkdX ,

or, after a change of variables,

∫
Wv







a 0 0
X 1n−n′−1 0
0 0 1







k 0 0
0 1n−n′−1 0
0 0 1







× Wv′(ak)δn′(a)−1| det a|sdadkdX .
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The integrand is majorized by a constant times

ξ−N
h,n




a 0 0
X 1n−n′−1 0
0 0 1




∣∣∣∣∣∣

∣∣∣∣∣∣




a 0 0
X 1n−n′−1 0
0 0 1




∣∣∣∣∣∣

∣∣∣∣∣∣

M

||a||M ′
δn′(a)−1| det a|s

times µ(v)µ′(v′) where µ, µ′ are continuous semi-norms. After integrating over
k ∈ Kn, we are reduced to the convergence of

∫
ξ−N
h,n




a 0 0
X 1n−n′−1 0
0 0 1


 ||a||M1(1 + ||X||2)M2δn′(a)−1| det a|sdadX ,

with M1, M2 given and N arbitrarily large. Now, up to a scalar factor,

ξh,n




a 0 0
X 1n−n′−1 0
0 0 1


 = ξi,n−1

[
a 0
X 1n−n′−1

]
.

Furthermore ξn
i ≥ ξs. Thus we are reduced to the convergence of the integral

∫
ξ−N
s,n−1

[
a 0
X 1n−n′−1

]
||a||M1(1 + ||X||2)M2δn′(a)−1| det a|sdadX .

By Lemma 5.2, we are in fact reduced to a product of two integrals
∫ n′∏

i=1

(1 + a2
i )
−N ||a||M1δn′(a)−1| det a|sda ,

∫ n−1∏

i=n′+1

(1 + ||Xi||2)−N (1 + ||X||2)M2dX .

The first integral converges for N > A, s > B, CN > s (Lemma 3.4). The second
integral converges for N >> 0.

The proof gives a result of continuity as in (5.1).

5.3. The tempered case. Let again σ = (σ1, σ2, . . . , σr) be an r-tuple of
irreducible unitary representations of WF and u an r-tuple of complex numbers.
Let n =

∑
i deg(σi). Then if u is purely imaginary, the induced representation Iσ,u

is unitary irreducible and tempered. Consider likewise another pair (σ′, u′) where
σ′ = (σ′1, σ

′
2, . . . , σ

′
r′) is an r′-tuple of irreducible unitary representations of WF and

u′ an r′-tuple of complex numbers. Let n′ =
∑

i′ deg(σ′i).

Lemma 5.3. Suppose n > n′. If u and u′ are purely imaginary, the integrals
Ψk(s,Wf ,Wf ′) converge absolutely for <s > 0.

Proof. We can use the majorizations of Propositions 3.4 and 3.5. Suppose
first k = 0. Then, for every N > 0,

∣∣∣∣Wf

(
ak 0
0 1n−n′

)
W ′

f ′(ak)
∣∣∣∣

≤ CNδ1/2
n

(
a 0
0 1n−n′

)
δ
1/2
n′ (a)ξ−N

s,n′(a)(1 + || log a||2)d .
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We have dropped the index e form || log a||2e. Thus we are reduced to the conver-
gence of an integral of the form∫

δ1/2
n

(
a 0
0 1n−n′

)
δ
−1/2
n′ (a)ξ−N

s,n′(a)(1 + || log a||2)d| det a|s−n−n′
2 da .

But

δ1/2
n

(
a 0
0 1n−n′

)
δ
−1/2
n′ (a) = |det a|n−n′

2 ,

so we are reduced to the convergence of the integral∫
ξ−N
s,n′(a)(1 + || log a||)d|det a|sda .

Now (1 + || log a||2)d is a polynomial in the log(a2
i )

2. Thus, we are reduced to a
product of integrals of the form

∫
(log(a2

i ))
2m|ai|s

(1 + a2
i )N

d×ai .

Such an integral converges for s > 0, 2N > s. Our assertion follows.
Now we assume k > 0. We only treat the case k = n−n′−1. We have to show

the following integral converges for s > 0.
∫ ∣∣∣∣∣∣

Wf




ak 0 0
X 1n−n′−1 0
0 0 1




∣∣∣∣∣∣
|W ′

f ′(ak)| | det a|s−n−n′
2 dadXdk ,

or, after a change of variables
∫ ∣∣∣∣∣∣

Wf







a 0 0
X 1n−n′−1 0
0 0 1







k 0 0
0 1n−n′−1 0
0 0 1







∣∣∣∣∣∣

× |W ′
f ′(ak)| | det a|s−n−n′

2 dadXdk .

Write the Iwasawa decomposition


1n′ 0
X 1n−n′−1

0 1


 = vbk1

with
b = diag(b1, b2, . . . , bn−1) .

This is majorized by a constant times∫
ξ−N
i,n−1

(
a 0
X 1n−n′−1

)
(1 + || log a||2 + || log b||2)r | det a|sdadX .

Applying Lemma 5.2, we are reduced to the convergence of a sum of products of
integrals ∫

ξ−N
s,n′(a)P1(log a)|det a|sda ,

∫
P2(log b)

∏
(1 + ||Xi||2)−NdX

where P1(log a) is a polynomial in the log2 ai and P2(log b) a polynomial in the
log2(bi). The first integral converges for N > 0, s > 0 2N > s. By the estimates of
Lemma 5.1, the second integral converges for N >> 0.
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Lemma 5.4. If u and u′ are purely imaginary, the integrals Ψ(s, Wf ,Wf ′ , Φ)
converge absolutely for <s > 0.

Proof. Again we can use the majorizations of Proposition 3.4 and 3.5. In the
integral ∫

|Wf (ak)| |Wf ′(ak)| |Φ[0, 0, . . . , 0, 1)ak]| det a|sdadk ,

we majorize

|Wf (ak)| ¹ ξ−N
h,n (a)δ1/2

n (a)(1 + || log a||2)r ,

|Wf ′(ak)| ¹ δ1/2
n (a)(1 + || log a||2)r ,

|Φ[0, 0, . . . , 0, 1)ak]| ¹ (1 + a2
n)−N .

Thus we are reduced to the convergence of
∫

ξi,n(a)−N (1 + || log a||2)r| det a|sda

or ∫
ξs,n(a)−N (1 + || log a||2)r|det a|sda .

As before, this integral converges for s > 0, 2N > s.

6. Relations between integrals

We will make extensive use of the Dixmier-Malliavin Lemma ([9]). For the
convenience of the reader, we repeat this lemma in the form we will be using it.

Lemma 6.1 (Dixmier-Malliavin). Let G be a connected Lie group. Let (π, V )
be a C∞ representation of G on a Frechet space V . For any vector v ∈ V , there
are finitely many vectors vi and smooth functions of compact support φi on G such
that

v =
∑

i

π(φi)vi .

The lemma will be applied to various subgroups of Gn(F ).

6.1. Relation between Ψj and Ψj+1. Consider two induced representations
(π, I) = (πσ,u, Iσ,u) and (π′, I ′) = (πσ′,u′ , Iσ′,u′) of GL(n) and GL(n′), respectively.
Let λ (resp. λ′) be a non zero ψ form (resp. ψ form) on I (resp. I ′). We claim that,
for 0 ≤ j ≤ n−n′−2, any integral Ψj+1(s,W,W ′), W ∈ W(π : ψ), W ′ ∈ W(π′ : ψ)
has the form Ψj(s, W1, W

′) for a suitable W1 ∈ W(π : ψ) and conversely. Moreover,
we claim that the the functional equation relating the integrals Ψj and Ψk, with
k + j = n− n′ − 1, implies the functional equation relating the integrals Ψj+1 and
Ψk−1.

Indeed, let W0 be an element of W(π : ψ). Let φ be a Schwartz function on
the space of column matrices with n′ entries. Define a function W1 by

W1(g) :=
∫

W0







1n′ 0 0 Z 0
0 1j 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




g




φ(Z)dZ .
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Here and below ∗ stands for the appropriate integer, in this case the integer
n − (n′ + j + 2). Clearly, the function W1 belongs to the space W(π : ψ). More
precisely, if W0 = λ(π(g)v0), then W1(g) = λ(π(g)v1) where v1 is the vector defined
by

v1 :=
∫

π







1n′ 0 0 Z 0
0 1j 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







v0 φ(Z)dZ .

In fact, by Lemma 6.1, any vector v can be written as a finite sum

v =
∑

i

∫
π







1n′ 0 0 Z 0
0 1j 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







v0 φi(Z)dZ ,

where the φi are smooth functions of compact support. Thus any function W is a
finite sum of functions of the form W1.

Let φ̂ be the Fourier transform of φ:

φ̂(Y ) =
∫

φ(Z)ψ(−Y Z)dZ .

Here φ̂ is regarded as a function on the space of row matrices of size n′. Similarly,
the function W2 defined by

W2(g) :=
∫

W0







1n′ 0 0 0 0
0 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




g




φ̂(−Y )dY

belongs to W(π : ψ). Again, we may take φ̂ to be a smooth function of compact
support. Thus any function W is a finite sum of functions of the form W2.

Lemma 6.2. For any g ∈ Gn′ , X ∈ M(j × n′) (j rows and n′ columns)

∫

F n′
W1







g 0 0 0 0
X 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







dY = W2







g 0 0 0 0
X 1j 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







.
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Proof. We have

W0







g 0 0 0 0
X 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







1n′ 0 0 Z 0
0 1j 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







= W0







1n′ 0 0 gZ 0
0 1j 0 XZ 0
0 0 1 Y Z 0
0 0 0 1 0
0 0 0 0 1∗







g 0 0 0 0
X 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







= ψ(Y Z)W0







g 0 0 0 0
X 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







.

Thus the left hand side of the formula of the lemma is equal to

∫∫
W0







g 0 0 0 0
X 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







ψ(Y Z)φ(Z)dY dZ ,

that is, to

∫
W0







g 0 0 0 0
X 1j 0 0 0
Y 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







φ̂(−Y )dY

which is the right hand side of the formula in the lemma.

It follows from the lemma that, for any W ′,

Ψj+1(s,W1,W
′) = Ψj(s,W2,W

′) .

Thus our first claim follows.
Now we claim that

Ψk(s, ρ(wn.n′)W̃2, W̃ ′) = Ψk−1(s, ρ(wn.n′)W̃1, W̃ ′) .
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Indeed,

W̃2







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




=
∫

W̃0







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




1n′ 0 tY 0 0
0 1j 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







φ̂(Y )dY

=
∫

W̃0







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗







1n′ 0 0 tY 0
0 1k−1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




φ̂(Y )dY .

Computing as in the proof of the lemma, we find

∫
W̃0







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




ψ(−Y ′ tY )φ̂(Y )dY

= W̃0







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




φ(− tY ′) .

Thus

∫
W̃2







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




dY ′

=
∫

W̃0







g 0 0 0 0
X ′ 1k−1 0 0 0
Y ′ 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




φ(− tY ′)dY ′ =
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=
∫

W̃0







g 0 0 0 0
X ′ 1k−1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




1n′ 0 0 0 0
0 1j 0 0 0
0 0 1 0 0
Y ′ 0 0 1 0
0 0 0 0 1∗







φ(−tY ′)dY ′

= W̃1







g 0 0 0 0
X ′ 1k−1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1∗




wn,n′




.

Integrating the relation we have just found, we get

Ψk(s, ρ(wn,n′)W̃2, W̃ ′) = Ψk−1(s, ρ(wn,n′)W̃1, W̃ ′) .

Thus the functional equation for the integrals

Ψj(s,W,W ′),Ψk(1− s, ρ(wn,n′)W̃ , W̃ ′)

implies the functional equations for the integrals

Ψj+1(s, W,W ′), Ψk−1(1− s, ρ(wn,n′)W̃ , W̃ ′)

and conversely.
We conclude that if we prove that the integrals Ψ(s,W,W ′) have the required

analytic properties, this will imply that all the integrals Ψj(s,W,W ′) have the
required analytic properties. Similarly, the functional equation relating the inte-
grals Ψ0(s,W,W ′) and Ψn−n′−1(1− s, ρ(wn,n′)Ŵ , W̃ ′) implies the functional equa-
tions relating the integrals Ψj(s,W,W ′) and Ψk(1− s, ρ(wn,n′)W̃ , W̃ ′), for j + k =
n− n′ − 1.

6.2. Other relations. Consider a Casselman-Wallach representation (ψ, V )
of GL(n). Let λ be a ψ form on V . For each v ∈ V , set Wv(g) = λ(π(g)v).

Proposition 6.1. Let r < n. Given v ∈ V and a Schwartz function Φ on the
space of row vectors of size r there is v0 ∈ V such that, for any g ∈ Gr,

Wv0

(
g 0
0 1n−r

)
= Wv

(
g 0
0 1n−r

)
Φ[(0, 0, . . . , 1)g] .

Conversely, given v ∈ V , there are vectors vi ∈ V and Schwartz functions Φi such
that

Wv

(
g 0
0 1n−r

)
=

∑

i

Wvi

(
g 0
0 1n−r

)
Φi[(0, 0, . . . , 1)g] .

Proof. For the first part, set

v0 =
∫

π




1r u 0
0 1 0
0 0 1n−r−1


 v Φ̂(u)du .
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Here we regard Φ̂ as a function on the space of column vectors of size r. Then

Wv0




g 0 0
0 1 0
0 0 1n−r−1




=
∫

Wv







g 0 0
0 1 0
0 0 1n−r−1







1r u 0
0 1 0
0 0 1n−r−1





 Φ̂(u)du

= Wv







g 0 0
0 1 0
0 0 1n−r−1







∫
ψ[(0, 0, . . . , 1)gu]Φ̂(u)du

= Wv







g 0 0
0 1 0
0 0 1n−r−1





 Φ[(0, 0, . . . , 1)g] .

For the second assertion, we proceed similarly. Using Lemma 6.1, we write the
given vector v as

v =
∑

i

∫
π




1r u 0
0 1 0
0 0 1n−r−1


 viΦi(u)du

with smooth functions of compact support Φi. We obtain the desired decomposi-
tion:

Wv




g 0 0
0 1 0
0 0 1n−r−1


 =

∑

i

Wvi




g 0 0
0 1 0
0 0 1n−r−1


 Φ̂i[−(0, 0, . . . , 1)g] .

Proposition 6.2. Let (π, V ) and λ as in the previous proposition. Let r < n
and t < n − r. Let φ(x, h) be a smooth function of compact support on F t × F×.
Then given v, there is v0 such that

Wv0




g 0 0
x h 0
0 0 1n−r−t


 = Wv




g 0 0
x h 0
0 0 1n−r−t


φ(x, h) .

Proof. We may regard φ as a Schwartz function on F t+1 which vanishes on
F t × {0}. Our assertion follows then from the previous proposition.

7. Integral representations

In this section, we discuss in detail an integral representation of Whittaker
functions for the group GL(n). The integral representation is a convergent integral
in which appears a Whittaker function for the group GL(n − 1) and a Schwartz
function on Fn. In [13], the point of view is different. The integral representa-
tion described here is used inductively to establish an integral representation for
Whittaker functions which contains only Schwartz functions.
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7.1. Godement sections. Let µ = (µ1, µ2, . . . , µn) be an n-tuple of normal-
ized characters. Let u = (u1, u2, . . . , un) ∈ Cn. The pair (µ, u) defines a character
of An or An

tNn. We denote by Iµ,u the induced representation of G. Thus Iµ,u is
the space of C∞ functions f : G → C such that

f(vag) = f(g)
n∏

i=1

µi(a)|ai|ui+i−1−n−1
2 ,

for all v ∈ Nn, g ∈ G, and

a = diag(a1, a2, . . . an) .

For fixed µ, (Iµ,u) is a holomorphic fiber bundle. A section fu(g) is a map
Cr ×G → C such that, for every u, the function g 7→ fu(g) belongs to Iµ,u. Such a
section is said to be standard if, for every k ∈ Kn, fu(k) is independent of u.

We construct another family of meromorphic sections of Iµ,u, the Godement
sections. As in the case of GL(2) ([14]), they are used to establish the analytic
properties of our integrals. This type of sections was first introduced in the global
theory ([10]).

Set µ′ = (µ1, µ2, . . . , µn−1), u′ = (u1, u2, . . . un−1). If Φ is a Schwartz function
on M((n− 1)× n, F ) and φ1 is a standard section of Iµ′,u′ , we set

fΦ,φ1,µn,un(g) :=µn(det g)| det g|un+ n−1
2

×
∫

Gn−1(F )

Φ[(h, 0)g]φ1(h−1)µn(det h)| deth|un+ n
2 d×h .

(7.1)

It is easily checked that if the integral converges, then it defines an element of Iµ,u.

Proposition 7.1.

(i) The integral (7.1) converges absolutely for

(7.2) <(un − ui) > −1 , 1 ≤ i ≤ n− 1 .

(ii) It extends to a meromorphic function of un which is a holomorphic mul-
tiple of ∏

1≤i≤n−1

L(un − ui + 1, µnµ−1
i ) .

(iii) Let Ωr be the open set of matrices of rank n − 1 in M(n − 1 × n, F ). If
Φ has compact support contained in Ωr, the integral (7.1) converges for
all un.

(iv) When it is defined, the integral (7.1) represents an element of Iµ,u.
(v) For a given u, any element of Iµ,u can be written as a finite sum of such

integrals, with Φ supported on Ωr.
(vi) Suppose u satisfies (7.2). Then any Kn-finite element of Iµ,u can be writ-

ten as a finite sum of integrals (7.1) with Φ a standard Schwartz function
and φ1 Kn−1-finite.

Proof. Indeed, let us write

h = kb



44 HERVÉ JACQUET

where b is lower triangular, with diagonal entries ai, 1 ≤ i ≤ n− 1, and below the
diagonal entries ui,j . For example for n = 4,

b =




a1 0 0
u1,2 a2 0
u1,3 u2,3 a3


 .

The Haar measure dh is the product of the measures d×ai, dui,j , dk times
∏

1≤i≤n−1

|ai|i+1−n .

We first integrate over k keeping in mind that φ1 belongs to an induced represen-
tation. We find∫

Gn−1(F )

Φ[(h, 0)g]φ1(h−1)µn(det h)| deth|un+ n
2 dh

∏

1≤i≤n−1

|ai|i+1−n

= Φ1(b)
n−1∏

i=1

µnµ−1
i (ai) |ai|un−ui+1 ,

where Φ1(b) is a Schwartz function on the vector space of lower triangular matrices
(i.e., on Fn−1 × F

(n−1)n
2 ). Now we set

φ(a1, a2, . . . , an−1) =
∫

Φ1(b)⊗ dui,j .

Thus φ is a Schwartz function on Fn−1. We are reduced to an integral of the form
∫

φ(a1, a2, . . . , an−1)
n−1∏

i=1

µnµ−1
i (ai) |ai|un−ui+1d×ai .

The two first assertions follow.
The third assertion is trivial.
It is easily checked that when the integral is absolutely convergent, it represents

an element of Iµ,u. The same assertion remains true when the integral is defined
by analytic continuation.

We prove the fifth assertion. First we recall a well-known result: any element
f of Iµ,u can be written in the form

f(g) =
∫

φ(bg)
∏

µ−1
i (a)|ai|−ui+

n−1
2 +1−idrb

where φ is a smooth function of compact support, drb a right invariant measure on
the group AnNn and the ai are the diagonal entries of b. This can derived from
Lemma 6.1. Indeed, we may assume

f(g) =
∫

f1(gx)φ1(x)dx

with f1 ∈ Iµ,u and φ1 a smooth function of compact support. Then we can take

φ(g) =
∫

f1(k)φ1(g−1k)dk .

Let f1 belong to the space J1
µn,un

of C∞ functions f1 such that

f1

[(
1n−1 0

v an

)
g

]
= f1(g)µn(an)|an|un+ n−1

2 ,



ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 45

which are compactly supported modulo the subgroup
{(

1n−1 0
∗ ∗

)}
.

Define

f(g) =
∫

f1

[(
v 0
0 1

)(
a 0
0 1

)
g

]
dv

× µ−1
1 (a1)|a1|−u1+

n−1
2 µ−1

2 (a2)|a2|−u2−1+ n−1
2 · · ·µ−1

n−1(an)|an|−un+1−n−1
2

× d×a1d
×a2 · · · d×an−1 ,

with v ∈ Nn−1,
a = diag(a1, a2, . . . an−1) .

Clearly, f ∈ Iµ,u. It follows from the result that we have recalled that any element
f of Iµ,u can be represented in this way for a suitable f1 ∈ J1

µn,un
.

The space J1
µn,un

is invariant on the left under the group of matrices of the
form (

h 0
0 1

)
, h ∈ Gn−1 .

By Lemma 6.1, any element of J1
µn,un

is a finite sum of elements of the form
∫

f1

[(
h 0
0 1

)
g

]
φ(h−1)dh

with f1 ∈ J1
µn,un

and φ ∈ C∞c (Gn−1). For an element of this form, the correspond-
ing f is given by

f(g) =
∫

Gn−1

f1

[(
h 0
0 1

)
g

]
φ0(h−1)dh

where

φ0(h) :=
∫

φ(vah)dv µ−1
1 (a1)|a1|−u1+

n−1
2 µ−1

2 (a2)|a2|−u2−1+ n−1
2 × · · ·

· · · × µ−1
n−1(an−1)|an−1|−un−1+1−n−1

2 d×a1d
×a2 · · · d×an−1 ,

with v ∈ tNn−1,
a = diag(a1, a2, . . . an−1) .

Now
φ0(g) = φ1(g)| det g|− 1

2

where φ1 is in the space Iµ′,u′ with

µ′ = (µ1, µ2, . . . , µn−1) , u′ = (u1, u2, . . . , un−1) .

Let J0 be the space of C∞ functions f0 such that

f0

[(
1n−1 0

v an

)
g

]
= f0(g)

for all v ∈ Fn−1, an ∈ F× and f0 has compact support modulo the subgroup

R :=
{(

1n−1 0
∗ ∗

)}
.
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Clearly, we can write

f1(g) = f0(g)µn(det g)| det g|n−1
2 ,

with f0 ∈ J0. Thus

f(g) = µn(det g) | det g|n−1
2

∫
f0

[(
h 0
0 1

)
g

]
φ1(h−1)µn(deth)| deth|un+ n

2 dh .

We claim there is a function Φ ∈ C∞c (Ωr) such that

f0(g) = Φ[(1n−1, 0)g] .

Taking the claim for granted at the moment, we finally get

f(g) = µn(det g)|det g|un+ n−1
2

∫
Φ[(h, 0)g]φ1(h−1)µn(deth)|det h|un+ n

2 d×h .

We can view Φ as a Schwartz function on M((n− 1)×n, F ) which vanishes on the
complement of Ωr.

It remains to establish our claim. Consider the map

g 7→ (1n−1, 0)g .

It passes to the quotient and defines a map

R\G → Ωr .

This map is clearly surjective. We claim it is injective. Indeed, let g and g′ be two
matrices in G such that (1n−1, 0)g = (1n−1, 0)g′. We may write

g =
(

A
X

)
, g′ =

(
A
X ′

)

where A has n − 1 rows of size n and X, X ′ are row vectors of size n. Since the
rows of A and the row X are linearly independent, there is a row vector c of size
n− 1 and a scalar d such that

cA + dX = X ′ .

Moreover, d 6= 0 since the rows of A and the row X ′ are linearly independent.
Hence rg = g′ where r ∈ R is defined by

r =
(

0 1
c d

)
.

Thus the map R\G → Ωr is bijective. Since it is of constant rank, it is a diffeo-
morphism and our claim follows. We have completely proved the fifth assertion.

Finally, assume u satisfies (7.2). For those values of un, the bilinear map

(Φ, φ1) 7→ fΦ,φ1,µn,un

M(n− 1× n, F )× Iµ′,u′ → Iµ,u

is continuous. As we have just seen, any element of Iµ,ν is a sum of functions
fΦ,φ1,µn,un with Φ ∈ S(M((n − 1) × n, F )) (in fact, Φ ∈ C∞c (Ωr)). It follows that
the space spanned by the functions of the form

fΦ,φ1,µn,un ,
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with Φ standard and φ1 Kn−1-finite, is dense in Iµ,u. Let ξ be an elementary
idempotent of Kn. The range Iµ,σ(ξ) of the operator

∫
ρ(k)ξ(k)dk

is finite dimensional. The space spanned by the functions fΦ,φ1,µn,un
with Φ stan-

dard such that

Φ(X) =
∫

Φ(Xk)ξ(k)µn(det k)dk

is dense in it. Thus it is equal to it. This concludes the proof of the proposition.

7.2. Integral representation of Whittaker functions. For

(7.3) <u1 < <u2 < . . . < <un ,

let λu be the linear form on Iµ,u defined by the convergent integral

λu(f) =
∫

Nn

f(v)θψ,n(v)dv .

