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The goal of these notes is to give a definitive exposition of the local Archimedean

theory of the Rankin-Selberg integrals for the group GL(n).

Accordingly, the

ground field F' is either R or C. The integrals at hand are attached to pairs of
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2 HERVE JACQUET

irreducible representations (w,V) and (7', V') of GL(n, F) and GL(n', F) respec-
tively. More precisely, each integral is attached to a pair of functions W and W' in
the Whittaker models of m and 7’ respectively and, in the case n = n’, a Schwartz
function in n variables. More generally, it is necessary to consider instead of a
pair (W, W’) a function in the Whittaker model of the completed tensor product
V&V'. The integrals depend on a complex parameter s. They converge absolutely
for Rs >> 0. The goal is to prove that they extend to holomorphic multiples of
the appropriate Langlands L-factor, are bounded at infinity in vertical strips, and
satisfy a functional equation where the Langlands e factor appears. This is what
is needed to have a complete theory of the converse theorems ([6], [7], [8]). An
alternate approach may be found in [20].

More is proved. Namely, it is proved that the L-factor itself is a sum of such
integrals. At this point in time, this result is not needed. Nonetheless, it has
esthetic appeal. Indeed, it shows that the factors L and e are determined by the
representations m and 7’. Anyway, by using this general result and by following
Cogdell and Piatetski-Shapiro ([8]), it is shown that for the case (n,n — 1) and
(n,n) the relevant L-factor is obtained in terms of vectors which are finite under
the appropriate maximal compact subgroups. The result is especially simple in the
unramified situation, a result proved by Stade ([22], [23]) with a different proof.

A first version of these notes was published earlier ([18]). The present notes are
more detailed. Minor mistakes of the previous version have been corrected. More
importantly, in contrast to [18], the methods are uniform as all the results are
derived from an integral representation of the Whittaker functions, the theory of
the Tate integral, and the Fourier inversion formula. The estimates for a Whittaker
function are derived from coarse estimates which are then improved by applying
the same coarse estimates to the derivatives of the Whittaker function, a method
first used by Harish-Chandra. This is simpler than giving an explicit description of
the Whittaker functions and then deriving estimates, as was done in the previous
version. In [13], I proposed another approach to the study of the integrals. Again,
the approach of the present notes is in fact simpler. Thus I hope that these notes
can be indeed regarded as a definitive treatment of the question.

Difficult results on smooth representations and Whittaker vectors due to
Wallach ([26], Vol. II), Casselman ([3]), Casselman and his collaborators ([4]) are
used in an essential way.

Needless to say, these notes owe much to my former collaborators, Piatetski-
Shapiro and Shalika. In particular, the ingenious induction step from (n,n — 1) to
(n,n) is due to Shalika.

Finally, I would like to thank the referee for reading carefully the manuscript
and suggesting improvements to the exposition.

2. The main results

Let F' be R or C. If F' =R, we denote by |z|r the ordinary absolute value. If
F =C, we set |z|p = 2Z. We also write a(x) = ap(z) = |z|F.

In these notes we consider representations (m, V') of GL(n, F'). We often write
G,(F) or even G, for the group GL(n, F'). Furthermore, we set K, = O(n,R) if
F=R,and K,, =U(n,R) if F = C. We let Lie(G,,(F')) be the Lie algebra of G,,(F)
as a real Lie group and U(G,,(F')) the enveloping algebra of Lie(G,,(F")). The space
V' is assumed to be a Frechet space. The representation on V' is continuous and C°.
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Let Vi be the space of K, -finite vectors in V' so that Vj is a (Lie(Gy(F)), Ky))-
module. We assume that the representation of (Lie(Gy (F')), Ky,) on Vj is admissible
and has a finite composition series. Finally, we assume that the representation is of
moderate growth, a notion that we now recall. For g € GL(n,C) or g € GL(n,R),
we set

(2.1) g = "97", llglla :==Tr(g 'g) + Tr(g~" 97).

Then, for every continuous semi-norm g on V, there is M and another continuous
semi-norm g’ such that, for every v € V, g € G, (F),

pu(m(g)v) < gl u' (v)

It is a fundamental result of Casselman and Wallach that V' is determined, up to
topological equivalence, by the equivalence class of the representation of the pair
(Lie(Gn(F)), Kp) on Vy. In other words, V' is the canonical Casselman-Wallach
completion of the Harish-Chandra (Lie(G,(F)), K,)-module V;. It will be conve-
nient to call such a representation a Casselman-Wallach representation.

If (7', V’) is similarly a representation of G, satisfying the same conditions
and Vj is the space of K, /-finite vectors in V', then the representation 7 @ 7’ of
G, ® Gy on the (projective) complete tensor product V&V’ is the Casselman-
Wallach completion of the (Lie(Gy, x Gy), K, X K,/) module Vh ® V.

In addition, in these notes, the representations 7 at hand have a central char-
acter w, : F* +— C* defined by

we(2)ly =7(21,) .

Let ¥ be a non-trivial additive character of F'. If V is a real or complex finite
dimensional vector space, we will denote by S(V) the space of complex-valued
Schwartz functions on V. Let ® € S(V) where V. = M(a x b, F), the space of
matrices with a rows and b columns. We denote by Fy(®), or simply <T>, the
Fourier transform of ®. Unless otherwise specified, it is the function defined on the
same space by

Fu@)X) = [ @) (T X)) ay

The Haar measure is self-dual so that Fy o .7-'5 is the identity.
We let N,, be the group of upper triangular matrices with unit diagonal and
we denote by 6y, ,, or simply 8, the character 8, : N, (F) — C* defined by

(2.2) O (u) = ¢<Zui7i+1> .

A ¢ form on V is a continuous linear form A such that
A(m(u)o) = B (w)v

for each v € V and each u € N,,(F). We let A,, be the group of diagonal matrices,
B,, the Borel subgroup B,, = A, N,,. We denote by J,, the module of the subgroup
B, (F). We often write N,, for the group !N,,.

To formulate our results, we first consider certain induced representations of
GL(n, F). Let Wg be the Weil group of F and o = (01,09,...,0,) an r-tuple of
irreducible unitary representations of Wr (see the Appendix). Thus the degree of
o; noted d; = deg(c;) is 1 or 2. Let m; or 7, be the representation of GL(d;, F)
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attached to o; . Denote by I; its space. Let u = (uy,us,...,u,) be an r-tuple of
complex numbers. Let P be the lower parabolic subgroup of type
(d1,da, ..., d,)
with Levi-decomposition
P=MU

in GL(n,F), n="73_,d;. Here M is the group of matrices of the form
(2.3) m = 0 my ... 0 ,m; € Gdi .