By Theorem 15.4.1 in [26] II, the linear form extends by analytic continuation into
a linear form λu on Iµ,u, which is defined for all u and never 0. Suppose fu is a
standard section. Then we say that

Wu(g) = λu(πµ,u(g)fu)

is a standard family of Whittaker functions.
Now we use Godement sections to define other families of Whittaker functions.

We set

(7.4) WΦ,ψ,φ1,µn,un(g) = λu(ρ(g)fΦ,φ1,µn,un) .

A priori, this is only a meromorphic function of u.
If furthermore u verifies (7.3), then we can write

WΦ,ψ,φ1,µn,un(g) =
∫

Nn

fΦ,φ1,µn,un(vg)θψ,n(v)dv .

We claim that if we replace f∗ by its expression as an integral, we obtain a double
integral which is absolutely convergent. Indeed, we may assume Φ ≥ 0, all µi are
trivial and all ui real. We may replace θψ,n by the trivial character. Then the
integrand is ≥ 0. The iterated integral is finite. Our claim follows.

It will be convenient to introduce, for u satisfying (7.3), another integral:

(7.5) wΦ,φ1,µn,un(g) =
∫

Nn−1

fΦ,φ1,µn,un

[(
v 0
0 1

)
g

]
θψ,n−1(v)dv .

Again, if we replace f∗ by its expression, we obtain a convergent double integral.
Thus we can exchange the order of integration. After a change of variables, we
obtain

wΦ,φ1,µn,un(g) = µn(det g)| det g|un+ n−1
2

×
∫

Φ[(h, 0)g]W1(h−1)µn(det h)| deth|un+ n
2 d×h ,

where we have set

W1(h) :=
∫

φ1(vh)θn−1,ψ(v)dv .



48 HERVÉ JACQUET

With this notation, we have, for u satisfying (7.3),

WΦ,φ1,µn,un(g) =
∫

F n−1
wΦ,φ1,µn,un

[(
1n−1 v

0 1

)
g

]
θψ,n

(
1n−1 v

0 1

)
dv .

For g ∈ Gn and h ∈ Gn−1, we introduce the notation

g.Φ.h[X] = Φ[hXg] .

We obtain in particular a C∞ left representation of Gn on S(M((n − 1) × n, F )).
If Y is in Lie(Gn), we denote by Y.Φ the action of Y on Φ. Replacing wΦ,φ1,µn,un

by its expression, we get

WΦ,φ1,µn,un
(g) = µn(det g)|det g|un+ n−1

2

×
∫

g.Φ.h[1n−1, v]W1(h−1)µn(det h)| deth|un+ n
2 θψ,n

(
1n−1 v

0 1

)
d×hdv .

At this point, we introduce the partial Fourier transform P(Φ) of a function Φ ∈
S(M((n − 1) × n, F )) with respect to the last column. The function P(Φ) is thus
the function on the same space defined by

P(Φ)(X1, X2, . . . Xn−1, Xn) =
∫

Φ(X1, X2, . . . , Xn−1, U)ψ( tUXn)dU .

We denote by ei, 1 ≤ i ≤ n− 1, the canonical basis of Fn−1. From now on we view
them as column vectors. With this notation, we get

(7.6) WΦ,φ1,µn,un(g) = µn(det g)|det g|un+ n−1
2

×
∫
P(g.Φ.h)[1n−1, en−1]W1(h−1)µn(deth)| deth|un+ n

2 d×h .

More explicitly,

(7.7) WΦ,ψ,φ1,µn,un(g) = µn(det g)| det g|un+ n−1
2

×
∫

Gn−1

P(g.Φ)[h, hιen−1]W1(h−1)µn(det h)| deth|un+ n
2−1d×h .

At this point, some remarks are in order. A priori, the equality is valid for u
satisfying (7.3). The left hand side is a holomorphic function of u. As we are going
to see in the next proposition, the integral on the right converges for all u and
thus defines an entire function of u. Thus the equality is in fact true for all u.
Finally, the equality shows that the left hand side depends only on W1 (which is a
holomorphic function of u′ = (u1, u2, . . . , un−1). Thus we can also use the notation
WΦ,ψ,W1,µn,un for the left hand side.

Proposition 7.2. Let W1 ∈ W(πµ′,u′ : ψ) and Φ a Schwartz function. The
integral (7.7) converges absolutely for all un. More precisely, suppose that W1 =
W1,u′ is a standard family of Whittaker functions. Then the integral converges
uniformly for u′ in a compact set Ω′ of Cn−1 and un in a compact set Ω of C.
Furthermore, given Ω′ and Ω and X ∈ U(Gn), there is M > 0 and a continuous
semi-norm cX on the space of Schwartz functions such that

|ρ(X)WΦ,ψ,W1,µn,un(g)| ≤ cX(Φ)||g||M

for all Φ, u′ ∈ Ω′, un ∈ Ω.
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Proof. Let us prove the convergence for g = e. We set

h = kβ

where k is in Kn−1 and β is an upper triangular matrix with diagonal part

b = diag(b1, b2, . . . , bn−1) .

For the purpose of proving convergence, we may replace W1(h−1) by

ξh,n−1(b−1)−N ||b||M ,

assume un real, µn trivial and replace PΦ by Φ0 ≥ 0. We find∫
Φ0[kβ, kb−1

n−1en−1] ξh,n−1(b−1)−N |det b|un+ n
2−1||b||Mdβdk .

After integrating over k, and the variables above the diagonal, we are reduced to∫
φ(b1, b2, . . . , bn−1, b

−1
n−1)ξh,n−1(b−1)−N ||b||M | det b|un+ n

2−1J(b)dbdk

where J(b) is a Jacobian factor and φ ≥ 0 is a Schwartz function. Since ||b||M is
a sum of positive characters, we are reduced to showing that, given a character
χ > 0, the following integral is finite, provided N is large enough,∫

φ(b1, b2, . . . , bn−1, b
−1
n−1)ξh,n−1(b−1)−Nχ(b)db .

Now, for N >> 0,

φ(b1, b2, . . . , bn−1, b
−1
n−1) ¹

n−1∏

i=1

(1 + b2
i )
−N (1 + b2

n−1)
−N

and there is m > 0 such that

ξh,n−1(b−1)m(1 + b−2
n−1)

m ≥
n−1∏

i=1

(1 + b−2
i ) .

Thus we are reduced to an integral of the form
∫ n−1∏

i=1

(1 + b2
i )
−N

n−1∏

i=1

(1 + b−2
i )−Nχ(b)db

which converges for N >> 0.
Let us prove the estimate for X = 1. We write g = vak, v ∈ N − n, a ∈ An,

k ∈ Kn. Since k.Φ remains in a bounded set, we are reduced to the estimate for
g = a. Since W∗ transforms under a character of the center, we may even assume
an = 1. Following the above computation, we are led to replace φ by a character
η(a) times

φ(a1b1, a2b2, . . . , an−1bn−1, b
−1
n−1) .

Now
1

1 + a2b2
≤ a2 + a−2

1 + b2
.

Thus for every N ,

φ(a1b1, a2, b2, . . . , anbn, b−1
n−1) ¹ ||a||M

∏

1≤i≤n−1

(1 + b2
i )
−N (1 + b−2

n−1)
−N ,

where M depends on N . Our assertion follows.
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Finally, to find the estimate with a given X we observe that W∗ transforms
under a character of the center. Thus we may assume X ∈ U(SL(n, F )) and then
replace Φ by X.Φ.

Writing explicitly the definition of P(Φ), we get from (7.6)

WΦ,ψ,W1,µn,un
(g) = µn(det g)| det g|un+ n−1

2

×
∫

Gn−1

(∫

F n−1
g.Φ.h[1n−1, X]ψ( ten−1X)dX

)
W1(h−1)µn(det h)un+ n

2 d×h .

The formula is to be understood in terms of iterated integrals, as each of the
indicated integrals converge absolutely. Furthermore, we can replace h by hv with
v ∈ Nn−1 and h ∈ Gn−1/Nn−1. We get then

µn(det g)|det g|un+ n−1
2

×
∫∫ (∫

g.Φ.h[v, vX]ψ( ten−1X)dX

)
θψ,n−1(v)dvW1(h−1)µn(det g)un+ n

2 dh .

We can change X to v−1X to get

µn(det g)|det g|un+ n−1
2

×
∫∫ (∫

g.Φ.h[v,X]ψ( ten−1X)dX

)
θψ,n−1(v)dvW1(h−1)µn(det h)un+ n

2 dh .

The outer integral is over Gn−1/Nn−1.
We can combine the iterated integrals in v and X into a double absolutely

convergent integral. We arrive at the following expression

(7.8) WΦ,ψ,W1,µn,un(g) := µn(det g)| det g|un+ n−1
2

×
∫ (∫∫

g.Φ.h[v,X]ψ( ten−1X)θψ,n−1(v)dXdv

)
W1(h−1)µn(det h)un+ n

2 dh .

Here v ∈ Nn−1, h ∈ Gn−1/Nn−1 and X ∈ Fn−1 (column vectors). We stress the
finiteness of the integrals

∫∫ ∣∣g.Φ.h[v, X]ψ( ten−1X)θψ,n−1(v)
∣∣ dXdv < +∞

and∫ ∣∣∣∣
∫∫

g.Φ.h[v, X]ψ( ten−1X)θψ,n−1(v)dXdv

∣∣∣∣
∣∣W1(h−1)µn(det h)un+ n

2
∣∣ dh < ∞ .

7.3. A functional equation. We now prove that our integral representation
satisfies a functional equation. Recall the notation

W̃ (g) = W (wngι) .

Proposition 7.3.

W̃Φ,ψ,W1,µn,un(g) = µn(−1)n−1WbΦ,ψ,gW1,µ−1
n ,−un

.

Proof. We need a lemma.
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Lemma 7.1. For any Φ ∈ S(M((n− 1)× n, F ))
∫∫

wn.Φ[v, X]ψ( ten−1X)θψ,n−1(v)dXdv

=
∫∫

Φ̂.wn−1[v,X]ψ(ten−1X)θψ,n−1(v)dXdv ,

where the integrals are for X ∈ Fn−1, v ∈ Nn−1.

Proof. We illustrate the case n = 5 but the argument is general. Then the
formula reduces to the equality of the following two integrals:

∫
Φ




x1,1 x2,1 x3,1 x4,1 1
x1,2 x2,2 x3,2 1 0
x1,3 x2,3 1 0 0
x1,4 1 0 0 0


ψ(x1,4 + x2,3 + x3,2 + x4,1) ⊗ dxi,j ,

∫
Φ̂




0 0 0 1 y5,1

0 0 1 y4,2 y5,2

0 1 y3,3 y4,3 y5,3

1 y2,4 y3,4 y4,4 y5,4


 ψ(y2,4 + y3,3 + y4,2 + y5,1) ⊗ dyi,j .

The equality follows from the Fourier inversion formula.

With
W = WΦ,ψ,W1,µn,un ,

we have

W̃ (g) = µn(detwn)µ−1
n (det g)| det g|−un−n−1

2

×
∫ (∫∫

wngι.Φ.h[v, X]ψ( ten−1X)θψ,n−1(v)dXdv

)

×W1(h−1)µn(det h)| deth|un+ n
2 d×h .

We apply the previous lemma to the function gι.Φ.h whose Fourier transform is the
function g.Φ̂.hι |det g|n−1 |det h|−n. We get

µn(detwn)µ−1
n (det g)| det g|−un+ n−1

2

×
∫ (∫∫

g.Φ̂.hι.wn−1[v,X]ψ( ten−1X)θψ,n−1(v)dXdv

)

×W1(h−1)µn(deth)|det h|un−n
2 d×h .

We do a last change of variables setting h0 = hιwn−1. Then

W1(h−1) = W̃1(h−1
0 ) , µn(deth) = µn(detwn−1)µ−1

n (deth0) .

Thus we arrive at

µn(det wn detwn−1)mu−1
n (det g)| det g|−un+ n−1

2

×
∫ (∫∫

g.Φ̂.h0[v,X]ψ(ten−1X)θn−1(v)dXdv

)

× W̃1(h−1
0 )µ−1

n (det h0)|det h0|−un+ n
2 dh0 .

Since det wn detwn−1 = (−1)n−1, our assertion follows.
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Remark 7.2. In the above functional equation, the following replacements take
place:

(u1, u2, . . . un−1, un) 7→ (−un−1,−un−2, . . . ,−u1,−un)

(µ1, µ2, . . . µn−1, µn) 7→ (µ−1
n−1, µ

−1
n−2, . . . , µ

−1
1 , µ−1

n )

ψ 7→ ψ .

In particular if u satisfies (7.2), in general the n-tuple

(−un−1,−un−2, . . . ,−u1,−un)

does not, unless

(7.9) −1 < <un −<ui < 1 , 1 ≤ i ≤ n− 1 .

8. Theorem 2.1: principal series, pairs (n, n), (n, n− 1)

In this section and the two next sections, we prove Theorem 2.1 for the induced
representations Iµ,u (principal series). In this section, we treat the case n′ = n and
n′ = n − 1. The proof is by induction on n. The case of the pairs (1, 1) or (1, 0)
is simply the local theory of Tate’s integral. Assuming the theorem for the pair
(n, n− 1), we prove it for the pair (n, n) by replacing the Whittaker function W on
Gn by its integral representation. The integral representation contains a Schwartz
function Φ. Formal manipulations transform the integral Ψ(s,W,W ′, Φ1) into the
product of an integral for the pair (n, n − 1) and an integral Z(s, f, Φ0) ([11]) for
the group Gn. The Schwartz function Φ0 is built out of Φ and Φ1. Likewise,
assuming the theorem for the pair (n− 1, n− 1), we prove it for the pair (n, n− 1).
Again we replace the Whittaker function W on Gn by its integral representation
which contains a Schwartz function Φ. Formal manipulations transform the integral
Ψ(s,W,W ′) into the product of an integral for the pair (n−1, n−1) (which contains
a Schwartz function Φ1) and an integral Z(s, f, Φ0) ([11]) for the group Gn−1. The
Schwartz function Φ gives rise to the functions Φ0 and Φ1.

8.1. Statement of the Theorem. For clarity we state again the functional
equations (n, n) and (n, n− 1) for the induced representations Iµ,u.

For the case (n, n), we consider two pairs (µ, u) and (ν, v) where µ and ν are
n-tuple of normalized characters and u, v are in Cn. We let W be in W(πµ,u : ψ)
and W ′ ∈ W(πν,v : ψ). Finally, we let Φ1 be in S(Fn). Then the integral

Ψ(s,W,W ′, Φ1) ,

defined for <s >> 0, extends to a holomorphic multiple of
∏

i,j

L(s + ui + vj , µiνj) ,

bounded at infinity in vertical strips. Likewise,

Ψ(s, W̃ , W̃ ′, Φ1)

is a holomorphic multiple of
∏

i,j

L(s− ui − vj , µ
−1
i ν−1

j ) ,
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bounded at infinity in vertical strips. Finally, the functional equation

Ψ(1− s, W̃ , W̃ ′, Φ̂1)∏
i,j L(s− ui − vj , µ

−1
i ν−1

j )

=
∏

j

µj(−1)n−1
∏

i,j

ε(s + ui + uj , µiνj , ψ)
Ψ(s,W,W ′,Φ1)∏

i,j L(s + ui + vj , µiνj)

holds, in the sense of analytic continuation.
For the case (n, n − 1), we consider two pairs (µ, u) and (ν, v) where µ is an

n-tuple of normalized characters, ν is a (n − 1)-tuple, u ∈ Cn, v ∈ Cn−1. We let
W ∈ W(πµ,u : ψ) and W ′ ∈ W(πν,v : ψ). Then the integral

Ψ(s,W,W ′) ,

defined for <s >> 0 , extends to a holomorphic multiple of∏

i,j

L(s + ui + vj , µiνj) ,

bounded at infinity in vertical strips. Likewise

Ψ(s, W̃ , W̃ ′)

is a holomorphic multiple of∏

i,j

L(s− ui − vj , µ
−1
i ν−1

j ) ,

bounded at infinity in vertical strips. Finally, the functional equation

Ψ(1− s, W̃ , W̃ ′)∏
i,j L(s− ui − vj , µ

−1
i ν−1

j )

=
∏

i

µi(−1)n−1
∏

j

νj(−1)
∏

i,j

ε(s + ui + uj , µiνj)
Ψ(s,W,W ′)∏

i,j L(s + ui + vj , µiνj)

holds, in the sense of analytic continuation.
As we have seen in Section 2, it suffices to prove the assertions for one choice

of ψ. Thus we may assume ψ standard. Set

σu = (⊕µi ⊗ αui)⊗ (⊕νj ⊗ αvj ) .

As the notation suggests, v will be constant in the computation. We let (θu, κu)
be a holomorphic family of (σu, ψ) pairs. We define

Ψ(θu,W,W ′, Φ1) =
∫

W (g)W ′(g)θu(det g)Φ1(εng)dg ,

Ψ(κu, W̃ , W̃ ′, Φ̂1) =
∫

W̃ (g)W̃ ′(g)κu(det g)Φ̂1(εng)dg .

These integrals are absolutely convergent. Then the above assertions for (n, n) are
equivalent to the functional equations

Ψ(θu, W,W ′, Φ1) =
∏

i

µi(−1)−n−1
∏

j

νj(−1)Ψ(κu, W̃ , W̃ ′, Φ̂1) .

Now let W = Wu be a standard family of Whittaker functions. Then both sides are
entire functions of u. Thus it suffices to prove the assertions for u in a connected
open set, for instance, the open set defined by (7.3). Moreover, if we write W as
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Wφ with φ ∈ Iµ,u, then both sides are continuous functions of φ. Thus we may
assume W is Kn-finite. Likewise, we may assume W ′ is Kn-finite. Furthermore,
both sides are continuous functions of Φ1. Thus we may assume Φ1 is a standard
Schwartz function. In addition, W being Kn-finite is then of the form

W = WΦ,W1,µn,un,ψ ,

with W1 Kn−1-finite and Φ standard. Thus it suffices to prove the assertions of
Theorem 2.1 for Φ1 standard, W ′ Kn-finite, W of the above form, and any u.

The case (n, n− 1) is similar with

Ψ(θu,W,W ′) =
∫

W

(
g 0
0 1

)
W ′(g)θu(det g)| |det g|− 1

2 dg .

8.2. Case (n, n). We assume that we know Theorem 2.1 for the pair (n, n−1).
We prove Theorem 2.1 for the pair (n, n). To that end, we consider

Ψ(s,W,W ′, Φ1)

where W = WΦ,ψ,W1,µn,un and W ′ ∈ W(πν,v : ψ). Assume for now that u is in the
set defined by (7.2). Then we can set

w = wΦ,ψ,W1,µn,un

and write

W (g) =
∫

w

[(
1n−1 X

0 1

)
g

]
θψ,n

(
1n−1 X

0 1

)
dX .

Indeed, the integrals are absolutely convergent under assumption (7.2).
Then

Ψ(s,W,W ′,Φ1) =
∫

Nn\Gn

W (g)W ′(g)Φ1[εng] |det g|sdg

=
∫

Nn−1\Gn

w(g)W ′(g)Φ1[εng]|det g|sdg ,

where we embed Nn−1 into Gn the obvious way:

v 7→
(

v 0
0 1

)
.

Replacing w by its integral expression, we get
∫

Nn−1\Gn

| det g|s+ n−1
2 +unµn(det g)

×
(∫

Gn−1

Φ[(h, 0)g]W1(h−1)µn(det h)| deth|un+n/2dh

)
W ′(g)Φ1[εng]dg.
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Now∫

Gn−1

Φ[(h, 0)g]W1(h−1)µn(det h)|det h|un+n/2dh W ′(g)

=
∫

Gn−1/Nn−1

(∫

Nn−1

Φ
[
(h, 0)

(
u 0
0 1

)
g

]
W1(h−1)θn−1,ψ(u)du

)

× µn(det h)| deth|un+n/2dhW ′(g)

=
∫

Gn−1/Nn−1

(∫

Nn−1

Φ
[
(h, 0)

(
u 0
0 1

)
g

]
W1(h−1)W ′

((
u 0
0 1

)
g

)
du

)

× µn(det h)| deth|n/2dh .

Combining the integral over Nn−1\Gn and Nn−1, we can write the formula for Ψ as
∫

Gn−1/Nn−1

(∫

Gn

Φ[(h, 0)g]W ′(g)Φ1[εng]|det g|s+ n−1
2 +unµn(det g)dg

)

× W1(h−1)µn(det h)|det h|un+ n
2 dh .

We change g to (
h−1 0
0 1

)
g.

We get
∫
| det g|s+ n−1

2 +unµn(det g)Φ[(1n−1, 0)g]Φ1[εng]

×W ′
[(

h−1 0
0 1

)
g

]
W1(h−1)| deth|1/2−sdhdg .

We set
Φ0(g) = Φ[(1n−1, 0)g]Φ1[εng] .

After changing h to h−1, we arrive at our final expression

Ψ(s,W,W ′,Φ1) =
∫

Gn

∫

Nn−1\Gn−1

W ′
[(

h 0
0 1

)
g

]
Φ0(g)(8.1)

× µn(det g)| det g|un+s+ n−1
2 dgW1(h)|det h|s− 1

2 dh .

We need to justify our computations. We claim the following. Suppose that Ω
is an open, relatively compact set of Cn. Then there is A such that for <s ≥ A and
u ∈ Ω, the double integral (8.1) is absolutely convergent. Moreover, the convergence
is uniform if we impose B ≥ <s ≥ A. If we take Ω contained in (7.2), this will
show that our computation is justified. Moreover, by analytic continuation, this
will show that if Ω is any open, relatively compact set of Cn, there is A such that
for u ∈ Ω and <s > A the integral in (8.1) is absolutely convergent and equal to
Ψ(s,W,W ′, Φ1).

It remains to prove our claim. To that end, we may assume Φ0 ≥ 0. We may
replace |W ′| by

ξh,n

(
h 0
0 1

)−N

||h||M ||g||M
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and |W1| by ||h||M . We are reduced to study the convergence of the following two
integrals: ∫

ξh,n

(
h 0
0 1

)−N

||h||M |det h|<s− 1
2 ,

∫
Φ0(g) ||g||M |det g|<s+<un+ n−1

2 dg .

By Lemma 3.5, there are A,B, C such that the first integral converges for
N > A,<s > B, CN > <s. The convergence of the second integral for <s >> 0
follows from Lemma 3.3. Our claim is proved. Thus formula (8.1) is true for any u.

Similarly, for <s << 0,

Ψ(1− s, W̃ , W̃ ′, Φ̂1) = µn(−1)n−1

∫∫
W̃ ′

[(
h 0
0 1

)
g

]
Φ̂0(g)

× µ−1
n (det g)| det g|−un+1−s+ n−1

2 dgW̃1(h)|det h| 12−sdh .

Indeed, by Proposition 7.3, it suffices to replace W ′ by W̃ ′, Φ1 by Φ̂1, Φ by Φ̂, W1

by W̃1, µn by µ−1
n , un by −un, and insert the factor µn(−1)n−1.

To orient the reader, we first establish the functional equation formally.
Applying the (n, n − 1) functional equation to the h-integral, we find that
Ψ(1− s, W̃ , W̃ ′, Φ̂1) is equal to

µn(−1)n−1
∏

1≤i≤n−1

µi(−1)
∏

1≤j≤n

νj(−1)n−1
∏

1≤i≤n−1,1≤j≤n

γ(s + ui + vj , µiνj , ψ)

×
∫∫

W ′
[(

h 0
0 1

)
gι

]
Φ̂0(g)µ−1

n (det g)| det g|1−s+ n−1
2 dgW1(h)| deth|s− 1

2 dh .

Recall

γ(s + ui + vj , µiνj , ψ) = µi(−1)νj(−1)γ(s + ui + vj , µiνj , ψ) .

Thus we can rewrite the above expression as
∏

1≤i≤n

µi(−1)n−1
∏

1≤i≤n−1,1≤j≤n

γ(s + ui + vj , µiνj , ψ)

×
∫∫

W ′
[(

h 0
0 1

)
gι

]
Φ̂0(g)µ−1

n (det g)| det g|1−s+ n−1
2 dgW1(h)|det h|s+ 1

2 dh .

We now apply the functional equation of Proposition 4.4 to the g integral. We get
∏

1≤i≤n

µi(−1)n−1
∏

1≤j≤n,1≤i≤n

γ(s + ui + vj , µiνj , ψ)

×
∫∫

W ′
[(

h 0
0 1

)
g

]
Φ0(g)µn(det g)| det g|s+ n−1

2 dgW1(h)| deth|s+ 1
2 dh .

Thus we get the correct functional equation.
Now we make the proof rigorous. As we have observed, we may assume that

the Schwartz functions are standard and ψ is standard. Then the rest of the proof
does not depend on the theory of the (σu, ψ) pairs. The function Φ0 is then Kn-
finite on both sides. Thus there is an elementary idempotent ξ on Kn such that∫

Kn

Φ0(k−1X)µ−1
n (det k)ξ(k)dk = Φ0(X) .
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We can insert this in the integral for Ψ and change g to kg to obtain
∫ ∫∫ (∫

W ′
[(

h 0
0 1

)
kg

]
ξ(k)dk

)

× Φ0(g)µn(det g)| det g|un+s+ n−1
2 dgW1(h)|det h|s− 1

2 dh .

Now let v′i be a basis of the image of the operator
∫

Kn

ξ(k)πν,v(k)dk

in the space Iν,v. Let W ′
i be the corresponding elements of W(πν,v : ψ). Then

∫
W ′(xkg)ξ(k)dk =

∑

i

W ′
i (x)f ′i(g),

where the functions f ′i are matrix coefficients of the representation Iν,v. We see
that Ψ decomposes into a sum of products, namely,

∑

i

∫
W ′

i

[(
h 0
0 1

)]
W1(h)| deth|s− 1

2 dh

×
∫

Φ0(g)f ′i(g)µn(det g)| det g|un+s+ n−1
2 dg .

Thus

(8.2) Ψ(s,W,W ′, Φ1) =
∑

i

Ψ(s,W ′
i ,W1)Z(s,Φ0, f

′
i ⊗ µn) .

By the induction hypothesis, Ψ(s,W ′
i , W1) is a holomorphic multiple of

∏

1≤i≤n−1,1≤j≤n−1

L(s + ui + vj , µi ⊗ νj) ,

bounded at infinity in vertical strips. On the other hand, Z(s, Φ0, f
′
i ⊗ µn) is a

holomorphic multiple of
∏

1≤j≤n−1

L(s + un + vj , µnνj) ,

bounded at infinity in vertical strips. Thus the analytic properties of the integral
have been established. Likewise for the symmetric integral. It remains to establish
the functional equation.

We have ∫
Φ̂0(k−ιX)µ−1

n (det k)ξ(k)dk = Φ̂0(X)

or, changing k to kι, ∫
Φ̂0(k−1X)µn(det k)ξι(k)dk = Φ̂0(X) .

On the other hand, ∫
W̃ ′[xkg]ξι(k)dk =

∑

i

W̃ ′
i (x)f̃ ′i(g) ,

where we have set
f̃ ′i(g) = f ′i(g

ι) .
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Thus

Ψ(1− s, W̃ , W̃ ′, Φ̂0) = µn(−1)n−1
∑

i

Ψ(1− s, W̃ ′
i , W̃1)Z(1− s, f̃ ′i ⊗ µ−1

n , Φ̂0) .

The stated functional equation follows now from the induction hypothesis and the
functional equation of Proposition 4.4.

8.3. Case (n, n− 1). Now we assume Theorem 2.1 for the pair (n− 1, n− 1)
and we prove Theorem 2.1 for the pair (n, n− 1). As before, for now, we only deal
with principal series representations.

Here we use the integral representation for

W = WΦ,ψ,W1,µn,un

in the following form. We assume as we may that Φ is a product in the following
way. If Y is an n− 1× n− 1 matrix and X a column matrix of size n− 1, then

Φ(Y, X) = Φ1(Y )Φ2(X) .

Then

W

(
g 0
0 1

)
=| det g|un+ n−1

2 µn(det g)

×
∫

Φ1[hg]Φ̂2 [hιen−1] µn(det h)| deth|un+ n
2−1dh .

Now we substitute this integral representation of W in the integral Ψ(s,W,W ′).
We get

Ψ(s,W,W ′) =
∫∫

| det g|un+s+ n
2−1µn(det g)|det h|un+ n

2−1µn(det h)

× Φ1[hg]Φ̂2 [hιen−1] W1(h−1)W ′(g)dhdg .

We change h to hg−1.∫∫
|det g|s| deth|un+ n

2−1µn(det h)Φ1(h)Φ̂2

[
hι tgen−1

]
W1(gh−1)W ′(g)dhdg .

Next we change g to gh. We arrive at

(8.3)
Ψ(s,W,W ′) =

∫
| det g|s| deth|un+s+ n

2−1µn(det h)

× Φ1(h)Fψ(Φ2)
[

tgen−1

]
W1(g)W ′(gh)dhdg .

Here g ∈ Nn−1\Gn−1, h ∈ Gn−1.
To justify our computations, it suffices to prove the last expression is absolutely

convergent for <s >> 0. As before, we majorize

|W ′(gh)| ≤ ||g||MI ||h||M ,

|W1(g)| ≤ ξh,n−1(g)−N ||g||MI .

We are reduced to prove the absolute convergence of integrals of the form∫

Nn−1\Gn−1

ξh,n−1(g)−N ||g||MI
∣∣∣Φ̂2

∣∣∣
[

tgen−1

] | det g|<sdg ,

∫
|det h|<s ||h||M Φ1(h)dh .
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For the first integral, there are A, B,C such that the integral converges for
N > A,<s > B, NC > <s (Lemma 3.5). The second integral converges for
<s >> 0 (Lemma 3.3). Our assertion follows.

For the symmetric integral, we must do the replacements ψ 7→ ψ, Φ1 7→ Fψ(Φ1),
Φ2 7→ FψΦ2 (and other replacements). Since FψFψ(Φ2) = Φ2 we get, for <s << 0,

Ψ(1− s, W̃ , W̃ ′) = µn(−1)n−1

∫
| det g|1−s|det h|−un+1−s+ n

2−1µ−1
n (deth)(8.4)

×Fψ(Φ1)(h)Φ2

[
tgen−1

]
W̃1(g)W̃ ′(gh)dhdg .

Again, we first prove the functional equation formally. By the functional equa-
tion for the pair (n − 1, n − 1) applied to the g-integral, we get that
Ψ(1− s, W̃ , W̃ ′) is equal to

µn(−1)n−1
∏

1≤i≤n−1

µi(−1)n−2
∏

1≤i≤n−1,1≤j≤n−1

γ(s + ui + vj , µiνj , ψ)

×
∫
| det g|s|deth|1−s+ n

2−1−unµn(det h)−1W1(g)W ′(g hι)Φ̂1(h)Φ̂2[− tgen−1]dhdg ,

because Φ2 is the Fourier transform of X 7→ Φ̂2(−X). After changing g into −g,
we find

∏

1≤i≤n

µi(−1)n−1
∏

1≤i≤n−1

νi(−1)
∏

1≤i≤n−1,1≤j≤n−1

γ(s + ui + vj , µiνj , ψ)

×
∫
| det g|s| deth|1−s+ n

2−1−unµn(deth)−1W1(g)W ′(g hι)Φ̂1(h)Φ̂2

[
tgen−1

]
dhdg .

Now we apply the functional equation of Proposition 4.4 to the h integral. We get
∏

1≤i≤n

µi(−1)n−1
∏

1≤i≤n−1

νi(−1)
∏

1≤i≤n,1≤j≤n−1

γ(s + ui + vj , µiνj , ψ)

×
∫
| det g|s| deth|s+ n

2−1+unµn(det h)Φ1(h)Φ̂2

[
tgen−1

]
W1(g)W ′(gh)dhdg .

Now we make the proof rigorous. We assume as before that Φ1 is a standard
Schwartz function. Thus there exists an elementary idempotent ξ of Kn−1 such
that ∫

Φ1(k−1X)µn(det k)−1ξ(k)dk = Φ1(X) .

Substituting this identity into the integral for Ψ(s,W,W ′) and changing h into kh,
we get

∫
| det g|s| deth|un+s+ n

2−1µn(det h)

× Φ1(h)Φ̂2

[
tg

(
0
1

)]
W1(g)

(∫
W ′(gkh)ξ(k)dk

)
dhdg .

As before, ∫
W ′(gkh)ξ(k)dk =

∑

i

W ′
i (g)fi(h)
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with W ′
i ∈ W(πν,v;ψ) and fi a matrix coefficient of πν,v. Thus our integral is then

a sum of products

Ψ(s,W,W ′) =
∑

i

Ψ(s,W1,W
′
i ,

t Φ̂2) Z(s + un, fi ⊗ µn,Φ1) .

In each term, the first integral is a holomorphic multiple of∏

1≤i≤n−1,1≤j≤n−1

L(s + ui + vj , µiνj) ,

bounded at infinity in vertical strips, and the second integral, a holomorphic mul-
tiple of ∏

1≤j≤n−1

L(s + un + vj , µnνj) ,

bounded at infinity in vertical strips. Thus the integral Ψ has the required analytic
properties. Likewise for the symmetric integral. The functional equation is proved
as before.

8.4. Partial Proof of Theorem 2.7. To prepare for the proof of Theo-
rem 2.7, we prove a partial result.

Proposition 8.1. Let (µ, u) and (ν, v) be as before. Suppose

u1 ≤ u2 ≤ · · · ≤ un , v1 ≤ v2 ≤ · · · ≤ vn′ .

Let f ∈ Iµ,u be Kn-finite and f ′ ∈ Iν,v be Kn′-finite.
(i) Suppose n′ = n− 1. Then

Ψ(s,Wf ,Wf ′) = P (s)
∏

L(s + ui + u′j , µi ⊗ µ′j)

where P is a polynomial.
(ii) Suppose n′ = n. Then, if Φ is a standard Schwartz function,

Ψ(s,Wf ,Wf ′ , Φ) = P (s)
∏

L(s + ui + u′j , µi ⊗ µ′j)

where P is a polynomial.

Proof. We recall that an integral of the form∫
f(g)|det g|s+ n−1

2 dg

where f is a Kn-finite coefficient of Iµ,u is a polynomial multiple of
∏

L(s+ui, µi).
In particular, our assertion is true for n = 1. Suppose the assertion of the proposi-
tion is true for the pair (n, n−1). To prove it for (n, n), we recall that any Kn-finite
element f of Iµ,u is a sum of elements of the form

fΦ,φ1,µn,un

where Φ is standard. So we may as well assume f = fΦ,φ1,µn,un . Then Wf =
WΦ,ψ,W1,µn,un . Then the function Φ0 in (8.1) is also standard. As we have seen,
Ψ(s,W,W1, Φ1) (formula (8.2)) is a sum of product of the form

∑

i

Ψ(s,W ′
i ,W1) Z(s + un, Φ0, f

′
i ⊗ µn) .

In each term, the first factor is a polynomial multiple of∏

1≤i≤n−1,1≤j≤n

L(s + ui + vj , µiνj)
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and the second factor a polynomial multiple of
∏

1≤j≤n

L(s + un + vj , µnνj) .

Our assertion follows. One proves similarly that the assertion of the proposition
for (n− 1, n− 1) implies the assertion for (n, n− 1).

9. Theorem 2.1: principal series, pairs (n, n− 2)

In this section, we prove Theorem 2.1 for pairs (n, n − 2) and principal series
representations.

9.1. Review of the integral representations. We keep the notations of
the previous section. We set

W = WΦ,ψ,W1,µn,un .

We first review the integral representation for W . We assume, as we may, that Φ
has the form

Φ(X, Y, Z) = Φ1(X)Φ2(Y )Φ3(Z) ,

where Y and Z are column matrices with n− 1 rows, and X is a matrix with n− 2
columns and n− 1 rows. Then, for g ∈ Gn−2,

W




g 0 0
0 1 0
0 0 1


 = | det g|un+ n−1

2 µn(det g)

×
∫

Φ1

[
h

(
g
0

)]
Φ2 [hen−1] Φ̂3 [hιen−1] W1(h−1)µn(det h)| deth|un+ n

2−1d×h .

The integral is for h ∈ Gn−1.
We will write

h = h2

(
h1 0
0 1

)

with h1 ∈ Gn−2, We have then to take h2 in a suitable quotient space. We will take

(9.1) h2 = k2

(
1n−2 0

0 a

) (
1n−2 Y

0 1

)
.

Then

d×h = d×h1dh2 , dh2 = dk2J(a)d×adY ,

where J is a suitable Jacobian factor. For comparison with formulas which appear
in the functional equations, we remark that we could take

h2 = k2

(
1n−2 0

0 a−1

)(
1n−2 0
Y 1

)
,

with dh2 = J̃(a)dY , where J̃ is another Jacobian factor. These two choices of h2

and dh2 are exchanged by the automorphism h 7→ hι.



62 HERVÉ JACQUET

We find then

W




g 0 0
0 1 0
0 0 1


 = | det g|un+ n−1

2 µn(det g)

×
∫

Φ1

[
h2

(
h1g
0

)]
Φ2 [h2en−1] Φ̂3 [hι

2en−1]W1

[(
h−1

1 0
0 1

)
h−1

2

]

× µn(deth1)| deth1|un+ n
2−1d×h1µn(det h2)|det h2|un+ n

2−1dh2 .

Recall that we have proved this expression is absolutely convergent for all un.
Similarly, we have the following lemma.

Lemma 9.1.
∫

F

W




g 0 0
X 1 0
0 0 1


 dX = |det g|un+ n−1

2 µn(det g)

×
∫

Φ1

[
h2

(
h1g
X

)]
Φ2 [h2en−1] Φ̂3 [hι

2en−1]W1

[(
h−1

1 0
0 1

)
h−1

2

]

× µn(deth1)| deth1|un+ n
2−1d×h1µn(det h2)|deth2|un+ n

2−1dh2dX ,

the integral being absolutely convergent.

Proof. We need only prove the absolute convergence of this expression. For
N1 >> 0 (see formula (3.1) and Lemma 3.1)

∫ ∣∣∣∣Φ1

[
h2

(
h1g
X

)]∣∣∣∣ dX ¹ ||h2||N1
H ||g||N1

H

(1 + ||h1||2e)N1
.

Now ∣∣∣∣W1

[(
h−1

1 0
0 1

)
h−1

2

]∣∣∣∣ ¹ ξi,n−2(h−1
1 )−N2 ||h1||M ||h2||M

for a suitable M and arbitrary N2 (see Lemma 3.8). Thus, we are reduced to
showing that the following two integrals converge absolutely:∫

Gn−2

ξi,n−2(h−1
1 )−N2(1 + ||h1||2e)−N1 ||h1||M | deth1|udh1 ,

where u and M are given and N1, N2 are arbitrary, and∫
||h2||MH Φ2 [h2en−1] Φ̂3 [hι

2en−1] dh2 ,

where M is given.
For the first integral, we write h1 = k1(b+U) where b is diagonal with positive

entries and U upper triangular with 0 diagonal. Then, for a suitable M1,

||h1||M ¹ ||b||M1
H (1 + ||U ||2e)M1 .

For a suitable m,

ξi,n−2(h−1
1 )m = ξi,n−2(b−1)m ≥

n−2∏

i=1

(1 + b−2
i ) .

Also

(1 + ||h1||2e)2 ≥
n−2∏

i=1

(1 + b2
i )(1 + ||U ||2e) .
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Thus, after a change of notations, we are reduced to the convergence of
∫ ||b||M | det b|u J(b)∏n−2

i=1 (1 + b2
i )N (1 + b−2

i )N
db

and ∫
1

(1 + ||U ||2e)N
dU

where M, u and J(b) are given and N is arbitrary. It is easy to see that the integrals
converge for N large enough.

For the h2 integral, recall h2 has the form (9.1). Then

||h2|| ¹ (a2 + a−2)M (1 + ||Y ||2e)M

for a suitable M . Moreover,

|Φ2(h2en−1)| =
∣∣∣∣Φ

[
k2

(
Y
a

)]∣∣∣∣ ¹ (1 + ||Y ||2)−N1(1 + a2)−N2

with N1 and N2 arbitrary. Finally,

|Φ3(hι
2en−1)| = |Φ3(kι

2a
−1en−1)| ¹ (1 + a−2)−N3

with N3 arbitrary. Changing notations we are reduced to the convergence of the
integrals ∫

dY

(1 + ||Y ||2e)N
,

∫
(a2 + a−2)MJ(a)

(1 + a2)N (1 + a−2)N
d×a ,

with M and the Jacobian character J given and N arbitrary. Again it is clear that
the integrals converge for N large enough.

In the previous expressions, we change h1 to h1g
−1. We get

W




g 0 0
0 1 0
0 0 1


 = | det g|1/2(9.2)

×
∫

Φ1

[
h2

(
h1

0

)]
Φ2 [h2en−1] Φ̂3 [hι

2en−1] W1

[(
gh−1

1 0
0 1

)
h−1

2

]

× µn(det h1 det h2)|det h1 deth2|un+ n
2−1d×h1dh2

and

∫
W




g 0 0
X 1 0
0 0 1


 dX = |det g|1/2(9.3)

×
∫

Φ1

[
h2

(
h1

X

)
en−1

]
Φ2 [h2en−1] Φ̂3 [hι

2en−1] W1

[(
gh−1

1 0
0 1

)
h−1

2

]

× µn(det h1 deth2)| deth1 det h2|un+ n
2−1d×h1dh2dX .



64 HERVÉ JACQUET

Similarly,

[ρ(wn,n−2)W ]




g 0 0
0 1 0
0 0 1


 = µn(−1)| det g|un+ n−1

2 µn(det g)

×
∫

Φ1

[
h

(
g
0

)]
Φ3[hen−1]Φ̂2[hιen−1]W1(h−1)µn(det h)| deth|un+ n

2−1d×h ,

or, introducing h1 and h2 as before,

[ρ(wn,n−2)W ]







g 0 0
0 1 0
0 0 1





 = |det g|1/2µn(−1)(9.4)

×
∫

Φ1

[
h2

(
h1

0

)]
Φ3 [h2en−1] Φ̂2 [hι

2en−1] W1

[(
gh−1

1 0
0 1

)
h−1

2

]

× µn(det h1 det h2)|det h1 deth2|un+ n
2−1d×h1dh2 .

9.2. Formal computations. We compute Ψ(s, ρ(wn,n−2)W,W ′) by replac-
ing ρ(wn,n−2)W by its integral expression (9.4) and changing g to gh1. We get

Ψ(s, ρ(wn,n−2)W,W ′) = µn(−1)
∫

µn(deth2)| deth2|un+ n
2−1(9.5)

×
∫

Φ1

[
h2

(
h1

0

)]
Φ3 [h2en−1] Φ̂2 [hι

2en−1] W1

[(
g 0
0 1

)
h−1

2

]
W ′(gh1)

× µn(det h1)| deth1|s+un+ n−3
2 | det g|s−1/2d×h1dgdh2 .

We compute Ψ1(s,W,W ′) using (9.3) and changing g to gh1. We get

Ψ1(s, W,W ′) =
∫

µn(deth2)| deth2|un+ n
2−1(9.6)

×
∫

Φ1

[
h2

(
h1

X

)]
Φ2 [h2en−1] Φ̂3 [hι

2en−1] W1

[(
g 0
0 1

)
h−1

2

]
W ′(gh1)

× µn(det h1)| deth1|s+un+ n−3
2 | det g|s−1/2d×h1dgdXdh2 .

These expressions converge for <s >> 0 but we postpone the proof to the next
subsection.

Now we prove the functional equation formally. We apply formula (9.6) com-
bined with the functional equation of Section 7.3 to get

Ψ1(1− s, W̃ , W̃ ′) = µn(−1)n−1

∫
µ−1

n (det h2) | deth2|−un+ n−2
2(9.7)

×
∫

Φ̂1

[
h2

(
h1

X

)]
Φ̂2 [h2en−1] Φ3 [hι

2en−1] W̃1

[(
g 0
0 1

)
h−1

2

]
W̃ ′(gh1)

× µ−1
n (det h1)| deth1|1−s−un+ n−3

2 | det g|1−s−1/2d×h1d
×gdXdh2 .
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We first apply the functional equation (n− 1, n− 2) to the g integral. We get
∏

1≤i≤n

µi(−1)n
∏

1≤j≤n−2

νi(−1)
∏

1≤i≤n−1,1≤j≤n−2

γ(s + ui + vj , µiνj , ψ)

× µn(−1)
∫

µ−1
n (deth2)| deth2|−un+ n−2

2

∫
Φ̂1

[
h2

(
h1

X

)]
Φ̂2 [h2en−1] Φ3 [hι

2en−1] W1

[(
g 0
0 1

)
h−ι

2

]
W ′(ghι

1)

× µ−1
n (det h1)| deth1|1−s−un+ n−3

2 | det g|s−1/2d×h1dgdXdh2 .

Finally, we apply the functional equation of Proposition 4.4 to the h1 integral and
the Fourier inversion formula to the X integral. We get∏

1≤i≤n

µi(−1)n
∏

1≤j≤n−2

νi(−1)
∏

1≤i≤n,1≤j≤n−2

γ(s + ui + vj , µiνj , ψ)

× µn(−1)
∫

µ−1
n (det h2)| deth2|−un−n−2

2

∫
Φ1

[
hι

2

(
h1

0

)]
Φ̂2 [h2en−1] Φ3 [hι

2en−1] W1

[(
g 0
0 1

)
h−ι

2

]
W ′(gh1)

× µn(det h1)|det h1|s+un+ n−3
2 | det g|s−1/2dh1dgdh2 .

After changing h2 to hι
2 in the integral, we arrive at the following expression:

∏

1≤i≤n

µi(−1)n
∏

1≤j≤n−2

νi(−1)
∏

1≤i≤n,1≤j≤n−2

γ(s + ui + vj , µiνj , ψ)

× µn(−1)
∫

µn(det h2)| deth2|un+ n−2
2

∫
Φ1

[
h2

(
h1

X

)]
Φ̂2 [hι

2en−1] Φ3 [h2en−1] W1

[(
g 0
0 1

)
h−1

2

]
W ′(gh1)

× µn(det h1)|deth1|s+un+ n−3
2 |det g|s−1/2d×h1d

×gdh2 .

Comparing with the expression (9.5) for Ψ(s, ρ(wn,n−2)W,W ′), we see that we have
“proved” that

Ψ1(1− s, W̃ , W̃ ′) =
∏

1≤i≤n

µi(−1)n−2
∏

1≤j≤n−2

νi(−1)(9.8)

×
∏

1≤i≤n,1≤j≤n−2

γ(s + ui + vj , µiνj , ψ)Ψ(s, ρ(wn,n−2)W,W ′) .

9.3. Rigorous proof. To make the proof rigorous, we will appeal to Propo-
sition 4.3. In order to do so, we first establish the convergence of some integrals.

Lemma 9.2. Let v ∈ C. The following three integrals converge absolutely for
<s1 >> 0,<s2 >> 0.∫

| deth2|v
∫

Φ̂1

[
h2

(
h1

X

)]
(9.9)

×
∫

Φ̂2 [h2en−1] Φ3 [hι
2en−1] W̃1

[(
g 0
0 1

)
h−1

2

]
W̃ ′(gh1)

× µ−1
n (deth1)| deth1|s1−un+ n−3

2 |det g|s2−1/2d×h1d
×gdXdh2 ,
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∫
| deth2|v

∫
Φ̂1

[
h2

(
h1

X

)]
(9.10)

× Φ̂2 [h2en−1] Φ3 [hι
2en−1]W1

[(
g 0
0 1

)
h−ι

2

]
W ′(ghι

1)

× µ−1
n (deth1)| deth1|s1−un+ n−3

2 |det g|s2−1/2d×h1d
×gdXdh2 ,

∫
| deth2|v

∫
Φ1

[
h2

(
h1

0

)]
(9.11)

× Φ3 [h2en−1] Φ̂2 [hι
2en−1]W1

[(
g 0
0 1

)
h−1

2

]
W ′(gh1)

× µn(deth1)| deth1|s1+un+ n−3
2 | det g|s2−1/2d×h1d

×gdh2 .

Proof. Consider the integral (9.9). In the integrand, we use the following
majorizations

∣∣∣∣Φ̂1

[
h2

(
h1

X

)]∣∣∣∣ ¹
||h2||N1

H

(1 + ||X||2e)N1(1 + ||h1||2e)N1
,

where N1 is arbitrary;∣∣∣W̃ ′(gh1)
∣∣∣ ¹ ||gh1||M1 ≤ ||g||M1 ||h1||M1

for a suitable M1;∣∣∣∣W̃1

[(
g 0
0 1

)
h−1

2

]∣∣∣∣ ¹ ξh,n−1

[(
g 0
0 1

)]−N2

||g||M2 ||h2||M2

for suitable M2 and arbitrary N2.
Accordingly, we are reduced to a product of four integrals.∫

dX

(1 + ||X||2e)N1
dX ,

∫ ||h1||M1
H | deth1|s1

(1 + ||h1||2e)N1
dh1 ,

∫
ξh

[(
g 0
0 1

)]−N2

||g||M1+M2 | det g|s2dg ,

∫
Φ2(h2en−1)Φ3(hι

2en−1) ||h2||N1+M1
H | det g|s2dgdh2 .