* * * *

0 0o ... m,

We denote by dp the module of the group P(F).
We denote by (74,4, Is.) the representation of GL(n, F') induced by the repre-
sentation
(m®a“, mea", ..., 7 @a")
of P. Thus I,, may be viewed as a space of functions f on GL(n, F') with values
in the projective tensor space I1 @& - - - @I, such that

f(vmg) = 8% (m)
x m1(my)| detmy [t @ ma(ms)|det ma|™? @ - - - @ mp(my)| det my: | f(g)

for v e U(F), m € M(F'). The representation 7, , is by right shifts.

For each u, there is a non zero continuous linear ¢ form A on I, , and, within
a scalar factor, a unique one. Indeed if o is irreducible of degree 1, then 7, , is
a one dimensional character of G1(F) = F* and our assertion is vacuous. If o is
irreducible of degree 2, then F' = R and 7, is a discrete series representation of
G2(R) and our assertion is then well-known ([21]). In the general case 7, , is an
induced representation and our assertion follows from Theorem 15.4.1 in [26] II.
We often say that 7., is a generic induced representation.

For each f € I, ,, we set

Wi(9) = M7oul(g)f) -

We denote by W(me,, : ¥) the space spanned by the functions W.
For every integer n, we denote by w,, the n x n permutation matrix whose anti
diagonal entries are 1. In particular,

(01
W9 = 1 0 .

We also set

We set
Ti(g) = mi(wa, 9" wa,) -
Thus if d; = 1, then 7; is a character of F* and 7;(z) = m;(z)~ L. If d; = 2, then
7;(g) is isomorphic to the representation contragredient to m;. In particular, it is
the representation associated to the representation g; of Wr contragredient to o;.
If fisin I, ,, then the function f, defined by

flg) = flwn g,
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belongs to the space of the representation induced by the representation
(fr@a ™ T @a ™ T @a™)

of the subgroup

P :=w,(P)'wy.

Set
o = (0,,00-1,...,01)
u = (—Upy,—Up_1,...,—Uu1).

We may identify this induced representation to the space Iz 5. If we do so, then f
belongs to Iz 5. We define a ) linear form \ on Iz 3 by

M) = M)
We see then that the function
Wi(g) == Wy(wng")

verifies

where

Thus ﬁ\/; belongs to W (75 g : ).

The semisimple representations attached to m,, and 7z are contragredient
to one another. In general, the representations 7, , and 7z need not be contra-
gredient to one another if they are not irreducible.

Let 7 be a semisimple representation of Wg. The factors L(s,7), L(s,7),
€(s,7,1) are defined (see the Appendix). As usual, we set

L(1-s,7T)
s, T, ) = €(s, T,9) —————=
o) = els, ) <

If 7 is of degree 1, these are the Tate factors. In particular, the factor e(s, 7,)

is defined by the functional equation

/a;(x)T_l(x) 2| *d* 2 = (s, T, 1/1)/<I>(x)7(m)|x|5
where the Fourier transform &5, also noted Fy(®), is defined by

@@:/@@WFWM%

and dy is the self-dual Haar measure. If we denote by 1, the character defined by
ta(z) = 9(ax), we have

(s, 1 va) = pla)lal” ™2 (s, 1, ).
In general,
V(8,7 0a) = det(7)(a)|a| "D (s, 7, 1))
where det(7) is regarded as a character of F* and d is the degree of 7.
We let L(7) be the space of meromorphic functions f(s) which are holomorphic
multiples of L(s,7) and furthermore satisfy the following condition. Let P(s) be a
polynomial such that P(s)L(s, 7) is holomorphic in the strip

A<Rs<B.
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Then P(s)f(s) is bounded in the same strip. Then we define a semi-norm on £(7)

pupaB(f)= sup |P(s)f(s)| .
A<Rs<B

The space £(7) is complete for the topology defined by the semi-norms pp 4, 5.
Now consider two pairs (o,u) and (o/,u"). We set

Oy = @ ag; ® Oé%i
and define o], similarly.
We choose a 1 linear form A on I, and a ¢ linear form A on Iy 4. The
integrals we want to consider are as follows. For f € I, ., f' € I, 4, set

W=W;, W =W,

If n > n/, we set

ey wewwy= [w( 80 Ywigldeg T dg.

In addition, for 0 < j <n —n’ — 1, we set
g 0 0 o

(25)  W(s, W, W') = /W X 1 0 W'(g)|detg|*~ = dXdg.
0 0 lyn,

Here X is integrated over the space M(m x j, F') of matrices with m rows and j
columns. Thus Uy (s, W,W') = U(s, W,W’). In each integral, g is integrated over
the quotient Ny, (F)\Gy (F).

If n = n', we let ® be a Schwartz function on F™ and we set

(2.6) U(s, W, W', @) = /W(g)W’(g) ©[(0,0,...,0,1)g] |det g|°dg .
Again, g is integrated over the quotient N, (F)\G(F).
In this paper, we prove the following results.

THEOREM 2.1.

(i) The integrals converge for fs >> 0.
(ii) Fach integral extends to a meromorphic function of s which is a holomor-
phic multiple of L(s, 0, ® 0.,/), bounded at infinity in vertical strips.
(iii) The following functional equations are satisfied. If n =n' + 1

U1 =5, W, W) =wr,  (~1)"Fwr,  (~1)9(5,00 ® o, ) U(s, W, W)
Ifn>n'+1,
U,(1— s,p(wn,n/)w,ﬁfv’)
= Wﬂa,u(fl)n/wwg/,u/ (=1)y(s,00® Ulu/a w)\lln—n’—l—j (s, W, W/) .
Ifn=n/,

U(1— 5, W, W, ®) = wr  (—~1)" ' (s,00 @ 0ly, ) U(s, W, W', D).

Here
1,/ 0
Wn,n' = 0 W .
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Recall that wy,, and wr_, , are the central characters of ms, and my/ .,
respectively. Note that det o, = wy, , and deto,, = wx_, .

REMARK 2.2. The functional equations are slightly different from the ones in
earlier references. This is because the conventions are themselves different.

Following Cogdell and Piatetski-Shapiro, we remark that the assertions of the
theorem for a given v imply the assertions are true for any . Indeed, consider for
instance the case n =n’. Set ™ = 75y, T = Tor . Let a € F*. Set () := ¢(ax)
and

m = diag(a""1,a""2,...,a,1).
n(n=1) (n+)n(n=1)

Then detm =a~ =z, §,(m) = |a| 12 , and mw,, = a" tw,m~! For W €

W(r ), W e W(r' : ), set
Wi(g) = W(mg), Wy,(g) = W' (mg) .
Then W,,, € W(r : ¢,), W), € W(r' : ¢,). After changing g to m~1g, we find

n(n—1)
2

U (s, Wy, W), ®) = 6,(m)|a|* U(s, W, W' ®).