The first integral converges for N1 >> 0. By Lemma 3.3, there are A, B,C
such that the second integral converges for N1 > A, s1 > B, CN1 > s1. Similarly,
by Lemma 3.5, there are A′, B′, C ′ such that the third integral converges for N2 >
A′, s2 > B′, C ′N2 > s2. For the last integral, we write

h2 = k2

(
1n−2 0

0 a−1

)(
1n−2 Y

0 1

)
.

Then
dh2 = J2(a)d×adY dk2 , ||h2|| ¹ (a2 + a−2)M1(1 + ||Y ||2e)M3 ,

Φ2(h2en−1) = Φ
[
k2

(
Y

a−1

)]
¹ (1 + a−2)−N3(1 + ||Y ||2e)−N3 ,

Φ3(hι
2en−1) = Φ(kι

2aen−1) ¹ (1 + a2)−N3 .
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Here M1 is a suitable constant and N3 is arbitrary. After a change of notations, we
are reduced to a product of integrals∫

dY

(1 + ||Y ||2e)N3
,

∫
(a2 + a−2)M (1 + a2)−N3(1 + a2)−N3J(a)||a||Md×a .

Here M , J are given and N3 is arbitrary. These integrals converge for N3 >> 0.
We are done with integral (9.9).

The convergence of the integral (9.10) is similar because the factor containing
W ′ admits the same majorization as before, namely,

|W ′(ghι
1)| ¹ ||g||M ||hι

1||M = ||g||M ||h1||M .

The convergence of the integral (9.11) is also similar but somewhat simpler because
there is no X integration. This time, we have∣∣∣∣Φ1

[
h2

(
h1

0

)]∣∣∣∣ ¹ ||h2||N (1 + ||h1||2)−N

with N arbitrary and
|W ′(gh1)| ¹ ||g||M ||h1||M

and the other majorizations are as before. This concludes the proof of the conver-
gence of the integrals (9.9) to (9.11).

This already shows that formula (9.5) for Ψ(s, ρ(wn,n−2)W,W ′) and formula
(9.6) for Ψ1(s,W,W ′) are absolutely convergent for <s >> 0, as was claimed.

Let (θ1, κ1) be a ψ pair for
(

n−1⊕

i=1

µi ⊗ αui

)
⊗




n−2⊕

j=1

νj ⊗ αvj




and (θ2, κ2) a ψ pair for

µn ⊗ αun ⊗



n−2⊕

j=1

νj ⊗ αvj


 .

The previous formal computation leading to the functional equation (9.8) is replaced
by the following sequence of computations.∫

µ−1
n (deth2)| deth2|−un+ n−2

2

×
∫

Φ̂1

[
h2

(
h1

X

)]
Φ̂2 [h2en−1] Φ3 [hι

2en−1] W̃1

[(
g 0
0 1

)
h−1

2

]
W̃ ′(gh1)

× µ−1
n (det h1)|det h1|−un+ n−3

2 κ1(deth1)κ2(det g)|det g|−1/2d×h1dgdXdh2

=
n−1∏

i=1

µi(−1)n−2
n−2∏

j=1

νj(−1)
∫

µ−1
n (det h2)|det h2|−un+ n−2

2

×
∫

Φ̂1

[
h2

(
h1

X

)]
Φ̂2 [h2en−1] Φ3 [hι

2en−1] W1

[(
g 0
0 1

)
h−ι

2

]
W ′(ghι

1)

× µ−1
n (det h1)|det h1|−un+ n−3

2 κ1(deth1)θ2(det g)| det g|−1/2d×h1dgdXdh2 =
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=
n−1∏

i=1

µi(−1)n−2
n−2∏

j=1

νj(−1)
∫

µ−1
n (deth2)| deth2|−un−n−2

2

×
∫

Φ1

[
hι

2

(
h1

0

)]
Φ̂2 [h2en−1] Φ3 [hι

2en−1]W1

[(
g 0
0 1

)
h−ι

2

]
W ′(gh1)

× µn(deth1)| deth1|un+ n−3
2 θ1(deth1)θ2(det g)| det g|−1/2d×h1dgdh2

=
n−1∏

i=1

µi(−1)n−2
n−2∏

j=1

νj(−1)
∫

µn(deth2)| deth2|un+ n−2
2

×
∫

Φ1

[
h2

(
h1

0

)]
Φ̂2 [hι

2en−1] Φ3 [h2en−1]W1

[(
g 0
0 1

)
h−1

2

]
W ′(gh1)

× µn(deth1) | deth1|un+ n−3
2 θ1(deth1)θ2(det g)| det g|−1/2dh1dgdh2.

Indeed, all the integrals converge absolutely by the previous lemma. The first
equality is a consequence of the functional equation (n− 1, n− 2) written in terms
of pairs:

∫
W̃1

[(
g 0
0 1

)
h−1

2

]
W̃ ′(gh1) κ2(det g)|det g|−1/2dg

=
n−1∏

i=1

µi(−1)n−2
n−2∏

j=1

νj(−1)
∫

W1

[(
g 0
0 1

)
h−ι

2

]

×W ′(gh1)θ2(det g) | det g|−1/2dg .

The second equality is a consequence of Proposition 4.4 and the Fourier inversion
formula:

∫
Φ̂1

[
h2

(
h1

X

)]
W ′(ghι

1)µ
−1
n (det h1)| deth1|−un+ n−3

2 κ1(det h1)dh1dX

= |det h2|−(n−2)

∫
Φ1

[
hι

2

(
h1

0

)]

×W ′(ghι
1)µn(deth1) | deth1|un+ n−3

2 θ1(deth1)dh1 .

The last equality is obtained by changing h2 to hι
2.

We now apply the equality we have just obtained and Proposition 4.3 to obtain
our conclusion.

10. Theorem 2.1: principal series, pairs (n, n′)

We now prove Theorem 2.1 for all pairs (n, n′) and principal series representa-
tions. We prove our assertion by induction on the integer a = |n − n′|. We have
already established our assertions for a = 0, 1, 2. We now assume a > 2 and our
assertion true for a− 1. Again, we assume n > n′ so that here n− n′ > 2.

10.1. Review of the integral representation. We first review the integral
representation for

W = WΦ,ψ,W1,µn,un .
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Recall that if Φ is a Schwartz function on the space of matrices with n − 1 rows
and n columns, we define the Fourier transform of Φ by

Φ̂(X) =
∫

Φ[Y ]ψ(tr(Y tX))dY .

It is a function defined on the same space. We also define the partial Fourier
transform P(Φ) with respect to the last column:

P(Φ)[U,X] =
∫

Φ[U, Y ]ψ(tXY )dY .

Then

W (g) = µn(det g)| det g|un+ n−1
2

×
∫

Gn−1(F )

P(g.Φ)[h, hιen−1]W1(h−1)µn(det h)|det h|un+ n
2−1d×h .

For g ∈ Gn−1(F ), we find

W

(
g 0
0 1

)
= µn(det g)|det g|un+ n−1

2

×
∫

Gn−1(F )

P(Φ)[hg, hιen−1]W1(h−1)µn(det h)| deth|un+ n
2−1d×h .

Now assume that tgen−1 = en−1. Changing h to hg−1, we find

W

(
g 0
0 1

)
= |det g| 12(10.1)

×
∫

Gn−1(F )

P(Φ)[h, hιen−1]W1(gh−1)µn(det h)| deth|un+ n
2−1d×h .

We can use this formula to evaluate

W

(
g 0
0 1n−n′

)

with g ∈ Gn′(F ). We write

h = k

(
1n′ 0
0 g2

)(
1n′ Y
0 1n−n′−1

) (
h1 0
0 1n−n′−1

)

with h1 ∈ Gn′ , Y a matrix with n′ rows and n − n′ − 1 columns, k ∈ Kn−1,
g2 ∈ Gn−1−n′ . Then

d×h = dkd×g2| det g2|−n′d×h1 .

We further write
g2 = k2aZ

with a a diagonal matrix in Gn−n′−1 with positive entries and Z ∈ Nn−n′−1,
k2 ∈ Kn−n′−1. Then

d×g2 = dk2δn−n′−1(a)dadZ .

Altogether we may as well write

h = h2

(
h1 0
0 1n−n′−1

)



70 HERVÉ JACQUET

with h1 ∈ Gn′ and

(10.2) h2 = k2

(
1n′ 0
0 a

) (
1n′ Y
0 Z

)
,

where k2 ∈ Kn−n′−1, a is a diagonal matrix in Gn−n′−1 with positive entries, Y is
a matrix with n′ rows and n− n′ − 1 columns, and Z ∈ Nn−n′−1. Then

d×h = d×h1dh2 , dh2 = dk2δn−1−n′(a)| det a|−n′dY dZda .

Recall that d×h1 is a Haar measure on Gn′ .
We find then

(10.3) W

(
g 0
0 1n−n′

)
= | det g| 12

×
∫
P(Φ)

[
h2

(
h1

0

)
, h2

(
0

1n−n′−1

)
, hι

2en−1

]
W1

[(
gh−1

1 0
0 1n−n′−1

)
h−1

2

]

× µn(deth1 deth2)| deth1 deth2|un+ n
2−1d×h1dh2 .

This integral is absolutely convergent. We need a more general formula.

Lemma 10.1.
∫

W




g 0 0
X 1n−n′−1 0
0 0 1


 dX = |det g| 12

×
∫
P(Φ)

[
h2

(
h1

X

)
, h2

(
0

1n−n′−1

)
, hι

2en−1

]
W1

[(
gh−1

1 0
0 1n−n′−1

)
h−1

2

]

× µn(deth1 deth2)| deth1 deth2|un+ n
2−1d×h1dh2dX ,

the integral being absolutely convergent.

Proof. We first compute formally. To evaluate

W




g 0 0
X 1n−n′−1 0
0 0 1


 ,

we apply the previous formula with Φ replaced by the function
(

1n′ 0
X 1n−n′−1

)
.Φ .

To arrive at the stated formula, we integrate over X. To justify our formal compu-
tation, we only need to prove the absolute convergence of our expression for g = e
and Φ a product. Thus the contribution of Φ has the form

Φ1

[
h2

(
h1

X

)]
Φ2

[
h2

(
0

1n−n′

)]
Φ3(hι

2en−1) ,

for suitable Schwartz functions Φi. The proof is similar to the proof of Lemma 9.1.
First, by Lemma 3.1, for N1 >> 0,

∫ ∣∣∣∣Φ1

[
h2

(
h1

X

)]∣∣∣∣ dX ¹ ||h2||N1
H

(1 + ||h1||2e)N1
.
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Now
∣∣∣∣W1

[(
h−1

1 0
0 1

)
h−1

2

]∣∣∣∣ ¹ ξh,n−1

[(
h−1

1 0
0 1

)
h−1

2

]−N2

||h1||M ||h2||M

for a suitable M and arbitrary N2. Thus we are reduced to showing that the
following integral converges absolutely.
∫
||h2||M+N1

H Φ2

[
h2

(
0

1n−n′

)]
Φ3(hι

2en−1)

× ξh,n−1

[(
h−1

1 0
0 1

)
h−1

2

]−N2

||h1||MH (1 + ||h1||2e)−N1dh1dh2.

Here M is given and N1, N2 are arbitrary. We may as well assume Φ2,Φ3 positive
and Kn−1 invariant.

Now we write

h2 = k2

(
1n′ 0
0 a−1

) (
1n′ Y
0 Z

)

where a is a diagonal matrix with positive entries, Z = 1n−n′−1 + U is in Nn−n′−1.
Then

Φ3(hι
2en−1) ¹ (1 + a2

n−n′−1)
−N3

with N3 >> 0 and

ξh,n−1

[(
h−1

1 0
0 1

)
h−1

2

]
= ξh,n−1

[(
h−1

1 0
0 a

)]
.

Now there is m > 0 such that

ξh,n−1

[(
h−1

1 0
0 a

)]m

(1 + a2
n−n′−1)

m ≥ ξs,n−1

[(
h−1

1 0
0 a

)]

= ξs,n′(h−1
1 )

n−n′−1∏

i=1

(1 + a2
i ) .

Thus we are reduced to the convergence of the following integrals:
∫
||h2||M+N1

H

n−n′−1∏

i=1

(1 + a2
i )
−N2Φ2

[
h2

(
0

1n−n′−1

)]
dh2 ,

∫
ξs,n′(h−1

1 )−N2 ||h1||MH (1 + ||h1||2e)−N1d×h1 .

Here M is given and N1, N2 are arbitrary.
For the first integral, we observe that

||h2||H ¹ ||a||M1
H (1 + ||Y ||2e)M1(1 + ||U ||2e)M1 ,

Φ2

[
h2

(
0

1n−n′−1

)]
¹

n−n′−1∏

i=1

(1 + a−2
i )−N3 ||a||N4

H (1 + ||Y ||2e)−N4(1 + ||U ||2e)−N4

for suitable M1 and N3 >> 0, N4 >> 0. The convergence of the integral follows
for suitable N4 and N2, N3 large with respect to N1.

For the second integral, we apply Lemma 3.6.
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10.2. Alternate expression. There is an alternate expression for the integral
representation. We only give it when Φ is a product of the following form:

Φ[X0, X1, X2, . . . , Xn−n′ ] = Φ0(X0)
n−n′∏

i=1

Φi(Xi) .

Here the matrices have n− 1 rows, X0 has n′ columns and the other matrices have
only 1 column. Under this extra assumption, the original formula takes the form

W

(
g 0
0 1n−n′

)
= |det g| 12

∫
Φ0

[
h2

(
h1

0

)]
(10.4)

×
n−n′−1∏

i=1

Φi(h2en′+i) Φ̂n−n′(hι
2en−1)W1

[(
gh−1

1 0
0 1n−n′−1

)
h−1

2

]

× µn(det h1 det h2)|deth1 deth2|un+ n
2−1d×h1dh2 .

The alternate formula has the following form:

W

(
g 0
0 1n−n′

)
= | det g| 12

∫
Φ0

[
h2

(
h1

0

)]
(10.5)

× Φ1(h2en′+1)
n−n′−1∏

i=1

Φ̂i+1(hι
2en′+i)W1

[(
gh−1

1 0
0 1n−n′−1

)
h−1

2

]

× µn(det h1 deth2)| deth1|un+ n
2−1| deth2|un+n′+1−n

2 d×h1dh2 .

In this new formula, h2 is taken modulo the subgroup of matrices of the form(
g 0 Y1

0 1n−n′−1

)
, g ∈ Gn′ ,

where Y1 is a matrix with n′ rows and n− n′ − 2 columns. In a more precise way,
in this new formula, we may take

h2 = k2

(
1n′ 0
0 a

)(
1n′ Y0 0
0 1n−n′−1

)(
1n′ 0
0 Z

)
,

where Y0 is a column matrix with n′ rows and Z ∈ Nn−n′−1. Then

dh2 = dk2δn−n′−1(a)| det a|−n′dadY0dZ .

To see that the alternate formula is correct, we start with the original formula.
We write

h2 = k2

(
1n′ 0
0 a

)(
1n′ Y0 0
0 1n−n′−1

) (
1n′ 0 Y1

0 Z

)

where Y0 is a column matrix with n′ rows, Y1 has n− n′ − 2 columns and n′ rows
and Z ∈ Nn−n′−1. We then apply the following lemma.

Lemma 10.2.
∫ n−n′−1∏

i=2

Φi

[
h2

(
1n′ 0 Y1

0 Z

)
en′+i

]
dY1θψ(Z)dZ

= | deth2|−(n−n′−2)

∫ n−n′−1∏

i=2

Φ̂i

[
hι

2

(
1n′ 0
0 Z

)ι

en′+i−1

]
θψ(Z)dZ.



ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 73

Proof. To prove the lemma, we may assume h2 = 1. The lemma follows then
from the Fourier inversion formula. We illustrate the case n = 6, n′ = 2 but the
argument is general.

∫
Φ2







x1

y1

z1

1
0







Φ3







x2

y2

z2

t2
1







ψ(z1 + t2)dx1dx2dy1dy2dz1dz2dt2

=
∫

Φ̂2







0
0
1
u
v







Φ̂3







0
0
0
1
w







ψ(u + w)dudvdw.

We also record the corresponding formula for ρ(wn,n′)W. The original formula is

(ρ(wn,n′)W )
(

g 0
0 1

)
= µn(detwn−n′)µn(det g)| det g|un+ n−1

2

×
∫

Gn−1(F )

P(wn,n′Φ)[hg, hιen−1]W1(gh−1)µn(det h)| deth|un+ n
2−1d×h .

The alternate formula for ρ(wn,n′)W is

(10.6) (ρ(wn,n′)W )
(

g 0
0 1n−n′

)
= µn(detwn−n′)| det g| 12

∫
Φ0

[
h2

(
h1

0

)]

× Φn−n′(h2en′+1)
n−n′−1∏

i=1

̂Φn−n′−i(hι
2en′+i) W1

[(
gh−1

1 0
0 1n−n′−1

)
h−1

2

]

× µn(det h1 det h2)|det h1|un+ n
2−1|det h2|un+n′+1−n

2 d×h1dh2 .

Before proceeding, we remark that it is convenient to choose our variables in
such a way that | deth2| = 1. Indeed, in the original formula, we can write

h = h2

(
h1 0
0 1n−n′−1

)

h2 = k2

(
(det a)−r1n′ 0

0 a

)(
1n′ 0
0 Z

)(
1n′ Y
0 1n−n′−1

)
,

with r = 1
n′ . Then | deth2| = 1 and

d×h = dh2d
×h1 , dh2 = δn−n′−1(a)dk2dadZdY .

Recall that G0
n = {g ∈ Gn(F ) : |det g| = 1}. In other words, now h2 is integrated

on the quotient of G0
n−1 by the subgroup of matrices of the form

(
g 0
0 1n−n′−1

)
, g ∈ G0

n′ .
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A similar remark applies to the alternate expression. Then h2 is in the quotient
of G0

n−1 by the subgroup of matrices of the form
(

g 0 Y1

0 1n−n′−1

)
, g ∈ G0

n′ ,

where Y1 is a matrix with n′ rows and n− n′ − 2 columns. In a more precise way,
in the alternate formula, we may take

h2 = k2

(
det a−r1n′ 0

0 a

)(
1n′ Y0 0
0 1n−n′−1

)(
1n′ 0
0 Z

)
.

Then

dh2 = δn−n′−1(a)dk2dadZdY0 .

10.3. Formal computations. We now prove the functional equation for-
mally.

We compute Ψ(s, ρ(wn,n′)W,W ′) by replacing ρ(wn,n′)W by its alternate inte-
gral expression and changing g into gh1. We find the following result.

Lemma 10.3.

Ψ(s, ρ(wn,n′)W,W ′) = µn(detwn−n′)

×
∫

Φ0

[
h2

(
h1

0

)]
Φn−n′(h2en′+1)

n−n′−1∏

i=1

̂Φn−n′−i(hι
2en′+i)

× W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(gh1)| det g|s−n−1−n′

2 dg

× µn(det h1)|det h1|un+s+ n′−1
2 µn(deth2)d×h1dh2 ,

where h2 ∈ G0
n−n′ is integrated modulo the subgroup of matrices of the form




g 0 U
0 1 0
0 0 1n−n′−2


 , g ∈ G0

n′ .

We compute Ψn−n′−1(s,W,W ′) by replacing W by the formula of Lemma 10.1
and changing g to gh1. We get

Ψn−n′−1(s,W,W ′) =
∫ (∫

P(Φ)
[
h2

(
h1

Y

)
, h2

(
0

1n−n′−1

)
, hι

2en−1

]
dY

)

×W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(gh1)| det g|s−n−1−n′

2 dg

× µn(deth1)| deth1|un+s+ n′−1
2 µn(det h2)d×h1dh2 ,

where h2 ∈ G0
n−1 is integrated modulo the subgroup of matrices of the form

(
g 0
0 1n−1−n′

)
, g ∈ G0

n′ .

This can also be written in the following way.
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Lemma 10.4.

Ψn−n′−1(s, W,W ′) =
∫ (∫

P(Φ)
[
h2

(
h1

Y

)
, h2

(
0

1n−n′−1

)
, hι

2en−1

]
dY

)

×W1







g 0 0
U 1n−n′−2 0
0 0 1


h−1

2


 W ′(gh1)| det g|s−n−1−n′

2 dg

× µn(deth1)| deth1|un+s+ n′−1
2 µn(det h2)dh1dh2dU ,

where h2 ∈ G0
n−1 is integrated modulo the subgroup of matrices of the form




g 0 0
U 1n−n′−2 0
0 0 1


 , g ∈ G0

n′ .

Proof. Indeed, it suffices to integrate in stages and to change variables as
follows

Y 7→ Y +
(

U
0

)
h1 .

Now we start the formal computation. Taking into account the previous lemma
and Proposition 7.3, we get

Ψn−n′−1(1− s, W̃ , W̃ ′) = µn(−1)n−1

∫ (∫
Φ̂0

[
h2

(
h1

Y

)]
dY

)
(10.7)

×
n−n′−1∏

i=1

Φ̂i(h2en′+i)Φn−n′(hι
2en−1)W̃1







g 0 0
U 1n−n′−2 0
0 0 1


h−1

2


 W̃ ′(gh1)

×|det g|1−s−n−1−n′
2 dgµ−1

n (det h1)|det h1|−un+1−s+ n′−1
2 dh1µ

−1
n (deth2)dh2dU .

We apply the (n− 1, n′) functional equation to the g-integral. We get

µn(−1)n−1
∏

1≤i≤n−1

µi(−1)n′
∏

1≤j≤n′
νj(−1)(10.8)

×
∏

1≤i≤n−1,1≤j≤n′
γ(s + ui + vj , µiνj , ψ)

∫ (∫
Φ̂0

[
h2

(
h1

Y

)]
dY

)
)

×
n−n′−1∏

i=1

Φ̂i(h2en′+i)Φn−n′(hι
2en−1)W1







g 0 0
0 1n−n′−2 0
0 0 1


 wn−1,n′h

−ι
2


 W ′(ghι

1)

×| det g|s−n−1−n′
2 dgµ−1

n (det h1)|det h1|−un+1−s+ n′−1
2 dh1µ

−1
n (det h2)dh2 .)

Recall that h2 is taken modulo the unimodular subgroup of matrices of the form



g 0 0
U 1n−n′−2 0
0 0 1


 , g ∈ G0

n′ .
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We change h2 into h2wn−1,n′ and then h2 into hι
2. Now h2 is taken modulo the

subgroup of matrices of the form



g 0 U
0 1 0
0 0 1n−n′−2


 , g ∈ G0

n′ .

We get then

(10.9) µn(−1)n−1µn(det wn−n′−1)
∏

1≤i≤n−1

µi(−1)n′
∏

1≤j≤n′
νj(−1)

×
∏

1≤i≤n−1,1≤j≤n′
γ(s + ui + vj , µiνj , ψ)

∫ (∫
Φ̂0

[
hι

2

(
h1

Y

)]
dY

)

× Φn−n′(h2en′+1)
n−n′−1∏

i=1

̂Φn−n′−i(hι
2en′+i)W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(ghι

1)

× | det g|s−n−1−n′
2 dgµ−1

n (det h1)|det h1|−un+1−s+ n′−1
2 dh1µn(deth2)dh2 .

Next we apply the functional equation of Proposition 4.4 to the h1 integral and
the Fourier inversion formula. We get

(10.10) µn(−1)n−1µn(det wn−n′−1)
∏

1≤i≤n−1

µi(−1)n′
∏

1≤j≤n′
νj(−1)

×
∏

1≤i≤n,1≤j≤n′
γ(s + ui + vj , µiνj , ψ)

∫
Φ0

[
h2

(
h1

0

)]

× Φn−n′(h2en′+1)
n−n′−1∏

i=1

̂Φn−n′−i(hι
2en′+i)W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(gh1)

× | det g|s−n−1−n′
2 dgµn(deth1)| deth1|un+s+ n′−1

2 dh1µn(det h2)dh2 .

Now

µn(−1)n−1µn(det wn−n′−1) = µn(det wn−n′)µn(−1)n′ .

Thus the expression we get is the one we wrote down for Ψ(s, ρ(wn,n−n′)W,W ′)
(Lemma 10.3) times

∏

1≤i≤n,1≤j≤n′
γ(s + ui + vj , µiνj , ψ)

and
n∏

i=1

µi(−1)n′
n′∏

j=1

νj(−1) .

So we are done.
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10.4. Rigorous proof. Let (θ1, κ1) be a ψ pair for
(

n−1⊕

i=1

µi ⊗ αui

)
⊗

(
n′⊕

j=1

νj ⊗ αvj

)

and (θ2, κ2) a ψ pair for

µn ⊗ αun ⊗
(

n′⊕

j=1

νj ⊗ αvj

)
.

As before, the correct proof is based on the sequence of equalities obtained by
replacing in the previous sequence | det g|1−s by κ1(det g), |det g|s by θ1(det g),
|det h1|1−s by κ2(det h1), and | deth1|s by θ2(det h1). We have to show that our
computation and our use of the pairs is legitimate. As before, this reduces to
checking the convergence of three integrals. We now establish the convergence of
these integrals. The rest of the proof is the same as before and is omitted.

Lemma 10.5. The integral
∫ (∫

Φ
[
h2

(
h1

Y

)
, h2

(
0

1n−n′−1

)
, hι

2en−1

]
dY

)

×W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(gh1)| det g|s2dg|deth1|s1d×h1dh2 ,

where h1 ∈ Gn′ , g ∈ Nn′\Gn′ , h2 ∈ G0
n−1 is taken modulo the subgroup of matrices

of the form (
g 0
0 1n−n′−1

)
, g ∈ G0

n′ ,

converges absolutely for <s1 >> 0, <s2 >> 0.

Proof. For simplicity we assume that Φ is a product (it is in the applications).
We may further assume that it is ≥ 0 and Kn−1 invariant. Thus the contribution
of the Schwartz functions is

Φ0

[
h2

(
h1

Y

)]
Φ1

[
h2

(
0

1n−n′−1

)]
Φ2 [hι

2en−1] .

Now ∫
Φ0

[
h2

(
h1

Y

)]
dY ¹ ||h2||N

(1 + ||h1||2e)N
,

|W ′(gh1)| ¹ ||g||M ||h1||M ,
∣∣∣∣W1

[(
g 0
0 1n−n′−1

)
h−1

2

]∣∣∣∣ ¹ ξh,n−1

[(
g 0
0 1n−n′−1

)
h−1

2

]−N

||g||M ||h2||M

for some M and all N . After a change of notations, we are reduced to the conver-
gence of two integrals.

The first integral is ∫ ||h1||M | deth1|s1

(1 + ||h1||2e)N
d×h1 .

For given M , there are A,B, C such that the integral converges for N > A, s1 > B,
CN > s1 (Lemma 3.3).
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Now we change notations again. We write M for M + N . The second integral
is then∫

||h2||MΦ1

[
h2

(
0

1n−n′−1

)]
Φ2 [hι

2en−1]

× ξh,n−1

[(
g 0
0 1n−n′−1

)
h−1

2

]−N

||g||M | det g|s2dgdh2 .

We write

h2 = k2

(
det a

1
n′ 1n′ 0
0 a−1

)(
1n′ Y0

0 Z

)

where a is a diagonal matrix with positive entries, Z ∈ Nn−n′−1, Z = 1n−n′−1 + U
with U upper triangular and 0 diagonal Then

dh2 = dk2J1(a)dadY0dU ,

||h2||MH ¹ ||a||M1
H (1 + ||Y0||2e)M1(1 + ||U ||2e)M1 ,

for a suitable M1. The contribution of Φ1,Φ2 is

Φ1

(
det a

1
n′ Y0

a−1 + a−1U

)
Φ2(an−n′−1en−1)

¹ ||a||M2

(1 + ||Y0||2e)N2(1 + ||U ||2e)N2(1 + a2
n−n′−1)N

with N2 arbitrary, M2 depends on N2, and N arbitrary. Now ξh,n−1 does not
depend on U, Y0, k2. We are left with the product of two integrals∫

dY0dUdk2

(1 + ||Y0||22)N2−M1(1 + ||U ||2e)N2−M1
,

∫ ||a||M1+M2J1(a)
(1 + a2

n−n′−1)N
ξh,n−1

[(
det a−

1
n′ g 0

0 a

)]−N

||g||M | det g|s2dgda .

The first integral converges for N2 >> 0. In the second integral, we change g to
g det a

1
n′ . We have

||a||M1+M2J1(a) || det a
1

n′ g||M ¹ ||a||M3 ||g||M .

We are reduced to
∫ ||a||M3 | det a|s2

(1 + a2
n−n′−1)N

ξh,n−1

[(
g 0
0 a

)]−N

||g||M |det g|s2dg .

We use again the fact that

(1 + a2
n−n′−1)

mξh,n−1

[(
g 0
0 a

)]m

º ξs,n−1

[(
g 0
0 a

)]

= ξs,n′(g)
n−n′−1∏

i=1

(1 + a2
i )

to arrive at a product
∫ ||a||M3 |det a|s2

∏n−n′−1
i=1 (1 + a2

i )N
da

∫

Nn′\Gn′
||g||MI | det g|s2ξs,n′(g)−Ndg .

There are A,B, C such that the integrals converges for N > A, s2 > B, CN > s2

(Lemma 3.4 and Lemma 3.5).
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The first step in the rigorous proof comes from (10.7) with κ1(det g) replacing
|det g|1−s and κ2(det h1) replacing |det h1|1−s. Correspondingly, we need to verify
the convergence of the following integral.

Lemma 10.6. The integral
∫∫

Φ
[
h2

(
h1

Y

)
, h2

(
0

1n−n′−1

)
, hι

2en−1

]

× W1







g 0 0
U 1n−n′−2 0
0 0 1


 h−1

2


 W ′(gh1)| det g|s2dg| deth1|s1d×h1dh2dUdY ,

where h2 ∈ G0
n−1 is integrated modulo the subgroup of matrices of the form

(10.11)




h1 0 0
U 1n−n′−2 0
0 0 1


 , h1 ∈ G0

n′ ,

converges absolutely for <s1 >> 0, <s2 >> 0.

Proof. Indeed, we recall that the present integral is obtained from the previ-
ous one by a simple change of variables. Namely, we replace h2 by

h2




1n′ 0 0
−U 1n−n′−2 0
0 0 1




so that h2 is in G0
n−1 modulo the subgroup of matrices of the form (10.11) and then

we replace Y by

Y +
(

U
0

)
h1 .

The second step in the rigorous proof comes from (10.9). Correspondingly, we
need to establish the convergence of the following integral.

Lemma 10.7. The integral
∫ (∫

Φ
[
hι

2

(
h1

Y

)
, h2en′+1, h

ι
2

(
0

1n−n′−1

)]
dY

)

× W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(ghι

1)|det g|s2dg| deth1|s1d×h1dh2 ,

where h1 ∈ G′n, g ∈ N ′
n\G′n, h2 ∈ G0

n−1 is taken modulo the subgroup of matrices
of the form 


g 0 U
0 1 0
0 0 1n−n′−2


 , g ∈ G0

n′

converges absolutely for <s1 >> 0, <s2 >> 0.

Proof. As before, we may assume Φ ≥ 0, Kn−1-invariant and a product.
Then the contribution of Φ takes the form

Φ1

[
hι

2

(
h1

Y

)]
Φ2(h2en′+1) Φ3

[
hι

2

(
0

1n−n′−1

)]
.
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Moreover,
∣∣∣∣W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(ghι

1)
∣∣∣∣

¹ ξh,n−1

[(
g 0
0 1n−n′−1

)
h−1

2

]−N

||g||MH ||h2||MH ||h1||MH ,

for suitable M and N >> 0.
As before, ∫

Φ1

[
hι

2

(
h1

Y

)]
dY ¹ ||h2||NH

(1 + ||h1||2e)N

for N >> 0. We are reduced again to a product of two integrals. The first one is
∫ ||h1||M | deth1|s1

(1 + ||h1||2e)N
dh1 .

It converges for N > A, s1 > B, CN > s1.
The second integral is, after a change of notations,

∫∫
||h2||MΦ2(h2en′+1)Φ3

[
hι

2

(
0

1n−n′−1

)]

× ||g||Mξh

[(
g 0
0 1n−n′−1

)
h−1

2

]−N1

|det g|s2dgdh2 .

Here Φ2 is a Schwartz function on the space of column matrices with n − 1 rows
and Φ3 a Schwartz function on the space of matrices with n− n′ − 1 columns and
n−1 rows. The variables are as follows: g ∈ Nn′\Gn′ and h2 in a quotient of G0

n−1.
More precisely,

h2 = k2

(
det a

1
n′ 1n′ 0
0 a−1

)(
1n′

(
Y0 0

)
0 Z−1

)
.

Here a is a diagonal matrix of size n−n′−1 with positive entries, Y0 a column with
n′ rows and Z ∈ Nn−n′−1, tZ = 1n−n′−1 + U , where U is lower triangular with 0
diagonal. Then

dh2 = dk2J(a)dadY0dU ,

hι
2 = kι

2

(
det a−

1
n′ 1n′ 0
∗ a + aU

)
,

||h2||MH ¹ ||a||M1
H (1 + ||Y0||e)M1(1 + ||U ||e)M1 .

Thus the contribution of Φ2, Φ3 has the form

Φ2







det a
1

n′ Y0

a−1
1

0
∗
0







Φ3

[(
0

a + aU

)]

¹ ||a||M2
H

(1 + ||Y0||2e)N2(1 + ||U ||2e)N2(1 + ||a||2e)N1
.
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where N2 is arbitrary, M2 depends on N2 and N1 is arbitrary. On the other hand,
ξh,n−1 does not depend on U, Y0. We are left with a product of two integrals:∫

dUdY0dk2

(1 + ||Y0||2e)N2−M1(1 + ||U ||2e)N2−M1
,

∫ ||a||M1+M2

(1 + ||a||2e)N1
ξh,n−1

[(
det a−

1
n′ g 0

0 a

)]−N

|det g|s2 ||g||MdgJ1(a)da .

The first integral converges, provided N2 is large enough. We treat the second
integral as the analogous integral in Lemma 10.5.

The last step in the rigorous proof comes from (10.10). Correspondingly, we
need to establish the convergence of the following integral.

Lemma 10.8. The integral∫
Φ

[
h2

(
h1

0

)
, h2en′+1, h

ι
2en−1

]

× W1

[(
g 0
0 1n−n′−1

)
h−1

2

]
W ′(gh1)| det g|s2dg| deth1|s1d×h1dh2 ,

where h2 ∈ G0
n−1 is taken modulo the subgroup of matrices of the form




h1 0 U
0 1 0
0 0 1n−n′−2


 , h1 ∈ G0

n′ .

converges absolutely for <s1 >> 0 <s2 >> 0.

Proof. We may again assume Φ ≥ 0, Kn−1 invariant and a product. Then
the contribution of Φ is

Φ1

[
h2

(
h1

0

)]
Φ2(h2en′+1)Φ3 [hι

2en−1] .

The proof is similar to the proof of the previous lemma. Here, there is no integration
over Y . We have

Φ1

[
h2

(
h1

0

)]
¹ ||h2||NH

(1 + ||h1||2e)N
,

|W ′(gh1)| ¹ ||g||M ||h1||M .

The other majorizations and the rest of the proof are the same as before.

11. Theorem 2.1 for general representations

We have proved our assertions for the induced representations of the principal
series. Thus if F = C we are done. We assume F = R. Consider two pairs (σ, u)
and (σ′, u′). Thus σ is an r-tuple of unitary irreducible representations σi, 1 ≤ i ≤ r
of degree di = 1, 2. Let n =

∑
i di. Let πi = πσi be the corresponding irreducible

representation of GL(di,R). Thus if di = 2, then πi is a subrepresentation of
a principal series representation Iν1,i,ν2,i , with ν1,i, ν2,i not normalized (see the
Appendix). If di = 1, then πi is a character of R× that we also write as ν1,i. Let µ
be the n-tuple formed by the νi,j and v the n-tuple formed by the complex numbers
ui, repeated di times. For instance if r = 3, d1 = 1, d2 = 2, d3 = 1, then

µ = (ν1,1, ν1,2, ν2,2, ν3,3) , v = (u1, u2, u2, u3) .
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Then Iσ,u is a sub representation of Iµ,v. Let λ be a non-zero ψ form on Iµ,v. Since
Iσ,u admits a non-zero ψ form, the restriction of λ to Iσ,u is non-zero (Lemma 2.4).
Define similarly (µ′, v′) and let λ′ be a ψ form on Iµ′,v′ . It follows that the results
of the previous sections apply to the integrals Ψk(s,Wf ,Wf ′) or Ψk(s,Wf ,Wf ′ , Φ),
with f ∈ Iσ,u, f ′ ∈ Iσ′,u′ . In particular, these integrals converge for <s >> 0 and
are holomorphic multiples of

∏
L(s + vi + v′j , µiµ

′
i′) .

For clarity, let us repeat what we want to prove. Consider first the case n > n′.

Proposition 11.1. Suppose n′ < n. Then the integrals

Ψk(s,Wf ,Wf ′)

are holomorphic multiple of

L(s, σu ⊗ σ′u′) .

They satisfy the functional equation

Ψn−n′−1−k(1− s, ρ(wn,n′)W̃f , W̃f ′)
1

L(1− s, σ̃−u ⊗ σ̃′−u′)

= ωπσ,u(−1)n′ωπσ′,u′ (−1)ε(s, σu ⊗ σ′u′ , ψ)Ψk(s, Wf ,W ′
f ′)

1
L(s, σu ⊗ σ′u′)

.

Proof. We claim that, for given u, u′,

L(s, σu ⊗ σu′) = P (s)
∏

L(s + vi + v′i, µj,i ⊗ µ′j′,i′) ,

where P is a polynomial, and

γ(s, σu ⊗ σ′u′ , ψ) =
∏

γ(s + vi + vi′ , µj,i ⊗ µj′,i′) .

Indeed, it suffices to prove this assertion when σ and σ′ are irreducible. This is
checked in the Appendix. Thus we already know that Ψk(s,Wf , Wf ′) is a mero-
morphic multiple of L(s, σu ⊗ σ′u′) and we know the functional equation of the
proposition. It remains only to show that in fact Ψk(s,Wf , Wf ′) is a holomorphic
multiple of L(s, σu ⊗ σ′u′).

If u and u′ are purely imaginary, then in the functional equation, by Lemma 5.3,
the left hand side is holomorphic for <s > 0 and the left hand side is holomorphic
for <(1−s) > 0, that is, <s < 1. Thus both sides are actually holomorphic functions
of s. Thus we have obtained our assertion for u and u′ imaginary. Let (θu,u′ , κu,u′)
be an analytic family of (σu ⊗ σ′u′ , ψ) pair. As explained before, our assertions are
equivalent to the identity

Ψn−n′−1−k(κu,u′ , ρ(wn,n′)W̃f , W̃ ′
f ′) = ωπσ,u(−1)n′ωπσ′,u′ (−1)Ψk(θu,u′ ,Wf ,W ′

f ′) .

We have thus obtained this identity for (u, u′) imaginary. Since both sides are
holomorphic functions of (u, u′), the identity is true for all (u, u′) and we are done.

The case n = n′ is treated similarly using Lemma 5.4.



ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 83

12. Proof of Theorems 2.3 and 2.6: preliminaries

We first change our notations somewhat. Let σ be a semisimple representation
of WF . We can write

σ =
⊕

1≤i≤r

σi ⊗ αui

F

where the σi are normalized irreducible representations and

<u1 ≤ <u2 ≤ · · · ≤ <ur .

This decomposition is not unique but the equivalence class of the induced repre-
sentation (π(σi),(ui), Iπ(σi),(ui)) depends only on σ. We will denote it (πσ, Iσ). We
will call the real parts of the ui’s the exponents of σ. The exponents of σ̃ are the
opposites of the exponents of σ. We will write σ ¹ σ′ if the largest exponent of σ
is less than or equal to the smallest exponent of σ′. If s0 is a pole of L(s, σ), then
there is an exponent u of σ such that

<s0 + u ≤ 0 .

Let τ be another representation of WF . We will denote by I(σ, τ) the space
spanned by the integrals Ψ(s,Wv) (or Ψ(s,Wv, Φ)) for v ∈ Iσ⊗̂Iτ . We will prove
first that I(σ, τ) ⊆ L(σ ⊗ τ). Then we will prove that the two spaces are in fact
equal.

12.1. The spaces L(σ). Let σ be a semisimple representation of the Weil
group WF . Recall that we denote by L(σ) the space of meromorphic functions
F (s) of the form

F (s) = L(s, σ)h(s) ,

where h is an entire function, such that, for any n ∈ N and any vertical strip
a ≤ <s ≤ b, the product snF (s) is bounded at infinity in the strip. For σ = 0, the
zero representation, L(0), is the space of entire functions F (s), such that for any n
and any vertical strip, the product snF (s) is bounded at infinity in the strip.

In this subsection, we establish some simple properties of these spaces.

Lemma 12.1. Let σ1 be a subrepresentation of σ. Then L(σ1) ⊆ L(σ). In
particular, L(0) ⊆ L(σ).

Proof. Indeed, σ = σ1 ⊕ σ2. If F is in L(σ1), then

F (s) = h(s)L(s, σ1)

with h entire. We can write

F (s) = k(s)L(s, σ) , k(s) =
h(s)

L(s, σ2)
,

and k is entire. Hence F ∈ L(σ).

Proposition 12.1. Let σ be given. Let P (σ) be the set of poles of L(s, σ).
For every s0 ∈ P (σ), let ns0 be its multiplicity. Suppose we are given, for every
s0 ∈ P (σ), a polar part

P(s0) =
Ans0

(s− s0)ns0
+

Ans0−1

(s− s0)ns0−1 + · · ·+ A1

s− s0
.

Then there is an element F ∈ L(σ) having at each s0 ∈ P (σ) the polar part P(s0).



84 HERVÉ JACQUET

Proof. Indeed, suppose first σ is irreducible. Then L(σ) = L(Ω) where Ω is
a character of F×, F = R or F = C. Then the poles of L(s, Ω) are simple. For any
Φ ∈ S(F), the analytic continuation of the integral∫

Φ(x)Ω(x)|x|sCd×x

belongs to L(Ω). Its polar parts at the poles of L(s, Ω) depend only on the deriv-
atives of Φ at 0, as can be seen by integrating by parts. By Borel’s Lemma, these
derivatives are arbitrary. Our assertion follows in that case.

Now we can proceed by induction on the number m of irreducible components
of σ. Thus we assume m ≥ 2 and our assertion is proved for m− 1. We write

σ = σ1 ⊕ σ2

where σ1 is irreducible. For each s0 ∈ P (σ1), let n0 be its multiplicity in L(s, σ).
At s0 the Laurent expansion of L(s, σ2) has the form

kn0−1

(s− s0)n0−1
+ · · ·

with kn0−1 6= 0 (and n0 − 1 ≥ 0). By the previous case, we can find an element
F ∈ L(σ1) such that, for any s0 ∈ P (s0), the residue of F at s0 is An0k

−1
n0−1. Then

the leading term of the polar part of F (s)L(s, σ2) at s0 is
Ans0

(s− s0)n0
.

Now F (s)L(s, σ2) is in L(σ). Thus we are reduced to the case where, for every
s0 ∈ P (σ1) , the given part P(s0) has the form

P(s0) =
Ans0−1

(s− s0)ns0−1 + · · ·+ A1

s− s0
.

But an element F of L(σ) whose polar parts at any s0 ∈ P (σ1) has this property
is in fact in L(σ2). We then apply the induction hypothesis to σ2 and the inclusion
L(σ2) ⊆ L(σ) to reach our conclusion.

Proposition 12.2. Suppose that

σ = σ1 ⊕ σ2 .

Then
L(σ) = L(σ1)L(s, σ2) + L(σ2) .

Proof. If σ1 is irreducible, this follows from the proof of the previous propo-
sition. We prove our assertion by induction on the number m of irreducible com-
ponents of σ1. Thus we may assume m ≥ 2 and our assertion established for m−1.
We write

σ1 = τ1 ⊕ τ2

where τ1 is irreducible. Then

L(σ1 ⊕ σ2) = L(τ1)L(s, τ2 ⊕ σ2) + L(τ2 ⊕ σ2) .

By the induction hypothesis, this is also:

= L(τ1)L(s, τ2)L(s, σ2) + L(τ2)L(s, σ2) + L(σ2)

= (L(τ1)L(s, τ2) + L(τ2))L(s, σ2) + L(σ2).
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Since τ1 is irreducible, this is equal to

L(τ1 ⊕ τ2)L(s, σ2) + L(σ2) .

The proposition follows.

Proposition 12.3. Suppose that

σ = σ1 ⊕ σ2 , σ1 ¹ σ2 .

Then

L(σ) = L(σ1) +
L(s, σ1)

L(1− s, σ̃1)
L(σ2) .

Proof. Any element of

L(s, σ1)
L(1− s, σ̃1)

L(σ2)

is indeed a holomorphic multiple of

L(s, σ1)L(s, σ2) = L(s, σ) .

Moreover, it follows from the Stirling formula that its product by a power of s is
bounded at infinity in a vertical strip. Thus it is indeed in L(σ). Moreover, as we
have seen, L(σ1) ⊆ L(σ).

Now we claim that a pole s0 of L(s, σ2) cannot be a pole of L(1−s, σ̃1). Indeed
if it so, then there is an exponent u of σ1 and an exponent v of σ2 such that

<s0 + v ≤ 0 and 1−<s0 − u ≤ 0 .

Adding these inequalities, we get

1 + v − u ≤ 0

which is a contradiction since v − u ≥ 0.
Let s0 be a pole of L(s, σ2) and n2 its order. Let n1 ≥ 0 be the order of s0 as

a pole of L(s, σ1). Since s0 is not a pole of L(1− s, σ̃1), the Laurent expansion of

L(s, σ1)
L(1− s, σ̃1)

at s0 has the form
An1

(s− s0)n1
+ · · ·

with An1 6= 0. On the other hand, the polar part of f ∈ L(σ2) at s0 has the form
n2∑

i=1

Bi

(s− s0)i
,

where the Bi are arbitrary. Thus the polar part of the product

f(s)
L(s, σ1)

L(1− s, σ̃1)

has the form
n1+n2∑

i=1

Ci

(s− s0)i
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where the Ci are arbitrary for n1 + 1 ≤ i ≤ n1 + n2. Hence if F is given in L(σ)
we may choose f ∈ L(σ2) such that at any pole s0 of L(s, σ2) the difference

F (s)− f(s)
L(s, σ1)

L(1− s, σ̃1)

has a pole of order at most n1, where n1 is the order s1 as a pole of L(s, σ1). This
difference is in L(σ1) and we are done.

We need a strengthening of this proposition.

Proposition 12.4. Suppose that

σ = σ1 ⊕ σ2

where σ1 is irreducible and σ1 ¹ σ2. Suppose that

τ = τ1 ⊕ τ2

where τ2 is irreducible and τ1 ¹ τ2. Then

L(σ ⊗ τ) = L(σ1 ⊗ τ) +
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
L(σ2 ⊗ τ) + L(σ ⊗ τ1) .

Proof. As before, each term in the right hand side is contained in L(σ ⊗ τ).
Let u1 ≤ u2 · · · ≤ ur be the exponents of σ, u1 being the exponent of σ1. Likewise,
let v1 ≤ v2 ≤ · · · ≤ vs be the exponents of τ , vs being the exponent of τ2. We first
observe that L(s, τ2 ⊗ σ) and L(1− s, σ̃1 ⊗ τ̃) do not have a common pole. Indeed
if s0 is such a pole, then

<s0 + vs + uj ≤ 0 and 1−<s0 − u1 − vi ≤ 0

for some i and j. Adding the two inequalities, we find

1 + vs − vi + uj − u1 ≤ 0 .

Since vs − vi ≥ 0, uj − u1 ≥ 0, this is a contradiction. We have to find an element
of the right hand side which at any pole s0 of L(s, σ⊗ τ) has a given polar part. If
s0 is a pole of L(s, σ1⊗ τ) but not L(s, σ2⊗ τ), this is possible because of the term
L(σ1 ⊗ τ). If s0 is a pole of L(s, σ2 ⊗ τ) but not a pole of L(1− s, σ̃1 ⊗ τ̃), one can
use the term L(s,σ1⊗τ)

L(1−s,fσ1⊗eτ)L(σ2 ⊗ τ) as before. If s0 is a pole of L(s, σ2 ⊗ τ) and a
pole L(1− s, σ̃1 ⊗ τ̃), then s0 is not a pole of L(s, σ ⊗ τ2). Thus it is in fact a pole
of L(s, σ ⊗ τ1). One can use the term L(σ ⊗ τ1) to complete the argument.

We have also the following lemma.

Lemma 12.2. For any σ,

L(σ) = L(0)L(s, σ) + L(0) .

Proof. As before, the right hand side is contained in the left hand side. Let
F be an element of L(σ). Let P(s0) be its polar part at a point s0 ∈ P (σ). Thus

P(s0) =
An

(s− s0)n
+

An−1

(s− s0)n−1
+ · · ·+ A1

(s− s0)
.

Since es2
never vanishes, its Taylor expansion at s0 has the form

k0 + k1(s− s0) + · · ·+ kn−1(s− s0)n−1
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with k0 6= 0. The equation
(

Bn

(s− s0)n
+

Bn−1

(s− s0)n−1
+ · · ·+ B1

(s− s0)

)

× (
k0 + k1(s− s0) + · · ·+ kn−1(s− s0)n−1

)

=
An

(s− s0)n
+

An−1

(s− s0)n−1
+ · · ·+ A1

(s− s0)

gives a triangular linear system of equations for the Bi, hence can be solved uniquely.
Call P1(s0) the polar part given by the Bi. There is a function F1 in L(σ) with
polar part P1(s0) at each s0 ∈ P (σ). Then

F2(s) = F (s)− F1(s)es2

has no poles thus is in L(0). On the other hand,

F1(s) = L(s, σ)h(s)

where h(s) is entire. Recall that for x fixed and |y| → +∞
|Γ(x + iy)| ∼ (2π)1/2|y|x−1/2e−

π
2 |y| .