Thus the assertions about the analytic properties of the integrals are true for 1,. We
pass to the functional equation. For clarity, we define a priori a factor v(s, m x 7/, 1)
by the functional equation

(1 — s, W, W, Fy(®)) = v(s,7 x 7', )wn(—1)" " W(W, W', D).
We have to check the relations
V(s m x 7', 1) = watwns (@) [a" 7D (s, m x 7 9),
and
y(s,m x 7 ) =~(s, 7 x W,P).
We stress that
Fpa()(X) = |a]"/*®(aX).
For n = 1, from the Tate functional equation, we do get
¥(s,x0%a) = x(@)]al* ™25 (s,x,9) -
Forn > 1
Wm(g) = W(mwn,g") = W(a" tw,m™" g*) = we(a)" ' W(w,m™* ¢*).
It will be convenient to use the notation

—_—N—
(2.7) n =(0,0,...,0,1) .

Now
(L= s, Wi, Wi, P, (@)
= wrwnr ()" af /W(wnmbgb)W’(wnmbgqﬂ(@)(aeng) et gl'*dg
After changing g into a~'g and then g into m~'g, we find

8 (M) wmewns ()" |a] T35 W(1 — s, W, W/, Fy (@)
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Applying the functional equation for ¢, this becomes

On (M) wawyr (a)™ |a| st (s, m x ' P)wr(=1)"71

< [ WigWlg) Bleng) |detgl*dy.
Changing g into mg, we get
Wawa (a)” \a|”2(57%)7(5,7r x 7! ) (=) (s, W, W/, ®).
Comparing with the functional equation for ., we do find
V(8,7 X 7' 1he) = wawar (@) |a\"2(571/2)7(s,7r x 7' ).
In particular, for a = —1, we get
v(s,m x 7' ) = wrwp (—1)" (s, x 7', ).
Now suppose W' € W(r' : ¢), W € W(x : ¢). Then
T(1— 5, W, W, Fy(®)) = wawn (1) V(1 — 5, W, W', F(®)) .
Applying the functional equation for v, we get
W (1) (s, x 7 ) we (1)U (s, W, W', ®).
Applying the relation between (s, 7 x 7/,%) and (s, 7 x 7', ), we find
= W (1) y(s,m x 7, P)U (s, W, W, D).
Thus we see that indeed
(s, 7 x m ) =y(s,m x 7, 1h).
THEOREM 2.3. Let the notations be as in Theorem 2.1.
(1) Supposen > n'. Then each integral (s, Wy, W) belongs to L(o, ®0,,))
and the map
(fof) = (s, Wy, Wyr)
from I ., X Ipi 4 to L(oy, ® 0l,)) is continuous.

(ii) Suppose n = n'. Then each integral U(s, W, Wy, ®) belongs to L(o, ®
o) and the map
(fvflv(p) = \I/j(sa Wf,Wf/,(I))
from I, X Ip o X S(F™) to L(oy, ® 0),)) is continuous.

We can also consider the projective tensor product of the representations 7, ,,
and 7, .. It is equivalent to an induced representation of GL(n, F)) x GL(n/, F).
The linear form A ® A’ extends to a continuous linear form on the tensor product
L,,u@.fg/’u/. For f € Iawu@@L,/’u/, we can set

W(ga g/) = )‘(Wa,u(g) & 7Tr7’,u/ (g/)f)
and then define integrals containing W. If n > n’,
g O 0 -
\Ifj(s,W):/W X 1 0 ,g| |detg|®~ =
0 0 1,_p—;

dXdg.

Ifn=n
(s, W, D) = / W (g, 9) B[(0,0,...,0,1)g] | det g|*dg.
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The assertions of Theorems 2.1 and 2.3 are still true for these more general integrals.

At this point, we recall a result of [4]. The authors define a functor V +— W, (V)
from the category of the Casselman-Wallach representation to the category of finite
dimensional complex vector spaces. The functor is exact and the dual of ¥, (V)
can be functorially identified with the space of (continuous) ¢ form on V. As a
result, we have the following extension lemma.

LEMMA 2.4. Let V be a Casselman-Wallach representation and Vy a closed
invariant subspace of V.. Any ¢ form Ay on Vi extends into a ¢ form on V.

Now let us consider an induced representation (744, l,). We state a useful
lemma.

LEMMA 2.5. Suppose further that
Rup < Rug < --- < Ru,. .

Let V. = V1/V, be an irreducible subquotient of I,,. Suppose that V is generic,
that is, admits a non-zero i linear form. Then Vo = 0.

Proor. Let A be a non-zero 1 form on I, ,. The map
f g Wf7 Ia,u - W(T‘—o,u : ¢)

is then injective and thus bijective. The simplest proof of this fact is to adapt the
methods of [17] where the p-adic case is treated. In particular, the linear form A
cannot vanish identically on a closed invariant subspace of I, ,. Let V = V;/Va be
an irreducible subquotient of I, ,. Thus V; and V5 are closed invariant subspaces.
Suppose that V' admits a non-zero v linear form \; which we can view as a linear
form on V4 which vanishes on V5. By Lemma 2.4, it extends to a v linear form on
15, The extension is a scalar multiple of A\. Thus V5 = 0. ([

In particular, consider the Langlands quotient V' = I,,/Vy where Vj is the
maximal invariant subspace # I, ,,. We see that if V' is generic then Vj = 0, that is,
15, is irreducible and generic. In general, it follows that I, , has a unique minimal
invariant subspace which is generic. For an algebraic proof of these results, see [24].
See also [5] which gives analogous results for general p-adic reductive groups.

We have now a more precise result.

THEOREM 2.6. Let (o,u) and (o', u’) be two pairs such that
Rup < Rug < -+ < Ru,, Ruj < Ruby < -+ <Rl

(i) Supposen >n'. Then for everym in L(o, ®0",), there is f € Iy &1y o
such that
m(s) = U(s, W),
with
Wi(g,g') = ATou(9) ® Tor s (9" f)-
(ii) Suppose n = n'. Then for every m in L(o, ® o.,), there are elements
fi € IU’UQ%IU/)U/ and Schwartz functions ®; such that

m(s) = Z \I}(S, Wiv q)l)

where
Wz(g7g/) = )‘(Wd,u(g) ® 7Ta",u’ (gl)fz) .
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Finally, when n’ = n — 1 or n’ = n we have an even more precise result. A
standard Schwartz function on M (a x b, F') is a function of the form

®(z) = P(z)exp (—7Tr( ‘z.2)) , F =R,
and
®(z) = P(z,7) exp (—27Tr( ‘z.2)) , F =C,
where P is a polynomial. The character 1 is said to be standard if
w(x) _ ei?iﬂ'm ; F=R
w(x) — e:t2i7r(m+§) L F = C.
If ¢ is standard and @ is standard, then F,(®) is standard.
THEOREM 2.7. Suppose the induced representations I,, and I .+ are irre-
ducible.
(i) Suppose n' = n — 1. Then there is f € Iy, Q Lo o, Ky X K1 finite,
such that
L(S, Ou ® O’;/) = \II(S, W) )
with
W(g7g/) = M7o,u(9) @ Tor w (gl)f) .
(ii) Suppose n = n’. Then there are elements f; € Iy ® Iy, Ky x Ky

finite, and standard Schwartz functions ®; such that

L(s,0,®0.,) = Z (s, Wi, @)

where
Wi(g.9') = Mmou(9) @ mor . (9') fi) -
REMARK 2.8. If
Rup < Rug < -+ < Ru,, Ruj < Ruby < -+ < Rl

the result should be true even if the representations are not both irreducible, but
we have not proved this stronger assertion.

3. Majorization of Whittaker functions

3.1. Norms. Let us introduce some convenient notations. If X is a real or
complex matrix of any size, we set

1X] e == Tr(X *X)V2.
The index e indicates that this is the Euclidean norm. It is useful to keep in mind
that
CHIXIE+ YT = @+ X2 @+ YD) = @+ X2+ [[Y][2) -
Thus, for g € GL(n,C),

gl = llgllz + llg~ 112

The index H indicates that this is a norm function in the sense of Harish-Chandra.
We often drop the index H when this does not create confusion. For g € GL(n,C)
(or g € GL(n,R)) k; € U(n) (or k € O(n)),

gl = llg™ 1z = llg' [l = l|krghkoallm > 2n.
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Furthermore, if ¢ = uak with a diagonal, u upper triangular with unit diagonal,
k € U(n), then we set

gl = [lalla -

The index I indicates that this definition depends on the Iwasawa decomposition.
Thus ||g|lzr > |lgllr. When we integrate over a quotient N,\G,, we can take
g € A, K,, and then ||g||g = |l9]l1-

If Z is a complex a X b matrix and h € G,(C), then

1 hl| g
(3.1) TR S TSR
Indeed,
12112 = I hZIP < I RIRZI2 < |lhlla 1hZ]2
Thus
L | PR
A2 = G Il 1218~ (il + 1218 = G+ 11218

Our assertion follows.
For Z =1, + U € N, there is a constant C and an integer M such that

(3.2) 1Z]ln < C(L+ UM
Indeed,
1Z]12 = (1 +[JUZ) -

Recall that this notation means that there is a constant D > 0 such that, for all U,

1|2 < DA+ |U]IZ) -
Also

Zl=1-U+U?+.--(-1)"'ut.
Thus
127 le < A+ [[Ul]e + [U]Z +---[[U][27).

If ||U|[c > 1, then

1Z7HI2 = L+ [ol)™
for a suitable M. If ||U]|. < 1, then

1Z7H2 =1,

Our assertion follows.

We define three functions &, &in and &, on GL(n,C) (or GL(n,R)) in the
following way. If g = wak, a = diag(ay, as,...,a,), a; € R, u upper triangular with
unit diagonal, k € U(n), then

n—1
(3.3) Ennlg) = H(1+<aiazﬁl>2)
(3.4) Ein(9) = En(9)(1+ (an)?)
(3.5) Eenle) = JJ+ad).

=1
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We will often drop the index n if this does create confusion. The index h stands
for homogeneous, the index i for inhomogeneous and the index s for simple. Note
that

n—1

(3.6) [T+ (aia)?) (1+a2) H (14 a?)

i=1
It follows that
&i(g)" > &s(9)
and, for a suitable integer m,
(3.7) En(@)™ (1 +ap)™ = (1 + |la][2)

for a diagonal with positive (or simply real) entries. Also we have, for a suitable

constant C' > 0,
9 0\ _ e
gh,’ﬂ ( 0 1, ) = Cfl,’ﬂ*m(g)

and, for a suitable integer r,

A direct consequence of (3.1) is the following lemma.

LEMMA 3.1. Let ® be a Schwartz function on the space of a X b matrices with
entries in F'.
(i) For every integer N, there is a constant Cy, such that, for every h €
G.(F),

A1y
d(h2)| < C
e VT

(ii) There is an integer N and a constant C' such that, for every h € G,(F),
[ 12:2)1dz < cyail.

We will also use the following elementary lemmas.

LEMMA 3.2. Let ® be a Schwartz function on the space of n X n matrices with
entries in F'. There is an integer M and for each N a constant C such that, for
every diagonal matriz with positive entries a,

/ |®|(aZ)dZ < C
N,

[lall3
(1 +[lal[)™
ProoOF. We write Z = 1,, + U with U upper triangular with 0 diagonal. Then
dZ = dU and
1+ [la(@ + O)2)* = (1 +llall + laUI2)* = (1 + [al[2)(1 + [|aU][?) ;
1 1
(4 [lal)N (1 + [[aU][2)M
) a1
A al)N @+ (UM
for N >> 0, M >> 0. The lemma follows. O

[®(a(1n +U))|
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LEMMA 3.3.
(i) Given M, there are constants A, B,C > 0 such that the integral
R||M | det |t
[ e,
cnry (L+[R[2)
converges if N > A,CN >t > B.

(ii) Given M, there is B such that the integral

/ [|h]| ¥ ®(R) |det h|'d*h
)

n

converges absolutely for all Schwartz functions ® on M(n x n,F) and
t>B.

PrOOF. The second assertion follows from the first. We prove the first asser-

tion. We set
h=k(a+U)
with k € K, a diagonal with positive entries, and U upper triangular with zero
diagonal. Then
dh = dkJ(a)dadU

where J(a) is a Jacobian character. The integrand is independent of k so we may
integrate over k. Next, for a suitable My,

1eive: la(1 +a™'U)lln

lallz |1+ a™'U)ln
lallm (1 + [la= U2)™
llallz (1 + llallz [|U112)™"
[lall7 (L + UM

AT TA A

Also
(I +la+ UM = (14 [[alf2 + [|U]]2)N 2
(T +lalH™ (1 + U2

Thus we are reduced to the convergence of a product of two integrals:

1
du
/ (1+ |JU[2) Nt =

/H al [yt M J(a)| det af!
1+ [[a]2)M

The first integral converges for Ny >> 0. For the second integral, we apply the
following lemma.

Y

da .