It follows that in a vertical strip |h(s)| is bounded by eC|y|, for some C. Thus the
product h(s)es2

is rapidly decreasing in any vertical strip and thus is in L(0).

12.2. Proof of Theorem 2.3. Let (πσ,u, Iσ,u) and (πσ′,u′ , Iσ′,u′) be generic
induced representations. Suppose n > n′. For clarity, we state again the result we
want to prove.

Proposition 12.5.
(i) For every f ∈ Iσ,u, f ′ ∈ Iσ′,u′ , the function s 7→ Ψ(s,Wf ,Wf ′) belongs to

L(σu ⊗ σ′u′).
(ii) The bilinear map

(f, f ′) 7→ Ψ(s,Wf ,Wf ′)

Iσ,u × Iσ′,u′ → L(σu ⊗ σ′u′) is continuous.

Proof. We set π = πσ,u and π′ = πσ′,u′ . We first prove that if P (s) is any
polynomial then

P (s)Ψn−n′−1(s, Wf ,Wf ′) =
∑

i,j

Ψn−n′−1(s,Wdπ(Xi)f ,Wdπ′(X′
j)f

′)

where Xi ∈ U(Gn), Xj ∈ U(Gn′). Indeed, it suffices to prove this for a polynomial
of degree 1. Say F = R. Let U ∈ Lie(Gn′) with Tr(U) = 1. Thus det exp tU = et.

It easy to see that the integral

∫
Wf







getU 0 0
X 1n−n′−1 0
0 0 1





 dX

converges, uniformly for g and t in compact sets. In fact, it is equal to

e(n−n′−1)t

∫
Wf







g 0 0
X 1n−n′−1 0
0 0 1







etU 0 0
0 1n−n′−1 0
0 0 1





 dX.
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The integral

(12.1)
∫∫

Wf







getU 0 0
X 1n−n′−1 0
0 0 1





 Wf ′(getU )| det getU |s−n−n′−1

2 dgdX

is independent of t. We compute its derivative and write that the derivative is 0.
Let us set

V =
(

U 0
0 1n−n′

)
.

Then the derivative of (12.1) is equal to

∫
W dπ(V )f







getU 0 0
X 1n−n′−1 0
0 0 1





 dX Wf ′(getU )| det getU |s−n−n′−1

2

+
∫

W







getU 0 0
X 1n−n′−1 0
0 0 1





 dX Wdπ′(U)f ′(getU )

+
(

s− n− n′ − 1
2

+ (n− n′ − 1)
) ∫

W







g 0 0
X 1n−n′−1 0
0 0 1


 etU


 dX

× W ′(getU )|det getU |s−n−n′−1
2 .

Moreover, if t is in a compact set and s is fixed, then each term is bounded by
ξi(g)−N ||g||MH with M fixed and N >> 0. Thus we can integrate with respect to
g, provided <s >> 0. Hence we can differentiate (12.1) under the integral sign.
Writing the derivative at t = 0, we find

Ψn−n′−1(s,Wdπ(V )f , Wf ′) + Ψn−n′−1(s,Wf ,Wdπ′(U)f ′)

+
(

s +
n− n′ − 1

2

)
Ψn−n′−1(s,Wf ,Wf ′) = 0 .

Our assertion follows.
A similar, easier to prove, assertion is valid for the integral Ψ(s,Wf ,Wf ′).
Since any integral Ψ is bounded at infinity in any vertical strip, we see that

any product P (s)Ψ(s,Wf , Wf ′) where P is a polynomial is bounded at infinity in
vertical strip. The first assertion is proved.

For the second assertion, we recall that if a is sufficiently large and a < b then
for a ≤ <s ≤ b the majorization

|Ψ(s,Wf ,Wf ′)| ≤ µ(f)µ(f ′)

|Ψn−n′−1(s,Wf ,Wf ′)| ≤ µ(f)µ(f ′)

for suitable continuous semi-norms µ, µ′. Now W̃f = W ef and likewise for f ′. Thus
for a ≤ <s ≤ b we get

|Ψn−n′−1(s, W̃f , W̃f ′)| ≤ µ̃(f̃)µ̃′(f̃ ′)

for a large enough and suitable semi-norms on the space Ieσ,eu, I eσ′, eu′ . However,

f 7→ µ̃(f̃), f ′ 7→ µ̃′(f̃ ′) are continuous semi-norms. So, finally we can assume that
we have also

|Ψn−n′−1(s, W̃f , W̃f ′)| ≤ µ(f)µ(f ′) .
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Combining with our earlier observations, we conclude that given a polynomial P ,
for a large enough, there are continuous semi-norms µ, µ′ such that, for a ≤ <s ≤ b,

|P (s)Ψ(s, Wf ,Wf ′)| ≤ µ(f)µ(f ′)

and for 1− b ≤ <s ≤ 1− a

|P (s)Ψn−n′−1(s, ρ(wn,n′)W̃f , W̃f ′)| ≤ µ(f)µ(f ′) .

Now consider the functional equation

P (s)Ψ(s,Wf ,Wf ′)

=
L(s, σu ⊗ σ′u′)(det σu)n′−1 det σ′u′

L(1− s, σ̃u ⊗ σ̃′u′)ε(s, σu ⊗ σ′u′ , ψ)
P (s)Ψn−n′−1(s, ρ(wn,n′)W̃f , W̃f ′).

Now if a is large enough and y0 is large enough, the ratio
∣∣∣∣∣

L(s, σu ⊗ σ′u′)

L(1− s, σ̃u ⊗ σ̃′u′)ε(s, σu ⊗ σ′u′ , ψ)

∣∣∣∣∣
is bounded for 1 − b ≤ <s ≤ 1 − a and |=s| ≥ y0. Suppose in addition that
P (s)L(s, σu ⊗ σ′u′) is holomorphic for 1− b ≤ <s ≤ b. By the maximum principle,
we have then

|P (s)Ψ(s,Wf , Wf ′)| ≤ (C + 1)µ(f)µ(f ′)

for 1− b ≤ <s ≤ a. This proves the continuity in assertion (ii).

Let again π = πσ,u and π′ = πσ′,u′ be generic induced representations. Suppose
n = n′. Again, we state the result we want to prove.

Proposition 12.6.
(i) For every f ∈ Iσ,u, f ′ ∈ Iσ′,u′ , every Φ ∈ S(Fn), the function s 7→

Ψ(s,Wf ,Wf ′ ,Φ) belongs to L(σu ⊗ σ′u′).
(ii) The trilinear map

(f, f ′,Φ) 7→ Ψ(s,Wf ,Wf ′ ,Φ)

Iσ,u × Iσ′,u′ × S(Fn) → L(σu ⊗ σ′u′) is continuous.

The proof is similar.

12.3. Extension of Theorem 2.1 to the tensor product. Let us keep to
the notations of the previous subsection. To every f ∈ Iσ,u⊗̂Iσ′,u′ we associate
a function Wf on Gn × Gn′ . As explained before, we can consider more general
integrals involving the functions Wf . For instance, assume n′ = n−1. Then we set

Ψ(s,Wf ) =
∫

Wf

[(
g 0
0 1

)
, g′

]
|det g|s− 1

2 dg .

We have also the integral
Ψ(s, W̃f )

where
W̃f (g, g′) = Wf (wngι, wn′g

′ι) .

The integrals converge for <s >> 0. Let (θ, κ) be a (σu ⊗ σ′u′ , ψ) pair.
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Consider the identity∫
Wf

[(
g 0
0 1

)
, g′

]
θ(det g)| det g|− 1

2 dg

=
∫

W̃f

[(
g 0
0 1

)
, g′

]
κ(det g)| det g|− 1

2 dg .

Both sides converge and are continuous functions of f . The identity is true when
f is a pure tensor, or a sum of pure tensors. By continuity, it is true for all f . It fol-
lows that the assertions of Theorem 2.1 are true for the integrals Ψ(s, Wf ), Ψ(s, W̃f ).
Then, as in the previous subsection, one proves that Ψ(s,Wf ) ∈ L(σu ⊗ σ′u′) and
the map f 7→ Ψ(s, Wf ) is continuous.

12.4. Proof of Theorem 2.6 for irreducible representations of the
Weil group. In this subsection, we prove Theorem 2.6 for two given irreducible
representations of the Weil group that we shall denote by σ and τ . We first consider
the case when they are both of degree 1. In this case, our assertion reduces to the
following elementary lemma.

Lemma 12.3. Suppose ω is a normalized character of F×. If F is in L(ω),
then there is a Schwartz function Φ on F such that∫

Φ(x)|x|sω(x)d×x = F (s) .

Proof of the lemma: In any case, for any Φ, the analytic continuation of∫
Φ(x)|x|sω(x)d×x

is in L(ω) and the residue at any pole s0 of L(s, ω) is arbitrary. By linearity, we
are reduced to the case where F (s) is in fact entire. In this case, there is a function
f on R×+ such that

F (s) =
∫ ∞

0

f(t)ts
dt

t
.

The function is O(tn) for any n ∈ Z and for any m, the derivative dmf
dtm has the

same properties. Now define a function Φ on F by

Φ(x)ω(x) = f(|x|F ) .

The function Φ is a Schwartz function with the required properties. ¤
We now prove the theorem when one representation has dimension 2 and the

other has dimension 1. Then the theorem reduces to the following lemma.

Lemma 12.4. Let Ω be a normalized character of C×. Let σ be the representa-
tion of WR induced by Ω. Let (πσ, Iσ) be the corresponding irreducible representation
of GL(2,R). Let F ∈ L(σ) = L(Ω). There is W ∈ W(πσ : ψ) such that

∫
W

(
a 0
0 1

)
|a|s− 1

2 d×a = F (s) .

Proof. We recall the construction of π = πσ (see [14] for instance). We
first construct a representation π+ of G+ = {g ∈ GL(2,R) : det g > 0}. The
representation π is induced by π+. Let S(C, Ω) be the space of Schwartz functions
on C such that

Φ(zh) = Ω(h)−1Φ(z)
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for all h such that hh = 1. Then, for a = hh,

π+

(
a 0
0 1

)
Φ(z) = Φ(zh)Ω(h)(hh)1/2

π+

(
1 x
0 1

)
Φ(z) = Φ(z)ψ(xzz)

π+

(
0 1
−1 0

)
Φ(z) = γΦ̂(z)

where γ is a suitable constant. The operators are unitary for the L2 norm

||Φ||22 :=
∫
|Φ(z)|2dz .

Thus, we obtain a unitary representation on the space L2(C,Ω) of square inte-
grable functions such that

Φ(zh) = Ω(h)−1Φ(z)

for all h such that hh = 1. The unitary representation is topologically irreducible.
In fact, its restriction to the space of triangular matrices in G+ is already irreducible.
Let π− be the representation obtained by replacing ψ by ψ. Then π is the direct
sum of π+ ⊕ π−.

We take for granted that S(C,Ω) is the space of smooth vectors in L2(C, Ω).
Then the linear form

λ(Φ) = Φ(1)

is a Whittaker linear form on S(C, Ω). We extend it by 0 on π−. For any Φ ∈
S(C, Ω), the corresponding function WΦ is defined by

WΦ(g) = π+(g)Φ(e)

if det g > 0 and WΦ(g) = 0 if det g < 0. We have
∫

WΦ

(
a 0
0 1

)
|a|s− 1

2 d×a =
∫

Φ(z)Ω(z) (zz)sd×z .

By the previous lemma, we can choose Φ1 ∈ S(C) such that
∫

Φ1(z)Ω(z) (zz)sd×z = F (s) .

If we set

Φ(z) =
∫

hh=1

Φ1(zh)Ω(h)dh,

the function WΦ has the srequired property.

Now we prove the lemma when σ and τ are both of dimension 2. We may
assume that σ and τ are induced by normalized characters of C×. We may also
assume that ψ is standard.

Proposition 12.7. Given F (s) in L(σ⊗ τ), there are finitely many vectors vi

in Iσ⊗̂Iτ and Schwartz functions Φi such that
∑

i

Ψ(s,Wvi , Φi) = F (s) .
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Proof. Recall that the integrals Ψ(s, W,Φ) converge for <s > 0. We first
claim that given s with <s > 0, we can choose v K × K-finite in Iσ ⊗ Iτ and Φ
such that

Ψ(s,Wv, Φ) 6= 0 .

Indeed suppose that, for all such v, Ψ(s,Wv, Φ) = 0 for all Φ.
Indeed, this integral can be written as∫ (∫

Wv

[(
a 0
0 1

)
k,

(
a 0
0 1

)
k

]
|a|s−1d×a

∫
f [b12k]ω(b)d×b

)
dk

where ω is the product of the central characters and

f(g) = Φ[(0, 1)g] .

Any function f invariant under the subgroup{( ∗ ∗
0 1

)}

and compactly supported modulo this subgroup can be written as f(g) = Φ[(0, 1)g]
for a suitable Φ. Thus we find∫

Wv

[(
a 0
0 1

)
,

(
a 0
0 1

)]
|a|s−1d×a = 0

for all K×K-finite v. By continuity, this is then true for all vectors v in the tensor
product Iσ⊗̂Iτ ; in particular, this is true when v is a pure tensor. Thus we find∫

Wv1

[(
a 0
0 1

)]
Wv2

[(
a 0
0 1

)]
|a|s−1d×a = 0 ,

for all v1 ∈ Iσ and v2 ∈ Iτ . But this is a contradiction, because given functions
f1, f2 in S(R×+), we can find v1, v2 such that, for a > 0,

Wv1

(
a 0
0 1

)
= f1(a) , Wv2

(
a 0
0 1

)
= f2(a) ,

and

Wv1

(
a 0
0 1

)
= Wv2

(
a 0
0 1

)
= 0

for a < 0.
Thus the entire functions

Ψ(s,Wv1 ,Wv2 ,Φ)
L(s, σ ⊗ τ)

with v1, v2 K-finite and Φ an arbitrary Schwartz function have no common zero for
<s > 0. By continuity of the integral as a function of Φ, it follows that the above
entire functions for v1, v2 K-finite and Φ a standard function have no common zero
for <s > 0. By the functional equation, they have no common zero for <s < 1 as
well, that is, they have no common zero.

Now we claim that there are K-finite vectors vi, v′i and standard Schwartz
functions Φi such that ∑

i

Ψ(s, Wvi , Wv′i , Φi) = L(s, σ ⊗ τ) .

This is checked by direct computation in [12], but we give a more conceptual proof.
The representations πσ and πτ are contained in induced representations Iµ1,µ2 and
Iν1,ν2 respectively with µi = µ0

1α
si , νi = ν0

1αti , s1 < s2, t1 < t2 (see the Appendix).
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For K-finite vectors v1, v2 in Iµ1,µ2 , Iν1,ν2 , respectively, and Φ standard, we have
proved that

Ψ(s,Wv1 ,Wv2 ,Φ) = P (s)
∏

L(s, µiνj) ,

where P is a polynomial. The vector space spanned by the polynomials P for v1, v2

K-finite in Iσ, Iτ respectively and Φ standard is an ideal. Let P0 be a generator
and set

L0(s) = P0(s)
∏

L(s, µiνj) .

By direct computation (see the Appendix), we have

L(s, σ ⊗ τ) = Q0(s)
∏

L(s, µiνj) ,

where Q0 is another polynomial. Thus

L0(s) =
P0(s)
Q0(s)

L(s, σ ⊗ τ) .

But L0(s) is a holomorphic multiple of L(s, σ ⊗ τ). Thus

L0(s) = R0(s)L(s, σ ⊗ τ)

where R0 is another polynomial. Hence every integral Ψ(s,Wv1 ,Wv2 , Φ) with v1, v2

K-finite and Φ standard is a polynomial multiple of R0(s)L(s, σ ⊗ τ). Thus any
zero of R0 is a common zero of the ratios

Ψ(s,Wv1 ,Wv2 , Φ)
L(s, σ ⊗ τ)

.

Hence R0 is a constant which proves our assertion.
Now let F ∈ L(σ⊗ τ). By Lemma 12.2, there are Fi ∈ L(0), i = 1, 2, such that

F (s) = F1(s)L(s, σ ⊗ τ) + F2(s) .

Let f ∈ S(R×+) such that
∫ ∞

0

f(t)ω−1(t)t−2sd×t = F1(s) .

Recall that we have found K-finite vector vi, v
′
i and standard Schwartz functions

Φi such that ∑

i

Ψ(s, Wvi , Wv′i , Φi) = L(s, σ ⊗ τ) .

We set

Φ0
i (x, y) =

∫
Φi[t(x, y)]f(t2m)d×t .

These functions are still Schwartz functions as follows from the following lemma.

Lemma 12.5. Let V be a finite dimensional F -vector space. Let Φ ∈ S(V ) and
f ∈ S(R×+). The function

Φ0(v) :=
∫ ∞

0

Φ(tv)f(t)d×t

is in S(V ).
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Proof. The integral converges and represents a continuous function of v. For
every N ,

|Φ(v)| ≤ CN

(1 + ||v||2)N
.

For t ≥ 1,

|Φ(tv)| ≤ CN

(1 + ||v||2)N
.

Thus ∫ ∞

1

|Φ(tv)||f(t)|d×t ≤
∫ ∞

1

|f(t)|d×t
CN

(1 + ||v||2)N
.

For t ≤ 1,

|Φ(tv)| ≤ t−N CN

(1 + ||v||2)N
.

Thus ∫ 1

0

|Φ(tv)||f(t)|d×t ≤
∫ 1

0

|f(t)|t−Nd×t
CN

(1 + ||v||2)N
.

Hence

|Φ0(v)| ≤ C ′N
(1 + ||v||2)N

.

If D is a constant vector field on V , then DΦ0 exists and is given by

DΦ0(v) =
∫

f(t)tDΦ(tv)d×t .

Thus DΦ0 is of the same form as Φ, with f replaced by f(t)t and Φ by DΦ.
Inductively, it follows that Φ0 is a Schwartz function.

Now we compute

Ψ(s,Wvi ,Wv′i ,Φ
0
i ) =

∫
Wvi(g)Wv′i(g)

(∫
Φi[(0, 1)gt]f(t)d×t

)
| det g|sdg .

Exchanging the order of integration and changing g into gt−112, we find∫
f(t)ω(t−1)t−2sd×t Ψ(s,Wui ,Wu′i , Φi) = F1(s)Ψ(s,Wvi ,Wv′i , Φi) .

We conclude that ∑

i

Ψ(s, Wvi ,Wv′i , Φ
0
i ) = F1(s)L(s, σ ⊗ τ) .

Now

F2(s) =
∫

h(a)|a|sd×a

with h ∈ S(F×). We may apply the Dixmier-Malliavin Lemma to the translation
representation of R× on S(R×) to conclude that

h(x) =
∑
α

∫ ∞

0

hα(xt)fα(t)d×t ,

with hα ∈ S(F×) and fα ∈ C∞c (R×). After a change of notations we see than we
can write

F2(s) =
∑
α

∫
hα(a)|a|sd×a

∫
fα(b)|b|2sω(b)d×b
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with hα ∈ S(R×) and fα ∈ C∞c (R×). Now hα(a) = kα(a)ΩΩ′(a) with kα ∈ S(F×).
Now we have the following lemma.

Lemma 12.6. Any element h of S(R) can be written as a sum

h(x) =
∑

hξ(a)kξ(a)

with hξ, kξ in S(R). Any element of S(R×) can be written as a sum
∑

hξ(a)kξ(a)

with hξ, kξ in S(R).

Proof. For the first assertion, replacing the function by its Fourier transform,
it suffices to show that h is a finite sum of convolutions

∑
hξ ∗ kξ with hξ, kξ in

S(R). Applying the Dixmier-Malliavin Lemma to the translation representation of
R on S(R), we obtain our assertion (with kξ ∈ C∞c ). For the second part of the
lemma, we remark that any h in S(R×) can be written as

h(x) = h1(x)h2(x−1)

with hi ∈ S(R). We then apply the first part of the lemma.

Coming back to the proof of the proposition, we see that we have written

F2(s) =
∑
α

∫

R×
hα(a)kα(a)|a|sd×a

∫

R×
fα(b)ω(b)|b|2sd×b ,

with hα, kα ∈ S(R×) and fα ∈ C∞c (R×). There exists vectors vα and v′α such that

Wvα

(
a 0
0 1

)
= hα(a)|a|1/2 , Wv′α

(
a 0
0 1

)
= kα(a)|a|1/2 .

Then
∑
α

∫
Wvα

(
a 0
0 1

)
Wv′α

(
a 0
0 1

)
|a|s−1d×a

∫
fα(b)ω(b)|b|2sd×b = F2(s) .

Now let us apply the Dixmier-Malliavin Lemma to the subgroup N and the repre-
sentation (πσ ⊗ πτ , Iσ⊗̂Iτ ) restricted to N . We conclude that for each α, there are
vectors ṽβ in the tensor product and φβ ∈ C∞c (R) such that

Wvα(g)Wv′α(g) =
∑

β

∫
Wevβ

[
g

(
1 0
x 1

)
, g

(
1 0
x 1

)]
φβ(x)dx .

Changing notations, we see that we have obtained the formula
∑

β

∫
Wevβ

[(
a 0
0 1

)(
1 0
x 1

)
,

(
a 0
0 1

)(
1 0
x 1

)]
|a|s−1d×a

× φβ(x)dx

∫
fβ(b)ω(b)|b|2sd×b = F2(s) ,

where φβ ∈ C∞c (R) and fβ ∈ C∞c (R×). For each β, set

Φβ(x, y) = φβ

(
x

y

)
fβ(y) .

This is an element of S(R2) such that

Φβ(xb, b) = φβ(x)fβ(b) .
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The above formula can then be written in the form∑

β

Ψ(s,Wevβ
,Φβ) = F2(s) .

This concludes the proof of the proposition.

12.5. Reduction step for GL(2). We will now reduce Theorem 2.6 to the
case where σ and τ are irreducible. This requires further preliminary work. In
this subsection, we explain the reduction step in the case of GL(2). For clarity, we
repeat what we want to prove

Proposition 12.8. Let µ1, µ2 be two normalized characters of F×, u1, u2 two
complex numbers with <u1 ≤ <u2. Given F ∈ L(µ1α

u1 ⊕ µ2α
u2), there is v ∈

Iµ1,µ2,u1,u2 such that
Ψ(s,Wv) = F (s) .

Proof. The space of the representation Iµ1,µ2,u1,u2 is the space of C∞ func-
tions f on GL(2, F ) such that

f

[(
a1 0
x a2

)
g

]
= µ1(a1)|a1|u1−1/2µ2(a2)|a2|u2+1/2f(g) .

Let Φ ∈ S(F ). Define a function f by the following rule. If

g =
(

a b
c d

)
, a 6= 0,

then we can write G uniquely in the form

g =
(

a1 0
x a2

)(
1 y
0 1

)
;

we then define

f(g) = µ1(a1)|a1|u1−1/2µ2(a2)|a2|u2+1/2Φ(y) .

If a = 0, then we define f(g) = 0. We claim the function f is C∞. Let Ω1 be the
set of g such that a 6= 0 and Ω2 the set of g such that b 6= 0. It will suffice to show
that the restriction of f to each open set if C∞. This is clear for Ω1. If g is in Ω2,
then g can be written uniquely in the form

g =
(

a1 0
x a2

)
w2

(
1 0
z 1

)
.

It will suffice to show that

f

[
w2

(
1 0
z 1

)]

is a C∞ function of z. Now, if z 6= 0, then

w2

(
1 0
z 1

)
=

(
z 0
1 −z−1

) (
1 z−1

0 1

)
.

Thus, if z is not zero,

f

[
w2

(
1 0
z 1

)]
= Φ(z−1)|z|u1−u2−1µ1(z)µ2(−z−1) .

On the other hand, for z = 0 we find f(w2) = 0. It easily follows that f is a C∞

function of z, even at the point z = 0. We will write f as fΦ,u.
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If <u1 < <u2, then we define a ψ linear form λu on Iµ1,µ2,u1,u2 by the convergent
integral

λu(f) =
∫

f

(
1 x
0 1

)
ψ(x)dx .

In particular,
λu(fΦ,u) = Φ̂(1) .

By analytic continuation, this formula remains true even for <u1 = <u2. Set

WΦ,u(g) = λu(πµ1,µ2,u1,u2(g)fΦ,u) .

A simple computation shows that

WΦ,u

(
a 0
0 1

)
|a|−1/2 = Φ̂(a)µ1(a)|a|u1 .