LEMMA 3.4. Let x be a positive character of A,(R) and M be given. There are
A, B,C > 0 such that the integrals

[ el sal
0+
[ lltixdaat,

converges for N > A,CN >t > B.
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PrOOF. It suffices to prove our assertion for the second integral. Now ||a||¥
is a sum of positive characters. Thus we may assume M = 0. Then the integral is

a product
|a |t+tz

H /Rx 1+a? “ai
The integral converges for
t > max(—t;), N > max(t;), N > ¢.
O
LEMMA 3.5. Let M > 0 be an integer and ® a Schwartz function on F™.

There are A,B,C > 0 such that the following integrals converge absolutely for
N>ANC>t>B.

(3.9) / Eon(9) ™ |lgl1¥ | det gltdg

n

(3.10) / &h.n(9) " Nlgl 12 @[(0,0,...,0,1)g]| det g|*dg .

n n

PRrROOF. For the first integral, we can write ¢ = ak. Then dg = J(a)dadk.
After integrating over K, we are reduced to the previous lemma. For the second
integral, we again write g = ak. Then, for any N,

|©[(0,0,...,0,1)g]] < Cn(1+a3) V.
Now

gh,n(g)m(l + ai)m > gs,n(g)

for a suitable m. Thus we are reduced to the case of the first integral. O

LEMMA 3.6. If M is given and N is sufficiently large, the integral

/ssn )N B (14 ||l2) "N d*h
com;erges.

PrOOF. We write
h=Ekb+V)
where b is diagonal with positive entries and V' upper triangular with 0 diagonal.
Then d*h = Jy(b)dbdV dk. For some m,
L+ [RII2)™ = A+ [BIDA+[[VIZ) -
On the other hand, for a suitable M,
1R = Il (L + (U]
Finally,

’
n

§s,n'(h1_1) = H(l + bi_Q) :
i=1
The convergence of the integral for N >> 0 easily follows. O
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3.2. Majorization for one representation. Let FF = R or FF = C. Let
(m, V) be a smooth representation of G(F') of moderate growth on a complex
Frechet space V. Let A be a non zero ¢ form on V. To each v € V| we associate
the function W, on G(F) defined by

Wy(g9) = A (g)v) -

We want to obtain a majorization of the functions W,,.

By hypothesis, there is a continuous semi-norm g on V' such that |A\(v)| < u(v).
Thus |W,(g9)| < p(w(g)v). There is another continuous v and an integer M such
that u(m(g)v) < ||g||¥v(v). Thus we have the following coarse majorization.

LEMMA 3.7. There is M and a continuous semi-norm v on V such that, for
allv eV and all g,

Wo(9)| < llglli v(v).

We improve on the previous majorization. For h € G,,(F),
(p(M)Wy)(g) = Wu(gh) = A (gh)v) = A(m(g)m(h)v) = Wa(n)u(g) -
Similarly, for X € (G),
(P(X)Wo)(9) = War(x)u(9) -
Thus
[(p(X)W)(9)] < [lg|[* v(dm(X)v).
We also note that
(W (uak)] (W (ak)| < |lak][™v(v) = |la][Mv(v)
((p(X)W,) (uak)| < [lal[Mv(dr(X)v).

Let X; be the elements of Lie(NV,) corresponding to the simple roots «;(a) =
a;/ai+1, 1 <i<n—1. Thus the only nonzero entry of X; is the entry in the i-th
row and ¢ + 1-th column which is equal to 1. Then

Adm(X;)v) =mo,
where m € C* depends only on the choice of 1. Moreover,
7(a)dn(X;)v = dr(aX;a ') m(a)v = a;(a)dr(X;)m(a)v.
Thus
A7 (a)dr(X;)v) = m a;(a)A\(m(a)v) .
More generally, if
Y = XlNlXéVZ . .XNn—l

n—1

and N =), N;, then

A(m(a)dr(Y)v) = m¥ (H ai(a)Ni) A(m(a)v).

Let n (G) be the subspace of $(G) spanned by the products of at most N elements
of Lie(G). Let (Xp) be a basis of Uy (G). We may write

Ad(E™HY =) &o(k) Xp.
6
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Then, for any v,
M7 (a)dr(Y)n(k)v) = )w(k)dw(Adk Y)w)

A(m(a
> & (k)M (a)m(k)dm(Xo)v).
0

Thus
™ TLas(@)™ Ar(a)n(k)e) = 3 (kA (r(a)n(k)dn(Xa)0)
0
(3.11) mNHozi(a)NiWU(ak;) = Zf@( Wan(x,)0(ak) .
9

Replacing v by the vector dn(X)v with X € {(G), we obtain the formula
(3.12) mN T i(a)™p(X) Z §o(k)Wan(xox)0(ak) .

Since the functions &y are bounded by a constant, we get

‘mN I1 ai(a)N”’p(X)WU(ak)‘ < Cllall™ Y v(dr(XeX ).

0

This gives us the result we need.

PROPOSITION 3.1. There is an integer M > 0, and, for every X € M(G) and
every integer N, a continuous semi-norm vx n on V, with the following property.
For everyge G,veV,

P(X)Wo(9)] €(9)™ < llgll7 vx v (v).
We will need the following more general corollary.

LEMMA 3.8. For every integer N, and every X € \M(G,,), there are integers M,
and M5 and a continuous semi-norm v such that

10(92)p(X)Wo(91) 6n(90)™ < [lgn |17 Nlgall3? v(v).
ProOF. Indeed,

(p(g2)p(X)Wo)(g1) = (p(Adg2X)p(g2) W) (91) = (p(Adg2 X)W (g,)0)(g1) -
Suppose X € Un(G). Let again Xy be a basis of the space Uy (G). Then

AdgsX = &(92) X
6

There is M7 such that, for all 6,

1€0(g2)] < |lg] M.

Thus we are reduced to estimating p(X)Wr(g,)»(g1). By the previous lemma, there
is a continuous semi-norm v such that

|P(X) W (g2y0(91) 1€ (91)™ < [gall7" v (7 (g2)0) -
But

M
v(r(g2)v) < |lg2llzv' (v)
where v/ is another continuous semi-norm. Our assertion follows. O
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We can obtain similar majorizations for the function

Wo(g) := Wo(wng") .

Indeed, consider the representation 7* on V defined by

m(g) =7(g")-
Set

Then

that is, Nis a ¢ form. Then
Wa(g) = M7 (9)v).
Replacing 7 by 7“, we obtain majorizations for I/IA//U
3.3. Majorization for a family of representations. Let

u:(ul,u27."’un)

be an n-tuple of characters of F’*. We assume they are normalized, that is, they
have a trivial restriction to RY. Let u = (u1,ug,...,u,) € C". We denote by
(Tpu, Iy ) the representation of G(F') induced by the character

pu(a) = Hﬂi(ai) |ail

of A, (F), regarded as a character of the group of lower triangular matrices. The
space I, ,, is the space of C*° complex-valued functions f on G(F') such that

flvak) = 6,12 (a)pu(a) £ (k)
for all v € N,,, a € A(F), k € K. The representation is by right shifts. Alterna-
tively, we may identify the space of functions in I, ,, to the space of their restrictions
to K. It is a space I, independent of u. Then we denote by 7, the representation
acting on the space I,,. The topology of I, is the one given by the semi-norms
sup [p(X)f (k)|

keK,

with X € U(K). We stress that I, is regarded as a space of functions on K and
only derivatives with respect to elements X € {(K) appear in the definition of the
topology. Each representation m, , is a C* representation of moderate growth on
the space I,,.

Recall that there is for each u a non-zero 1 form A, on I,,. This form is unique
within a scalar factor. Moreover, one can choose the linear form in such a way that
the map

(u, ) = Au(f)
is continuous and for each f, the map u — A,(f) is holomorphic in u (Theo-
rem 15.4.1 in [26] II).
For every f € 1,,, we set

W, 1(9) = Au(mu(9) f) -

We need to obtain majorizations of the functions W, s, similar to the ones of the
previous subsection, but uniform with respect to u, for v in a compact set. To do so,
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we need to show that the representations 7, , are of moderate growth, uniformly
for v in a compact set. This is known, but for the sake of completeness we
provide complete details. We begin with a series of lemmas on semi-norms.

LEMMA 3.9. Set
vo(f) = sup |f(R)]-

Given a compact set @ C C", there is M such that for u € Q and any f € 1,
vo(mu(9)f) < l19l1Mvo(f)-

PRroOF. Indeed, we may write
kg = vaky ,v € N, ,a € A(F), k,k; € K,, .
Then
fulkg) = pu(@)6, % (@) f (k1) .
Now for
a = diag(ay,as, ..., an)
and u € €, we have

()] < [J(a? +a7%)
for a suitable V. In turn
[1(aF + a7 )N < [lal™
for a suitable M. Moreover
llall < llvall = |lkgki || = l|gll -
Our assertion follows. O

LEMMA 3.10. Let Q be a compact set of C*. For every X € l(g), there is a
continuous semi-norm vx on I, such that , for everyu € Q, f € I,

vo(dmu(X) f) < vx(f).
PROOF. Say X € Uy (G). Let ¢ be an element of I,,. Then
dmy(X)(k) = p(X)o(k) = MAd(k) (X)) (k).
Let Xy be a basis of 4 (G). Then

Ad(R)(X) = 3 60(k) X
6

where the functions &y are uniformly bounded on K. Thus it suffices to bound
A(X)6(k), X € Uy (G).
We can write X has a sum of terms of the form
YHZ,Y € Un(N,), H € Un(A),Z € Un(K) .

Now A(Y)¢ = 0 if Y is a product of elements of Lie(N). Thus we may as well
assume Y = 1. Now

AH)¢p = 7. (H)¢
where 7, : U(A) — C is an homomorphism depending on w. If u € Q, 7,(H) is
bounded. Thus we are reduced to estimate

A(Z)¢(k)
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for Z € Un(K). As before, if Zy is a basis of Uy (K), this has the form
> &o(k)p(Zo)p(k)
0

where the & are bounded. This is bounded by a constant times
> sup |p(Zo)g (k)| -
T K

The lemma follows. O

LEMMA 3.11. Let v be a continuous semi-norm on I,. Let §) be a compact
subset of C*. Then there is an integer M and a continuous semi-norm v on I,
such that

v(ma(9)f) < llgllMo(f)
forall f, allu € Q, and all g € G.

Proor. We may assume

v(f) = vo(p(Y)f)
with Y € Un (K) because the topology of I, is defined by these semi-norms. Then

v(mu(9)f) = voldmu(Y)mu(g) f) -
Let Xy be a basis of 4x(G). Then

dry (Y)mu(g) = mu(g)dmy (Ad(g™ de ), (Xg) .

Each function & is bounded by a power of ||g||. Thus V(Wu(g)f) is bounded by a
power of ||g|| times

S vo(ma(g)dma(Xo) ) -

6
By the first lemma, for u € €, this is bounded by

g™~ vo(dmu(Xo) f) -

0
Now we apply the previous lemma. O

LEMMA 3.12. Let v be a continuous semi-norm on I, and Q be a compact
subset of C™. There is an integer M with the following property. For X € U(G),
there is a continuous semi-norm v such that, for allu € Q and f € I,

v(ma(g)dmu(X)f) < [lgl[M(f).

Proor. By the penultimate lemma,
v(ma(9)f) < 1ol u(f)

for a suitable M and a suitable continuous semi-norm g. Thus

v(mu(g)dma(X)f) < [lglI™ u(dma(X)f).

To continue we may assume that

() =3 volp(Ya) )

[e3%
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with Y, € (K). Then

pldra(X)f) =D vo(dmu(YaX)[)
and our assertion follows from the previous lemma. O

Now we obtain coarse majorizations for the Whittaker functions, uniform for
u in a compact set.

PROPOSITION 3.2. Let Q2 be a compact set of C™. There is an integer M with
the following property. For every X € $M(G), there is a continuous semi-norm vx
on I, such that, for all u € €,

(X)W s ()] < allMvx (f).-

PROOF. First, because the map (u, f) — Ay (f) is continuous, for every u € Q,
there is 4, > 0 and a continuous semi-norm pu, such that for ||u' — u|| < A,, we
have | Ay (f)] < pu(f). Choose u;, 1 < i < r, such that the balls ||[u — u;|| < Ay,

cover ). Let
i

Then
Au(HI < v(f)
for u € Q2. Then
PXOWau s (9) = Mu(mu(g)dmu(X) )
is bounded in absolute value by

v (mu(g)dmu (X) )] -

Our assertion follows from the previous lemma. O

Now we improve on the majorizations.

PRrROPOSITION 3.3. Given a compact set Q of C™, there is an integer M, and
for every integer N and every element X € U(G), a continuous semi-norm vx, n
such that, for allu € Q, allg € G and f € 1,,

(X)W (9)€n(9)™] < llgllMvx v (f) -

PROOF. We proceed as in the previous section. With the notations of for-
mula (3.12), we have

(3.13) m" [T ai(@™ (p(X)Wap)(ak) =D €o(k) (p(Xo X)W, 5) (ak).
(%

Since the functions &y are bounded, our assertion follows at once from this formula
and the previous proposition. O
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3.4. Majorization for a tempered representation. Now assume that 7 is
a unitary irreducible tempered representation and A is again a continuous ¥ form
on m. Thus 7 is equivalent to an induced representation of the form 7, , where o
is a t-uple of irreducible unitary representations of the Weil group and u is purely
imaginary. Then we have a more precise majorization. First we recall a result of
Wallach. Recall that 6, is the module of the group B, (F).