Thus
Ψ(s, WΦ,u) =

∫
Φ̂(a)µ1(a)|a|s+u1d×a .

As we have seen before, for any F ∈ L(µ1α
u1) we can choose Φ such that the right

hand side is equal to F . Hence we have proved that for every F ∈ L(µ1α
u1) there

is a vector v ∈ Iµ1,µ2,u1,u2 such that Ψ(s,Wv) = F (s).
Consider now the representation (πµ−1

2 ,µ−1
1 ,−u2,−u1

, Iµ−1
2 ,µ−1

1 ,−u2,−u1
). Likewise,

for every Φ ∈ S(F ) there is a vector v′ such that

Ψ(s,Wv′) =
∫

Φ̂(a)µ−1
2 (a)|a|s−u2d×a .

Now W̃v′ = Wv for a suitable v and

Ψ(s,Wv) =µ1µ2(−1)γ(s + u1, µ1, ψ)−1γ(s + u2, µ2, ψ)−1

×
∫

Φ̂(a)µ−1
2 (a)|a|1−s−u2d×a .

Using the functional equation of the Tate integral, we can write this as

Ψ(s,Wv) = µ1µ2(−1)γ(s + u1, µ1, ψ)−1

∫
Φ(a)µ2(a)|a|sd×a .

Thus for every F ∈ L(µ2α
u2), there is v ∈ Iµ1,µ2,u1,u2 such that

Ψ(s,Wv) = F (s)
L(s + u1, µ1)

L(1− s− u1, µ
−1
1 )

.

To finish the proof we appeal to the following lemma, which is a special case of
Proposition 12.3.

Lemma 12.7.

L(µ1α
u1 ⊕ µ2α

u2) = L(µ1α
u1) +

L(s + u1, µ1)
L(1− s− u1, µ

−1
1 )

L(µ2α
u2) .

This concludes the proof of the proposition.

13. Bruhat Theory

In this section, we prove that certain naturally defined functions belong to the
induced representations at hand. This result is due to Casselman. According to
Casselman, the methods developed in [4] can be used to prove the result that we
need. For the sake of completeness, we have included an elementary proof.
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13.1. Preliminaries.

Lemma 13.1. Suppose that Yn ∈ Gn(F ) and

lim
n→+∞

Yn = Y0

where det Y0 = 0. Then
lim

n→+∞
||Y −1

n ||e = +∞ .

Proof. Indeed, at the cost of replacing Y0 by g1Y0g2 with g1, g2 invertible, we
may assume that the first column of Y0 is 0. We proceed by contradiction. Let ei,
1 ≤ i ≤ n, be the canonical basis of Fn. If the assertion is not true, then, at the
cost of replacing Yn by a subsequence, we may assume that ||Y −1

n ||e ≤ K for all n.
Then

||Y −1
n Yne1||e ≤ K||Yne1||e → K||Y0e1|| = 0 .

However, ||Y −1
n Yne1||e = ||e1||e = 1, so we get a contradiction.

Lemma 13.2. Let Y0 ∈ M(n × n, F ) with det Y0 = 0. Let Y1 ∈ M(n × n, F ).
Either det(Y0+tY1) = 0 for all t or there is, for t ∈ R small enough, a C∞ function
B(t) with values in GL(n, F ) and an integer r > 0 such that, for t 6= 0 and small
enough,

(Y0 + tY1)−1 =
B(t)
tr

.

Proof. Indeed, assume det(Y0 + tY1) is not identically zero. Then

det(Y0 + tY1) = trQ(t) , r > 0 , Q ∈ C[t], Q(0) 6= 0 .

Let A(t) be the adjugate of Y0 + tY1. Thus

(Y0 + tY1)A(t) = trQ(t)1n .

For t 6= 0 small enough, Q(t) 6= 0 and

(Y0 + tY1)−1 =
B(t)
tr

, B(t) =
A(t)
Q(t)

.

The lemma implies that if Φ is a Schwartz function on M(n×n, F ), the function
defined by

Ψ(Y ) =

{
Φ(Y −1) if det Y 6= 0
0 if det Y = 0

is C∞. We consider a more general situation. Let V be a Frechet space and V a
finite dimensional complex vector space with Euclidean norm || · ||. Let Φ be a C∞

function
Φ : M(n× n, F )× V → V .

We assume that for any differential operator D with constant coefficients, and any
continuous semi-norm µ on V, there is M and, for each N , a constant C such that

µ(DΦ(Y, Z)) ≤ C
(1 + ||Z||2)M

(1 + ||Y ||2e)N

We let P be a polynomial function on M(n × n, F ) × F . Finally, we let τ be a
smooth, moderate growth, representation of Gn(F ) on V. Let X ∈ U(Gn(F )).
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Proposition 13.1. The function

Ψ : M(n× n, F )× V → V
defined by

Ψ(Y, Z) =

{
τ(Y )(dτ(X)Φ)(Y −1, Z)P (Y, det Y −1) if det Y 6= 0
0 if det Y = 0

is C∞.

Proof. The function Ψ is continuous on Gn × V . Let us prove that it is
continuous on M(n× n, F )× V . Let Y0 with det Y0 = 0 and Z0 ∈ V . Let Yn → Y0

and Zn → Z0. We have to show that

Ψ(Yn, Zn) → 0 .

If det Yn = 0, we have Ψ(Yn, Zn) = 0. Thus we may as well assume that det Yn 6= 0
for all n. Then ||Y −1

n ||e →∞ and ||Zn|| ¹ 1. If µ is a continuous semi-norm on V,
there is r and another continuous semi-norm ν such that, for all v,

µ(τ(Y )v) ≤ ||Y ||rHν(v) .

Hence

µ(Ψ(Yn, Zn)) ≤ |P (Yn,det Y −1
n )| ||Yn||rHν

(
(dτ(X)Φ)(Y −1

n , Zn)
)

.

Next
|P (Yn, detY −1

n )| ≤ ||Y ||M1
H

for a suitable M1. Since v 7→ ν(dτ(X)v) is a continuous semi-norm,

ν
(
(dτ(X)Φ)(Y −1

n , Zn)
) ≤ C(1 + ||Zn||2)M0(1 + ||Y −1

n ||2e)−N ≤ C ′(1 + ||Y −1
n ||2e)−N .

Altogether
µ(Ψ(Yn, Zn)) ≤ CN ||Yn||M2

H (1 + ||Y −1
n ||2e)−N ,

for some M2 and all N . Now ||Yn||H = ||Yn||2e + ||Y −1
n ||2e ≤ C ′(1 + ||Y −1

n ||2e).
Thus, if N is large enough, then ||Yn||M2

H (1 + ||Y −1
n ||2e)−N → 0. We conclude that

µ(Ψ(Yn, Zn)) → 0. Hence Ψ is indeed continuous.
Now we prove that at a point where det Y = 0 the partial derivatives of Ψ of

order 1 exist and are 0. We start with the partial derivatives with respect to Y .
Thus we have to show that

lim
t→0

Ψ(Yt, Z)
t

= 0

where Yt = Y + tY1, Y1 ∈ M(n× n, F ). This is clear if det Yt = 0 for all t because
then Ψ(Yt, Z) = 0 for all t. Otherwise, ||Yt|| ∼ Ct−r with r > 0. As before for any
continuous semi-norm µ,

µ(Ψ(Yt, Z)) ≤ C(1 + ||Yt||2e)−N ≤ C ′tr .

Thus lim
t→0

Ψ(Yt,Z)
t = 0. As for the partial derivatives with respect to Z, for Z1 ∈ V,

lim
t→0

Ψ(Y, Z + tZ1)
t

= 0

trivially since Ψ(Y, Z + tZ1) = 0 for all t.
Next we show that the partial derivatives of Ψ at a point where det Y 6= 0

exists. We compute
dΨ(Y + tY1, Z)

dt
|t=0
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using the product rule. For any vector v

dτ(Y + tY1)v
dt

|t=0 =
dτ(Y (1 + tY −1Y1))v

dt
|t=0 .

Now let Yα be a basis of M(n× n, F ), then

Y −1Y1 =
∑
α

ξα(Y )Yα

where the ξα are polynomials in (Y, detY ). Thus

dτ(Y + tY1)v
dt

|t=0 =
∑
α

ξα(Y )τ(Y )dτ(Yα)v .

By the chain rule,

dΦ((Y + tY1)−1, Z)
dt

|t=0 =
∑

i

Φi(Y −1, Z)Pi(Y, detY −1)

where the Φi are partial derivatives of Φ and the Pi are polynomials. By assumption,
the Φi satisfy the same conditions as Φ. Finally,

dP ((Y + tY1)−1, Z)
dt

|t=0

is a polynomial in Y and det Y −1.
We conclude that for det Y 6= 0, dΨ(Y +tY1)

dt |t=0 do exist. Hence dΨ(Y +tY1)
dt |t=0

exists for all Y and is a sum of functions of the same type as Ψ. The same assertion
is trivially true for

dΨ(Y, Z + tZ1)
dt

|t=0 .

The proposition follows then by iteration.

13.2. The first term in Bruhat’s filtration. Let n1, n2 be two integers
such that n = n1 + n2. Let P be the parabolic subgroup of Gn of matrices of the
form (

g1 0
X g2

)
, gi ∈ GLni .

Let G(P ) be the open subset of matrices of the form(
A B
C D

)
, A ∈ Gn1(F ) , D ∈ M(n2 × n2, F ) .

Every matrix g in G(P ) can be written uniquely in the form

g =
(

g1 0
X g2

) (
1n1 Z
0 1n2

)
.

More precisely, the map
(g1, g2, X, Z) 7→ g

is a diffeomorphism onto G(P ). Let (σ1, I1) and (σ2, I2) be two Casselman-Wallach
representations of Gn1(F ) and Gn2(F ), respectively. Let (π, I) be the representa-
tion of Gn induced by (σ1, σ2). Let v be a (smooth) vector in the space I1⊗̂I2. Let
Φ be a Schwartz function on M(n1 × n2, F ). Define a function f on G with values
in I1⊗̂I2 by

f

[(
g1 0
X g2

)(
1n1 Z
0 1n2

)]
= σ1(g1)⊗ σ2(g2)v|det g1|−

n2
2 | |det g2|

n1
2 Φ(Z) .
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and f(g) = 0 if g is not in G(P ). We call such a function a Casselman function.

Proposition 13.2. The function f is C∞ and belongs to the space I of the
representation induced by (σ1, σ2).

Proof. Let ei, 1 ≤ i ≤ n, be the canonical basis of Fn. It will be convenient
to write V = Fn as a direct sum

V = V1 ⊕ V2

where V1, V2 are subspaces spanned by the vectors ei, 1 ≤ i ≤ n1, and ei, n1 + 1 ≤
i ≤ n, respectively. Then any element M of HomF (V, V ) can be represented as a
matrix

M =
(

A B
C D

)

of linear operators, with

A ∈ HomF (V1, V1) , B ∈ HomF (V2, V1) ,

C ∈ HomF (V1, V2) , D ∈ HomF (V2, V2) .

Then P is the set of invertible matrices with B = 0 and G(P ) is the set of invertible
matrices with A invertible. To continue we write G = GL(V ) as a union of open
sets. Each open set is attached to a direct sum decomposition

V1 = V 1
1 ⊕ V 2

1 , V2 = V 1
2 ⊕ V 2

2

where each space is spanned by vectors in the canonical basis and

dimV 2
1 + dimV 1

2 = dimV1 .

Then we can write

A = (A1, A2) , A1 ∈ Hom(V 1
1 , V1) , A2 ∈ Hom(V 2

1 , V1) ,

B = (B1, B2) , B1 ∈ Hom(V 1
2 , V1) , B2 ∈ Hom(V 2

2 , V1) .

Then
(A2, B1) ∈ Hom(V 2

1 ⊕ V 1
2 , V1) .

The open set Ω attached to this decomposition is the set of invertible operators for
which (A2, B1) is invertible. Our task is thus to prove that the restriction of f to
Ω is a C∞ function.

We may relable the vectors ei so that V 1
1 is spanned by the vectors ei,

1 ≤ i ≤ m1, V 2
1 is spanned by the vectors ei, m1 + 1 ≤ i ≤ n1, V 1

2 is the space
spanned by the vectors ei, n1 + 1 ≤ i ≤ n1 + m1 and V 2

2 by the remaining vectors.
Here m1 verifies 0 ≤ m1 ≤ inf(n1, n2). It is convenient to set m2 = n1 −m1. Then
Ω is the set

G(P )w , w =




0 0 1m1 0
0 1m2 0 0

1m1 0 0 0
0 0 0 1n2−m1


 .

Recall that every element of G(P ) has a unique decomposition of the form
(

g1 0
X g2

)(
1n1 Z
0 1n2

)
.
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Since f transforms on the left under a representation of P , it will suffice to show
that

(13.1) f







1m1 0 x1 y1

0 1m2 x2 y2

0 0 1m1 0
0 0 0 1n2−m1


 w




is a C∞ function of x1, y1, x2, y2. Now


1m1 0 x1 y1

0 1m2 x2 y2

0 0 1m1 0
0 0 0 1n2−m1


w =




x1 0 1m2 y1

x2 1m2 0 y2

1m1 0 0 0
0 0 0 1n2−m1


 .

This matrix is in G(P ) if and only if x1 is invertible. Then it can be written as(
g1 0
X g2

) (
1n1 Z
0 1n2

)

with

g1 =
(

x1 0
x2 1m2

)

g−1
2 =

( −1m1 0
0 1n2−m1

)(
x1 y1

0 1n2−m1

)

Z =
(

x1 0
x2 1m2

)−1 (
1m1 y1

0 y2

)
.

The value of f on this element is thus

σ1

(
x1 0
x2 1m2

)
⊗ σ−1

2

(
x1 y1

0 1n2−m1

)
v1

× | detx1|
n1−n2

2 Φ
(

x−1
1 x−1

1 y1

−x2x
−1
1 −x2x

−1
1 y1 + y2

)

where

v1 = σ2

( −1m1 0
0 1n2−m1

)
v .

Set

τ(x1) = |det x1|
n1−n2

2 σ1

(
x1 0
0 1m2

)
⊗ σ−1

2

(
x1 0
0 1n2−m1

)
.

The previous expression is the product of

τ(x1)σ1

(
1m1 0
x2 1m2

)
⊗ σ−1

2

(
1m1 y1

0 1n2−m1

)
v1

and the scalar factor

Φ
(

x−1
1 x−1

1 y1

−x2x
−1
1 −x2x

−1
1 y1 + y2

)
.

Set

Φ0(x1, x2, y1, y2) = Φ
(

x1 x1y1

−x2x1 −x2x1y1 + y2

)

× σ1

(
1m1 0
x2 1m2

)
⊗ σ−1

2

(
1m1 y1

0 1n2−m1

)
v1 .
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If D is any differential operator with constant coefficients, the function

DΦ0(x1, x2, y1, y2)

is a sum of functions of the form

Φ′
(

x1 x1y1

−x2x1 −x2x1y1 + y2

)
P (x1, x2, y1, y2)

× σ1

(
1m1 0
x2 1m2

)
⊗ σ−1

2

(
1m1 y1

0 1n2−m1

)
v′ ,

where Φ′ is a Schwartz function, P is a polynomial function, and v′ ∈ V. It follows
that Φ0 and its derivatives are rapidly decreasing with respect to x1 and slowly
increasing with respect to the other variables. Now the value of f at hand (13.1)
is given by

τ(x1)Φ0(x−1
1 , x2, y1, y2)

if det x1 6= 0 and 0 otherwise. By Proposition 13.1, the resulting function of
(x1, x2, y1, y2) is C∞.

14. Proof of Theorem 2.6

14.1. Consequences of Bruhat Theory. Let

σ = σ1 ⊕ σ2 , σ1 ¹ σ2 ,

be a representation of the Weil group. Thus πσ is equivalent to the representation
induced by by (πσ1 , πσ2). We set

n1 = d(σ1), n2 = d(σ2) .

Proposition 14.1. Given v1 ∈ Iσ1 and a Schwartz function on Φ on Fn1 there
is a vector v0 ∈ Iσ such that, for all g ∈ GL(n1, F ),

Wv0

(
g 0
0 1n2

)
= Wv1(g)Φ[(0, 0, . . . , 0, 1)g] | det g|n2

2 .

Proof. Let λ1 and λ2 be ψ linear forms on Iσ1 and Iσ2 . Let us write

σ1 =
r⊕

i=1

σi
1 ⊗ αui , σ2 =

p⊕

i=1

σj
2 ⊗ αvj ,

where the σj
i are irreducible normalized representations and

<u1 ≤ <u2 ≤ . . . ≤ <ur ≤ <v1 ≤ <v2 ≤ . . . ≤ <vp .

If <ur < <v1, there is a ψ linear form λ on Iσ such that

λ(f) =
∫

λ1 ⊗ λ2

[
f

(
1n1 Y
0 1n2

)]
θψ

[(
1n1 Y
0 1n2

)]
dY .

If f is a Casselman function, the integral converges even if <ur = <v1. By analytic
continuation, we conclude that this formula remains true when f is a Casselman
function and <ur ≤ <v1. If f is determined by the formula

f

(
1n1 Y
0 1n2

)
= Φ(Y )v0 , v0 = v1 ⊗ v2,

then the corresponding function Wf verifies

Wf

(
g 0
0 1n2

)
= λ1 ⊗ λ1

[∫
f

[(
g 0
0 1n2

)(
1n1 g−1Y
0 1n2

)]
ψ (−Tr(εY )) dY

]
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where ε is the matrix with n2 rows and n1 columns whose last row is (0, 0, . . . , 0, 1)
and all other rows are zero. After a change of variables, we find

λ1(σ1(g1)v1)λ2(v2)| det g|n2
2

∫
Φ(Y )ψ (−Tr(εgY )) dY

= λ2(v2)Wv1(g)| det g|n2
2 Φ1((0, 0, . . . , 0, 1)g)

where Φ1 is the Schwartz function on Fn1 defined by

Φ1(u) = Φ̂(U) ,

where U is the matrix with n2 rows and n1 columns whose last row is u and all
other rows are zero. Clearly, Φ1 is an arbitrary Schwartz function. Our assertion
follows.

One can easily establish the following variant.

Proposition 14.2. Let σ, σ1, σ2 be as above. Let also τ be another representa-
tion of the Weil group of degree m. Let v be a vector in Iσ1⊗̂Iτ and Φ be a Schwartz
function on Fn1 . There is a vector v0 in Iσ⊗̂Iτ such that, for all g ∈ GL(n1, F ),
g′ ∈ GL(m,F ),

Wv0

[(
g 0
0 1n2

)
, g′

]
= Wv(g, g′)Φ[(0, 0, . . . , 0, 1)g] |det g|n2

2 .

The proof is similar and based on Casselman functions for the representation
πσ⊗̂πτ of the group Gn(F ) × Gm(F ), this tensor product being regarded as an
induced representation.

14.2. Reduction step.

Proposition 14.3. Let σ = σ1 ⊕ σ2 be a reprsentation of the Weil group of
the with σ1 ¹ σ2. Let ni be the degree of σi, n = n1 + n2. Let τ be another
representation of the Weil group of degree m. Then

I(σ, τ) ⊇ I(σ1, τ) ,(14.1)

I(σ, τ) ⊇ I(σ2, τ)
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
.(14.2)

Proof. We prove the first assertion of Proposition 14.3. Suppose n1 = m.
Given v1 ∈ Iσ1⊗̂Iτ and a Schwartz function Φ on Fn1 , consider the integral

Ψ(s,Wv1 ,Φ) =
∫

Wv1(g, g)|det g|sΦ[(0, 0, . . . , 0, 1)g]| det g|sdg .

By Proposition 14.2, there is v0 ∈ Iσ⊗̂Iτ such that

Wv1(g, g)Φ[(0, 0, . . . , 1)g] = Wv0

[(
g 0
0 1n2

)
, g

]
|det g|−n2

2 .

Since n2 = n−m, we find

Ψ(s,Wv1 , Φ) = Ψ(s, Wv0)

which proves our assertion in this case.
Now assume m < n1. Then given v1 ∈ Iσ1⊗̂Iτ , consider the integral

Ψ(s,Wv1) =
∫

Wv1

[(
g 0
0 1n1−m

)
, g

]
| det g|s−n1−m

2 dg .
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Applying Proposition 14.2, (with Φ[(0, 0, . . . , 1)] = 1), we see that there is v0 ∈
Iσ⊗̂Iτ such that

Wv1

[(
g 0
0 1n1−m

)
, g

]
= Wv0







g 0 0
0 1n1−m 0
0 0 1n2


 , g


 |det g|−n2

2 .

Then
Ψ(s,Wv1) = Ψ(s, Wv0)

and we are done in this case.
Now we assume that n1 < m. Recall that I(σ1 ⊗ τ) is the space spanned by

the integrals
∫

Nn1\Gn1

Wv

[
g,

(
g 0
0 1m−n1

)]
|det g|s−m−n1

2 dg

with v in Iσ1⊗̂Iτ . By Proposition 6.1, it is also the space spanned by the integrals
of the form ∫

Nn1\Gn1

Wv

[
g,

(
g 0
0 1m−n1

)]
Φ(εn1g)| det g|s−m−n1

2 dg

with v in Iσ1⊗̂Iτ and Φ a Schwartz function on Fn1 . Thus it suffices to show such
an integral belongs to I(σ, τ). By Proposition 14.2, it has the form

∫
Wv0

[(
g 0
0 1n2

)
,

(
g 0
0 1m−n1

)]
| det g|s−n−n1+m−n1

2 dg

with v0 ∈ Iσ⊗̂Iτ .
We formulate a lemma. Applying the lemma to the case r = n1, we see that

the previous expression is indeed in I(σ, τ).

Lemma 14.1. Let σ and τ be representations of the Weil group of degree n and
m respectively. Suppose r < n, r < m. Let

v ∈ Iσ⊗̂Iτ .

The integral
∫

Nr\Gr

Wv

[(
g 0
0 1n−r

)
,

(
g 0
0 1m−r

)]
| det g|s−n−r+m−r

2 dg

belongs to I(σ, τ).

It remains to prove the lemma.

Proof. Suppose n > m. For r = m, the integral of the lemma belongs to
I(σ, τ) by definition. Thus we may assume that r < m and for each v the integral

∫

Nr+1\Gr+1

Wv

[(
g 0
0 1n−r−1

)
,

(
g 0
0 1m−r−1

)]
| det g|s−n−(r+1)+m−(r+1)

2 dg

belongs to I(σ, τ). Then we prove that for each v the integral
∫

Nr\Gr

Wv

[(
g 0
0 1n−r

)
,

(
g 0
0 1m−r

)]
| det g|s−n−r+m−r

2 dg

belongs to I(σ, τ). By descending induction, this will establish the lemma.
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Given v ∈ Iσ⊗̂Iτ , we can find vectors vi ∈ Iσ⊗̂Iτ and smooth functions of
compact support φi on F r × F× such that

v =
∑

i

∫
πσ




a(h)−1 0 0
x h 0
0 0 1n−m


⊗ πτ

(
a(h)−1 0

x h

)
vi φi(x, h)dx|h| d×h .

Here

a(h) = diag(h,

r−1︷ ︸︸ ︷
1, 1, , . . . , 1) .

Indeed, this follows from Lemma 6.1 applied to the group of matrices of the form
(

a(h)−1 0
x h

)
, h ∈ F× , x ∈ F r .

After a change of variables, the integral of the lemma becomes

∑

i

∫
Wvi







g 0 0
x h 0
0 0 1n−m


 ,

(
g 0
x h

)
 φi(x, h)dx

× | det g|s−n−(r+1)+m−(r+1)
2 −1dg |h|s−n−(r+1)+m−(r+1)

2 d×h .

By Proposition 6.2, this has the form

∑

i

∫
Wui







g 0 0
x h 0
0 0 1n−m


 ,

(
g 0
x h

)
 dx

× | det g|s−n−(r+1)+m−(r+1)
2 −1dg |h|s−n−(r+1)+m−(r+1)

2 d×h .

for suitable vectors ui. Now

f 7→
∫

f

(
g 0
x h

)
dx | det g|−1dg d×h

gives an invariant measure on Nr+1\Gr+1. Thus we may write the above expression
as ∑

i

∫

Nr+1\Gr+1

Wui

[(
g 0
0 1n2

)
, g

]
| det g|s−n−(r+1)+m−(r+1)

2 dg .

which by hypothesis is in I(σ, τ). We have proved the lemma in the case n > m.
It remains to treat the case m = n. The inductive argument we have just used

shows that the integral of the lemma is equal to an integral of the form
∫

Nn−1\Gn−1

Wv0

[(
g 0
0 1

)
,

(
g 0
0 1

)]
| det g|s−1dg .

We use once more Lemma 6.1 to write

v0 =
∑

i

∫

F n−1×F×
πσ

(
a(h)−1 0

x h

)
⊗ πτ

(
a(h)−1 0

x h

)
vi φi(x, h)|h| dx d×h

with φi smooth of compact support on Fn−1 × F×. Then the integral takes the
form

∑

i

∫
Wvi

[(
g 0
x h

)
,

(
g 0
x h

)]
| det g|s−1|h|sφi(x, h) dx d×h dg .
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Let Φi be defined by Φi(x, y) = φi(x, y) if y 6= 0 and Φi(x, y) = 0 otherwise. Then
Φi is a Schwartz function and the integral is equal to∑

i

Ψ(s,Wvi , Φi) .

This concludes the proof of the lemma and the proof of the first assertion of the
proposition.

For the second part of Proposition 14.3, we remark that

σ̃ = σ̃2 ⊕ σ̃1

and thus
I(σ̃, τ̃) ⊇ I(σ̃2 ⊗ τ̃) .

By the functional equation, I(σ, τ) contains all functions of the form

γ(s, σ1 ⊗ τ, ψ)−1γ(s, σ2 ⊗ τ, ψ)−1f(1− s)

with f ∈ I(σ̃2⊗τ̃). Using again the functional equation, we see that I(σ, τ) contains

γ(s, σ1 ⊗ τ, ψ)−1I(σ2 ⊗ τ)

or
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
I(σ2 ⊗ τ) .

This concludes the proof of Proposition 14.3.

14.3. End of Proof of Theorem 2.6.

Proof. If σ and τ are irreducible, we have already established Theorem 2.6.
Next we prove Theorem 2.6 when one representation, τ say, is irreducible, thus

of the form τ = τ0⊗αv with τ0 unitary irreducible, v real. The proof is by induction
on the number of irreducible components of σ. Thus we may write

σ = σ1 ⊕ σ2

where σ1 is irreducible and σ1 ¹ σ2. The assertion of the theorem is true for the
pair (σ1, τ). By induction, we may assume it is true for the pair (σ2, τ). We have

I(σ, τ) ⊇ I(σ1, τ) + I(σ2, τ)
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
.

By the induction hypothesis, this is

I(σ1, τ) + I(σ2, τ)
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
= L(σ1 ⊗ τ) + L(σ2 ⊗ τ)

L(s, σ1 ⊗ τ)
L(1− s, σ̃1 ⊗ τ̃)

.

Now
σ ⊗ τ = σ1 ⊗ τ ⊕ σ2 ⊗ τ

and σ1 ⊗ τ ¹ σ2 ⊗ τ . By Proposition 12.3,

L(σ1 ⊗ τ) + L(σ2 ⊗ τ)
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
= L(σ ⊗ τ) .

So we are done.
Now we establish our assertion by induction on the sum of the number of

irreducible components of σ and the number of irreducible components of τ . We
may further assume σ and τ reducible. Thus we may write

σ = σ1 ⊕ σ2
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with σ1 irreducible and σ1 ¹ σ2 and

τ = τ1 ⊕ τ2

with τ2 irreducible and τ1 ¹ τ2. We may further assume our assertion established
for the pairs

(σ1, τ), (σ2, τ), (τ1, σ) .

As before,

I(σ, τ) ⊇ I(σ1, τ) + I(σ2, τ)
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
.

Also
I(σ, τ) ⊇ I(τ1, σ) .

By the induction hypothesis,

I(σ, τ) ⊇ L(σ1 ⊗ τ) + L(σ2 ⊗ τ)
L(s, σ1 ⊗ τ)

L(1− s, σ̃1 ⊗ τ̃)
+ L(τ1 ⊗ σ) .

By Proposition 12.4, the right hand side is L(σ ⊗ τ) and we are done.

15. Proof of Theorem 2.7

Proof. We prove Theorem 2.7 for (n, n − 1). The proof for (n, n) is similar.
With the notations of the theorem, the induced representation Iσ,u is a closed
subspace of the space Iµ,v of a principal series representation. Likewise Iσ′,u′ is is
a closed subspace of the space Iµ′,v′ of a principal series representation. Of course,
we may have equality. Now we claim that

L(s, σu ⊗ σ′u′) = P0(s)
∏

j,k

L(s + vi + v′j , µiµ
′j)

where P0 is a polynomial. Indeed, it suffices to prove this when the tuples σ and
σ′ have only one element. This case is checked directly in the Appendix.

After a permutation, we may assume

v1 ≤ v2 ≤ · · · ≤ vn .

The permutation does not change the irreducible components of the principal series
representation. Thus, a priori, the representation Iσ,u is now only an irreducible
component of Iµ,v, that is, is equivalent to the representation on a subquotient of
Iµ,v. But by Lemma 2.5 Iσ,u is in fact a subrepresentation of Iµ,v. Thus we can
view Iσ,u as a closed invariant subspace of Iµ,v. Likewise, we may assume

v′1 ≤ v′2 ≤ · · · ≤ v′n
and Iσ,u is a closed invariant subspace of Iµ′,v′ .

We have already remarked (Proposition 8.1) that for every Kn-finite f ∈ Iµ,v

and every Kn−1-finite f ′ ∈ Iµ′,v′ the integral Ψ(s,Wf ,Wf ′) is a polynomial multiple
of

∏
j,k L(s + vi + v′j , µiµ

′j), thus a rational multiple of L(s, σu ⊗ σ′u′). Since it is
in fact a holomorphic multiple, we conclude that

Ψ(s,Wf ,Wf ′) = P (s)L(s, σu ⊗ σ′u′)

where P (s) is a polynomial. The vector space generated by the polynomials P is
in fact an ideal. Let P0 be a generator and s0 a zero of P0. Now the map

(f, f ′) 7→ Ψ(s,Wf ,Wf ′)
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from Iσ,u × Iσ′,u′ to L(σu ⊗ σu′) is continuous or, what amounts to the same, the
map

v 7→ Ψ(s,Wv)

from Iσ,u⊗̂Iσ′,u′ to L(σu ⊗ σu′) is continuous. If s0 is not a pole of L(s, σu ⊗ σ′u′),
then all functions Ψ(s,Wf ,Wf ′), with f ∈ Iµ,v Kn-finite and f ′ ∈ Iµ′,v′ Kn−1-finite
vanish at s0. It follows that all functions Ψ(s,Wv), with v ∈ Iσ,u⊗̂Iσ′,u′ , vanish at
s0. Similarly, if s0 is a pole of order r of L(s, σu⊗σ′u′), then the functions Ψ(s,Wv),
with v ∈ Iσ,u⊗̂Iσ′,u′ , have a pole of order ≤ r−1 at s0. In any case, this contradicts
the fact that L(s, σu⊗σ′u′) = Ψ(s,Wv) for a certain v. Thus P0 is a constant. Thus
we find

L(s, σu ⊗ σ′u′) =
∑

j

Ψ(s, Wfj ,Wf ′j )

for suitable Kn finite elements fj ∈ Iσ,u and Kn−1 finite elements f ′j ∈ Iσ′,u′ .

16. Appendix: the L and ε factors

For the convenience of the reader, we recall the precise definitions of the L and
ε factors attached to a representation of the Weil group WF and we prove some
relations between them.

We recall the definition of the Weil group. First WC = C×. Denote by κ ∈
Gal(C/R) the complex conjugation. Then WR is the non-trivial extension

C× → WR → {1, κ} .

Thus WR contains an element κ0 which maps onto κ and verifies

κ2
0 = −1 , κ0zκ−1

0 = z if z ∈ C× .

Moreover
WR = C× ∪ C×κ0 .

The homomorphism
WR → R×

defined by
κ0 7→ −1 , z 7→ zz

is surjective. Its kernel is the derived group of WR. Thus we can view any one
dimensional representation of WR as a one dimensional representation of R×.

First, for any representation σ of the Weil group WF ,

L(s, σ ⊗ αu
F ) = L(s + u, σ) , ε(s, σ ⊗ αu

F , ψ) = ε(s + u, σ, ψ) .

Second, if σ = σ1 ⊕ σ2, then

L(s, σ) = L(s, σ1)L(s, σ2) , ε(s, σ, ψ) = ε(s, σ1, ψ)ε(s2, σ, ψ) .

Thus it suffices to define the factors for σ irreducible. We may even assume σ
normalized, that is, we may assume that the restriction of σ to R×+ is trivial.

We first recall the definition of the L and ε factors attached to a one dimensional
representation of WF , or, equivalently, to a character µ of F×. The book [27] is a
convenient reference. Up to a scalar, the factor L(s, µ) is essentially defined by the
condition that, for any Schwartz function Φ on F , the integral

Z(s, µ, Φ) =
∫

Φ(x)|x|sF µ(x)d×x
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be a holomorphic multiple of L(s, µ). More precisely, when Φ is standard, this
integral is of the form P (s)L(s, µ), where P is a polynomial, and any polynomial
P occurs for a suitable Φ.

Suppose F = R. For µ = 1R×

L(s, 1R×) = π−
s
2 Γ

(s

2

)

and
Z(s, 1R× , Φ0) = L(s, 1R×) , where Φ0(x) = e−πx2

.

Denote by η the sign character of R×. Then

L(s, η) = π−
s+1
2 Γ

(
s + 1

2

)

and
Z(s, η, Φη) = L(s, η) , where Φη(x) = xe−πx2

.

Now suppose F = C. For µ = 1C×

L(s, 1C×) = 2(2π)−sΓ(s)

and
Z(s, 1C× ,Φ0) = CL(s, 1C×) where Φ0(z) = e−2πzz ,

and C is a suitable constant. The definition of the L factors is so chosen that

L(s, 1C×) = L(s, 1R×)L(s, η) ,

as follows from the duplication formula.
If µ(z) = zm(zz)−

m
2 where m ≥ 1 is an integer, then

L(s, µ) = 2(2π)−s−m
2 Γ

(
s +

m

2

)

and
Z(s, µ, Φm) = CL(s, µ) where Φm(z) = zme−2πzz .

If µ(z) = zm(zz)−
m
2 , then

L(s, µ) = 2(2π)−s−m
2 Γ

(
s +

m

2

)

as before and

Z(s, µ, Φm) = CL(s, µ) where Φm(z) = zme−2πzz .

The ε factor is defined by the functional equation

Z(1− s, µ−1, Φ̂)
L(1− s, µ−1)

= ε(s, µ, ψ)
Z(s, µ, Φ)
L(s, µ)

.

We have already indicated the dependence on ψ.
Suppose F = R. We take ψR(x) = e2iπx. Then FψR(Φ0) = Φ0 and so

ε(s, 1R× , ψR) = 1 .

On the other hand, FψR(Φη) = −iΦη and so

ε(s, η, ψR) = −i .

Suppose F = C. We take ψC(z) = ψR(z + z) = e2iπ(z+z). Then FψC(Φ0) = Φ0

and so
ε(s, 1C× , ψC) = 1 .
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On the other hand,

FψC(Φm) = (−i)mΦm , FψC(Φm) = (−i)mΦm

and so, for µ(z) = zm(zz)−
m
2 or µ(z) = zm(zz)−

m
2 , we find

ε(s, µ, ψC) = (−i)m .

Now let Ω be a character of C×. We can induce it to WR. We obtain a two
dimensional representation σΩ of WR. If we replace Ω by the character Ωκ defined
by Ωκ(z) = Ω(z), the class of the representation does not change. If Ω does not
factor through the norm, then σΩ is irreducible. Within equivalence, the irreducible
representations of WR are the representations of dimension 1 and the irreducible
representations of the form σΩ. At this point we may as well assume Ω normalized.

If Ω = 1C× , then σΩ is reducible. In fact,

σΩ = 1R× ⊕ η .

Thus
L(s, σΩ) = L(s, 1R×)L(s, η) = L(s,Ω) .

On the other hand,

ε(s, σΩ, ψR) = ε(s, 1R× , ψR)ε(s, η, ψR) = −i = λ(C/R, ψR)ε(s, Ω, ψC)

where
λ(C/R, ψR) := −i .

This motivates the following definitions. For an arbitrary Ω,

L(s, σΩ) := L(s,Ω) , ε(s, σΩ, ψR) := λ(C/R, ψR)ε(s,Ω, ψC) .

When F = R we need some relations between those factors. Suppose that Ω is a
normalized character of C×, say Ω(z) = zm(zz)−

m
2 where m ≥ 0 is an integer. The

representation (πσΩ , IσΩ) of GL(2,R) is a discrete series representation (or limit of
discrete series if Ω is trivial). Its construction in terms of the Weil representation
is described for instance in [14]. In the same reference, it is shown that there exists
two (non-normalized) characters µ1, µ2 of R× such that πσΩ is a subrepresentation
of πµ1,µ2 . Thus we can view IσΩ as a closed invariant subspace of the space Iµ1,µ2

of C∞ functions f on GL(2,R) such that

f

[(
a1 0
x a2

)
g

]
= µ1(a1)|a1|−1/2µ2(a2)|a2|1/2f(g) .

It is in fact the only proper closed invariant subspace if Ω is non-trivial. If Ω is
trivial, it is the whole space.

Suppose m is even. We have two choices for (µ1, µ2):

µ1(t) = |t|
m
2
R η(t) , µ2(t) = |t|−

m
2

R

and
µ′1(t) = |t|

m
2
R , µ′2(t) = |t|−

m
2

R η(t) .

The map µ 7→ µ−1 exchanges these two sets of characters. Suppose m is odd. We
have again two choices

µ1(t) = |t|
m
2
R , µ2(t) = |t|−

m
2

R
and

µ′1(t) = |t|
m
2
R η(t) , µ′2(t) = |t|−

m
2

R η(t) .

We will not consider the second choice.
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Lemma 16.1. Suppose that IσΩ is a subrepresentation of Iµ1,µ2 . Then

L(s, σΩ) = P (s)L(s, µ1)L(s, µ2) ,

where P is a polynomial. Moreover,

γ(s, σΩ, ψR) = γ(s, µ1, ψR)γ(s, µ2, ψR) .

Remark 16.2. The lemma is true for any choice of (µ1, µ2). However, we only
prove that there is a choice for which the lemma is true because this is all what we
need.

Proof. Recall the duplication formula

21−sΓ(s) = π−1/2Γ
(s

2

)
Γ

(
s + 1

2

)
,

and the formula
Γ(t + r) = Qr(t)Γ(t)

where

(16.1) Qr(t) = (t + r − 1)(t + r − 2) · · · t .

Note the functional equation

(16.2) Qr(t) = (−1)rQr(−t− r + 1) .

Suppose first m is odd. Let us write m = 2r + 1 with r ≥ 0. Then

L(s, σΩ) = L(s,Ω) = 2(2π)−(s+r+ 1
2 )Γ

(
s + r +

1
2

)
.

By the duplication formula, this is

L(s, σΩ) = π−(s+r+1)Γ
(

s + r + 1
2

2

)
Γ

(
s + r + 1

2 + 1
2

)
.

On the other hand, with

µ1(t) = |t|m
2 , µ2(t) = |t|−m

2 ,

we get

L(s, µ1)L(s, µ2) = π−sΓ
(

s + r + 1
2

2

)
Γ

(
s− r − 1

2

2

)
.

We have
s + r + 1

2 + 1
2

− s− r − 1
2

2
= r + 1 .

Thus we find

L(s, σΩ) = π−r−1Qr+1(t)L(s, µ1)L(s, µ2) , t =
s− r − 1

2

2
.

Similarly, σ̃Ω is the representation induced by Ω−1 = Ωκ, thus is in fact equivalent
to σΩ. We find then

L(s, σ̃Ω) = π−r−1Qr+1(t)L(s, µ1)L(s, µ2) = π−r−1Qr+1(t)L(s, µ−1
2 )L(s, µ−1

1 ) .

Now replacing s by 1− s replaces t = s−r− 1
2

2 by −t− r. Thus we find

γ(s, σΩ, ψR) = ε(s,Ω, ψC)λ(C/R, ψR)
Qr+1(−t− r)

Qr+1(t)
L(1− s, µ−1

1 )L(1− s, µ−1
2 )

L(s, µ1)L(s, µ2)
.
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Now Qr+1(−t−r)
Qr+1(t)

= (−1)r+1, ε(s, Ω, ψC) = (−i)2r+1, λ(C/R, ψR) = −i. Thus

γ(s, σΩ, ψR) =
L(1− s, µ−1

1 )L(1− s, µ−1
2 )

L(s, µ1)L(s, µ2)
= γ(s, µ1, ψR)γ(s, µ2, ψR) .

Thus we find the required identity.
Now we assume m even and we write m = 2r, r ≥ 0. Then

L(s, σΩ) = 2(2π)−s−rΓ(s + r) .

By the duplication formula, this is

L(s, σΩ) = π−s−r− 1
2 Γ

(
s + r

2

)(
s + r + 1

2

)
.

Now, with
µ1(t) = |t|m

2 η(t) , µ2(t) = |t|−m
2 ,

we get

L(s, µ1)L(s, µ2) = π−s− 1
2 Γ

(
s + r + 1

2

)
Γ

(
s− r

2

)
.

We find

L(s, σΩ) = π−rQr(t)L(s, µ1)L(s, µ2) , t =
s− r

2
.

Similarly, with
µ′1(t) = |t|m

2 , µ′2(t) = |t|−m
2 η(t) ,

we get

L(s, µ′1)L(s, µ′2) = π−s− 1
2 Γ

(
s + r

2

)
Γ

(
s− r + 1

2

)
.

This time we find

L(s, σΩ) = π−rQr(t′)L(s, µ′1)L(s, µ′2) , t′ =
s− r + 1

2
.

We remark that changing s to 1− s changes t′ to −t− (r − 1) where t = s−r
2 . We

also remark that
L(s, µ−1

1 )L(s, µ−1
2 ) = L(s, µ′1)L(s, µ′2) .

At this point, we find

γ(s, σΩ, ψR) = ε(s, Ω, ψC)λ(C/R, ψR)
Qr(−t− (r − 1))

Qr(t)
L(1− s, µ−1

1 )L(1− s, µ−1
2 )

L(s, µ1)L(s, µ2)
.

Now Qr(−t−(r−1))
Qr(t) = (−1)r, ε(s, Ω, ψC) = (−i)2r, λ(C/R, ψR) = −i. Thus

γ(s, σΩ, ψR) = −i
L(1− s, µ−1

1 )L(1− s, µ−1
2 )

L(s, µ1)L(s, µ2)
.

On the other hand,
ε(s, µ1, ψR)ε(s, µ2, ψR) = −i .

Thus we find the required relation.

We need a more complicated lemma of the same type.
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Lemma 16.3. Let Ω and Ξ be two normalized characters of C×. Choose as
before (µ1, µ2) (resp. (ν1, ν2)) such that πσΩ is a subrepresentation of πµ1,µ2 (resp.
πν1,ν2 .). Then

L(s, σΩ ⊗ σΞ) = P (s)
∏

i,j

L(s, µiνj)

where P is a polynomial. Moreover,

γ(s, σΩ ⊗ σΞ, ψR) =
∏

i,j

γ(s, µiνj , ψR) .

Remark 16.4. Again, the lemma is true for any choice of the characters. We
only prove it is true for one choice.

Proof. We may assume

Ω(z) = zm(zz)−m/2 , Ξ(z) = zn(zz)−n/2 , m ≥ n ≥ 0 .

The representation σΩ⊗σΞ is the direct sum of the representations induced by the
characters ΩΞ and ΩΞκ respectively. Moreover

ΩΞ(z) = zm+n(zz)−
m+n

2 , ΩΞκ(z) = zm−n(zz)−
m−n

2 .

Accordingly, we find

L(s, σΩ ⊗ σΞ) = 22(2π)−2s−mΓ
(

s +
m + n

2

)
Γ

(
s +

m− n

2

)

and
ε(s, σΩ ⊗ σΞ, ψR) = λ(C/R, ψR)2(−i)m+n+m−n = (−1)m+1 .

By the duplication formula,

L(s, σΩ⊗σΞ) = π−2s−m−1

× Γ
(

s + m+n
2

2

)
Γ

(
s + m+n

2 + 1
2

)
Γ

(
s + m−n

2

2

)
Γ

(
s + m−n

2 + 1
2

)
.

Suppose that m and n are both odd. Then (−1)m+1 = 1. The characters µiνj

are the following characters

|t|m+n
2 , |t|m−n

2 , |t|n−m
2 , |t|−m+n

2 .

The map µ 7→ µ−1 permutes this set of characters. Now

∏
L(s, µiνj) = π−2sΓ

(
s + m+n

2

2

)
Γ

(
s + m−n

2

2

)
Γ

(
s + n−m

2

2

)
Γ

(
s− m+n

2

2

)
.

Thus
L(s, σΩ ⊗ σΞ) = π−m−1P (s)

∏
L(s, µiνj)

where

P (s) = Qm+1
2

(
s + n−m

2

2

)
Qm+1

2

(
s− n+m

2

2

)
.

This proves the first assertion. We use once more the functional equation (16.2) to
conclude that

P (1− s) = (−1)m+1P (s) = P (s) .
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Note that here the functional equation of Qm+1
2

exchanges the two factors of P .
We finish the proof as before. We have

γ(s, σΩ ⊗ σΞ, ψR) =
L(1− s, σΩ ⊗ σΞ)

L(s, σΩ ⊗ σΞ)

=
P (1− s)

P (s)

∏
L(1− s, µiνj)∏

L(s, µiνj)
=

∏
γ(s, µiνj , ψR) .

Now we assume that m and n are even. Then (−1)m+1 = −1. The characters
µiνj can be taken to be the following ones:

|t|m+n
2 , |t|m−n

2 η(t) , |t|n−m
2 η(t) , |t|−m+n

2 .

Note that µ 7→ µ−1 is a permutation of that set. It follows that
∏

L(s, µiνj) = (π)−2s−1

× Γ
(

s + m+n
2

2

)
Γ

(
s + 1 + m−n

2

2

)
Γ

(
s + 1 + n−m

2

2

)
Γ

(
s− m+n

2

2

)

Thus
L(s, σΩ ⊗ σΞ) = π−mP (s)

∏
L(s, µiνj) ,

where

P (s) = Qm
2

(
s + 1 + n−m

2

2

)
Qm

2

(
s− m+n

2

2

)
.

Thus the first assertion is proved. For the second assertion, we get again

P (s) = P (1− s)(−1)m = P (1− s)

and

γ(s, σΩ ⊗ σΞ, ψR) = −P (1− s)
P (s)

∏
L(1− s, µiνj)∏

L(s, µiνj)
= −

∏
L(1− s, µ−1

i ν−1
j )∏

L(s, µiνj)
.

Now ∏
ε(s, µiνj , ψ) = −1 .

Thus we get the required relation.
Now suppose m even and n odd. Then we have two choices for the characters

corresponding to Ω. Call them as before (µ1, µ2) and (µ′1, µ
′
2). For Ξ we consider

only the first choice. Thus µjνj are the characters

|t|m+n
2 , |t|m−n

2 , |t|n−m
2 η(t) , |t|−m−n

2 η(t)

and µ′iνj are the characters

|t|m+n
2 η(t) , |t|m−n

2 η(t) , |t|n−m
2 , |t|−m−n

2 .

The map µ 7→ µ−1 exchanges the two sets. As before, we have

L(s, σΩ ⊗ σΞ) = π−mP (s)
∏

L(s, µiνj) = π−mP ′(s)
∏

L(s, µ′iνi)

where

P (s) = Qm
2

(
s + 1 + n−m

2

2

)
Qm

2

(
s + 1− n+m

2

2

)

P ′(s) = Qm
2

(
s + n−m

2

2

)
Qm

2

(
s− n+m

2

2

)
.
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We have P (s) = (−1)mP ′(1− s) = P ′(1− s) and

γ(s, σΩ ⊗ σΞ, ψR) = −P (1− s)
P (s)

∏
L(1− s, µ′iνj)∏

L(s, µiνj)
= −

∏
L(1− s, µ−1

i ν−1
j )∏

L(s, µiνj)
.

Now ∏
ε(s, µiνj , ψ) = −1 .

Thus we get again the required relation.
Finally we assume m odd and n even. This time we have two choices for the

characters corresponding to Ξ, νj and ν′j . For Ω we only use the first choice. Thus
µjνj are the characters

|t|m+n
2 η(t) , |t|m−n

2 , |t|n−m
2 η(t) , |t|−m−n

2 ,

and µiν
′
j are the characters

|t|m+n
2 , |t|m−n

2 η(t) , |t|n−m
2 , |t|−m−n

2 η(t) .

Again, the map µ 7→ µ−1 exchanges the two sets. We argue exactly exactly as in
the previous case. This time

P (s) = Qm−1
2

(
s + 1 + n−m

2

2

)
Qm+1

2

(
s− n+m

2

2

)

P ′(s) = Qm+1
2

(
s + n−m

2

2

)
Qm−1

2

(
s + 1− m+n

2

2

)

but we have again P (s) = (−1)mP ′(1− s) = −P ′(1− s).
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