ProproOSITION 3.4. There is a continuous semi-norm p and d > 0 such that,
for all vectors v,
W (ak)| < 63/2(a)(1 + [ log al|2) u(v) -

This follows from Theorem 15.2.5 of [26] II. The proof is the same as the proof
of Lemma 15.7.3 in the same reference.
We improve on this majorization.

PROPOSITION 3.5. For any integer N and any X € U(G), there is a continuous
semi-norm vx n such that, for all vectors v,

(X)W (ak)| < €n(a) N6,/ (a)(1 + || log al2)vx n (v) -

Indeed, we proceed as before. Our assertion follows from the result just recalled
and formula (3.13).

3.5. Majorizations for a tensor product. Now let (7, V) and (7', V’) be
Casselman Wallach representations of G,, and G/, respectively. Let A be a 1 linear
form on V and X a ¥ linear form on V’. On the projective tensor product V&V’,
consider the linear form A ® X. To each © € V&V’, we associate the function

Wilg,9') =A@ N(m(g) @ 7'(g')0) .
We can obtain majorizations for these functions similar to the ones obtained above.

We can argue as before, since our arguments are really valid for any quasi-split
group, or simply use an argument of continuity and density. For instance, suppose

Wo(@)lén(@)™ < lgll™ p(v)
W)l < llg'IIM i (v")
where p,/ are continuous semi-norms on V and V', respectively. Let v be the
largest semi-norm on V&V’ such that

v(v@v') < p(v)p' (V) .
Then, for every © € VRV’,

Wi(g,9)1En()™ < lgl™ llg'[|*" v (o).
Analogous majorizations are true for a tensor product I, , &I,/ .. The majoriza-
tions are uniform for u,’ in compact sets.

4. (o0,v) pairs

The main result of these notes is that certain integrals, depending on a complex
parameter s, converge for Rs > 0, have analytic continuation as meromorphic
functions of s, with prescribed poles, and satisfy a functional equation. It turns out
that these assertions are equivalent to a family of identities relating integrals which
converge absolutely. This is technically very convenient. In particular, when the
data at hand depend on some auxiliary parameters, this allows us to prove our
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assertions by analytic continuation with respect to the auxiliary parameters. In
this section, we develop the tools which allow us to establish this equivalence.

4.1. Spaces of rapidly decreasing functions. We denote by S(RY) the
space of C'*° functions ¢ on Ri such that for every integers n > 0,m > 0,

d m
t— t
(1) o
We introduce the Mellin transform of such a function:

+oo
Ma(s) = /O sty

t
Clearly, the Mellin transform of a function ¢ € S(RY) is entire and bounded in
any vertical strip of finite width. The Mellin transform of t% is sM¢(s) and the
Mellin transform of t*¢(t) is M¢(s+a). In particular, for any polynomial P(s), the
product P(s)¢(s) is also bounded in any vertical strip of finite width. Conversely
if m(s) is an entire function of s such that, for any polynomial P, the product
P(s)m(s) is bounded at infinity in vertical strips, then the function defined by

sup(t? + ¢ 2)" < 400.

1 a+oo
o(t) :== %in m(s)t™*ds
is in S(RY) and M¢(s) = m(s).
We define similarly the space S(F*). It is the space of C* functions on F'*
such that for any X € U(F*) and any m

sup |(£ +t7%)"p(X)o(t)| < 400 if F =R,
sup|(2Z + 2727 )" p(X)g(2)| <00 if F=C.
If ¢ is in S(RY), the function x — ¢(|z|r) is in S(F*). The Mellin transform M f
of a function f € S(F*) is defined by

Mf(s) = /F @) lely .

a—1i00

4.2. Definition of (o,) pairs. Let o be a complex, finite dimensional, semi-
simple representation of the Weil group Wr of F. Let ¢ be the contragredient
representation. Let ) be a non-trivial character of F'. The factors

L(s,0),L(s,0),€(s,0,1)
are defined. Let P be a quadratic polynomial of the form
P(s)=As’+Bs+C,A>0,BcR,CecC.

Then there exist two functions h(t), k(t) in S(F*), depending only on |¢|r, such
that
_ e(s,0,1p) e
h(t)|t| =2t AN Rk 2
Rl e

[ weza —
|tz d>t - .
X E L(S,O’)

Indeed, P(1 — s) is a polynomial of the same form as P. In a vertical strip

{s=z+iy:—a<z<a},
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the reciprocals of the L-factors are bounded by an exponential factor eP!¥! while
eP() eP(1-5) are bounded by a factor e~ C%" with C > 0. Thus the right hand sides
are entire and their product by any polynomial are bounded in a vertical strip. We
say that (h,k) is a (0,v) pair.

This notion has some simple formal properties. If (h, k) is a (o,1)) pair then,
for every a € F'*, the functions

x+— h(za), z — |a|k(za™")
form a (o,) pair. Indeed,

e €(s,0,1) eP)Fsloglal
/h(ma)|x| d*x = e

S g% 6P(lfs)Jr(lfs) log |a|
of [ baa a0 = S

Also (k,h) is a (G,%) pair.
Similarly, let o;, i = 1,2, be two representations of the Weil group. Set 7 =
o1 ®og. If (hy, ki), i = 1,2, are (0;,1) pairs, then (hy * ha, k1 * k) is a (7,) pair.

Indeed,
— 6(83 () ’IZ}) ePi (s)
h; sd* = -
JRCER Tls o
k _de eP,;(l—S)
/ i(2)|z] r = m
with
Pz(s) = Ai82 +B;s+C;, A; >0.
Set

Q(S) = Pl(S) + P2(S> = (Al + A2)82 + (Bl + BQ)S +C1+Cy .
Then A; + A2 > 0 and

Pi(s) ,Pa(s
J R e
- e(s,7,9)eR)
L(s,7) ’
6Q(lfs)
/k1*k2($)|x|75dxz = L(s,?) ’

4.3. The main lemmas.

PROPOSITION 4.1. Let o be a representation of the Weil group. Suppose f, f’
are measurable functions on F*. Suppose that there is N such that, for s > N,

[it@l @t < to0, [ 17@) lalfae < +oc.
Suppose further that, for any (o,v¢) pair (h,k),

[ t@@as= [ 1@

Then the Mellin transform of f, defined a priori for $&s >> 0, extends to a holo-
morphic multiple of L(s, o), bounded at infinity in any vertical strip. Likewise, the
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Mellin transform of f’ extends to a holomorphic multiple of L(s,5), bounded at
infinity in any vertical strip. Finally, the equation

[ @) d* s e(s,0,9) [ f(@)|z]*d*x

L(1-s,0) L(s,0)

holds in the sense of analytic continuation.

PrOOF. We first remark that, for any IV,
|h(x)| < Cla|™, [k(x)] < Cla| ™.

So the integrals of the proposition do converge. We set

a) :/f(ac)h(ax d*x

Applying the given identity to the pair
(x> h(az) x> |alk(a~'a),

we get

(4.1) /f h(az)d*x = |a|/f .

Since h(z) is majorized by a constant times |x|* for any M > N, the first expression
for 0(a) is majorized by

/ (@) |h(az)|d"z < Cla[™ / 2 M| (2) "

Thus 6(a) is rapidly decreasing for |a| — 0. By equation (4.1), it is also rapidly
decreasing for |a|] — co. Thus
/9(a)|a|75dxa

is convergent for all s and defines an entire function of s, bounded in any vertical
strip. For s >> 0, we use the first expression for 6 to compute this integral. We

obtain
/9 Yal™ dea—//f h(za)|a|~*d*zd*a

or, changing a to az ™,
/f(m)\x|sdxm /h(a)|a|_sdxa

The absolute convergence of this expression for Rs large enough justifies this com-

putation. Thus
P(s)
/9 Yal™ édxa—/f )z|*d™ ds0,9)e .

- L(s,0)
:/f(x)|x|sdxx

m(s) =e PO L(s,0)e(s,0,0) 7} /e(x)urwxm

This shows that m(s), defined a priori for s >> 0, extends to a meromorphic
function of s which is a holomorphic multiple of L(s, o).

Set

Then
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On the other hand, using the second expression for (a), we get
/9(a)|a|75dxa = // f(@)k(a " z)|a|' " d*zd”a
= // () k(az)|a| =P d* zd*a
= /f’(x)|m\1’sdxx /k(a)mr(l*s)dxa.

Again the computation is justified for s small enough. Thus
P(s)
e

/o(a)|a|8dxa/f’(a:)|x15dxxw.

We conclude that

s G0 [ s, L
/f(a?)|x|da:L(870_) _/f()|| et

in the sense of analytic continuation. Both sides extend to entire functions of s.
Now we prove that m(s) is bounded at infinity in vertical strips. Indeed,
consider a half strip

S={s=z+iy:a<xz<by>y, >1}.
We can choose yg so large that L(s, o) has no pole in S. Thus in S
Im(s)| < CePV”
with D > 0, or enlarging yo,
Im(s)| < Ce”” .

Now if b is large enough, the integral defining m(s) converges for s = b. Thus
|m(s)| is bounded on the line fs = b. Now

L(S,J) "\t =5 dX
L(1_3,3)6(8,07¢)/f( )|~ d .

We may assume a so small (negative) that the integral on the right converges for
Rs = a. We may also assume a so small and g so large that on the half line

m(s) =

s=a+1y,y =y
the ratio
L(s,0)
L(1 —s,0)e(s,0,v)
is bounded (see the lemma below). By the Phragmen-Lindelof principle, m(s) is
bounded in the strip S, as claimed. O

REMARK 4.1. In applications the functions f, f/ will be C* and for each X €
U(F™), there will be X’ € U(F*) such that the functions p(X)f, p(X')f’ satisfy
the assumptions of the proposition. Then for each integer M > 0,

Mim(s) = [ (X)) fal*d"

for a suitable X € U(F*). By the proposition, m(s)s™ is bounded at infinity on
vertical strips.
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LEMMA 4.2. Given o if a is sufficiently small (a << 0), there is yo such that
L(s,0)
L(l -, 5)6(& g, ¢)

is bounded on the the half vertical line

s=a+1iy,y =Y.

ProOF. It suffices to prove the lemma when o is irreducible. Say F' = R.
Recall, for x fixed and |y| — +oo,

IT(x +iy)| ~ (2m) 2 [y[* 1/ 2em 2]

uﬂ‘v(%)6 with u, v real and € = 0, 1.

If o is a character of F'*, then o(z) = |z il

In the definition of L(s,o) the factor 7= “"5* has a fixed absolute value for

s=a+1y, y <yo. Likewise for L(1 — s,0). Thus we can ignore these exponential
factors. Then, apart from exponential factors, the absolute value of the ratio is
equal to

e+utati(vt
(g

etuta—1
2

N lv+y — vty
r (e+17u7¢21‘*i(v+y)) |’U + Yy sH=gme=t

1
|a+u7§ .

2

Ifa+wu-— % < 0, this tends to 0 as y — +o00. Our assertion then follows.
Assume ¢ is induced by a character Q2 of C*, say

Q(z) = (27)v V=50

with u, v real and n > 0 integer. Then, apart from exponential factors the absolute
value of the ratio is equal to

F'n+u+a+ilv+y v+ y[rretes
wro) | gt

|2u+2a—1 .
Fn+l-u—a—i(v+y))| |v+yrtlvoz

Again, if 2u+2a—1 < 0, this tends to 0 as y — +00 and we obtain our assertion. [

We have also a converse to the previous proposition.

PROPOSITION 4.2. Suppose that f, f' are measurable functions on F*. Suppose
that the Mellin transforms

[r@pslaa, [ F@lapia

converge absolutely for Rs >> 0 and extend to holomorphic multiples of L(s, o)
and L(s,0), respectively, bounded at infinity in any vertical strip. Finally, suppose
that the equation

J @)z d*e _ e(s,0,9) [ f(@)|z]*d*x

L(1—s,0) L(s,0)

holds in the sense of analytic continuation. Then for any (o,v¢) pair (h, k)

[ @@= [ @k
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PROOF. Set

:/f(a:)h(ax)dxx, k(a) = |a\/f’(x)k(a_1x)dxx.

We will show that
f(a) = k(a) .

Note that 6(a) and x(a) depend only on |a|. As before
0(a)] < Clal™

for any large enough N. Thus the Mellin transform

/9(a)|a|fsdxa

is defined by a convergent integral for Rs >> 0. Computing formally at first, we

get
/a(a)\armxa _ //f (az)|a|~*d* ad* z
_ /f(x)|:c\sdxx/h(a)|a|’5dxa

Again the computation is justified because the final result is absolutely convergent
for /s >> 0. In turn this is

s 1% e(sang)ep(s)
/f(x)\xl d JUW

By assumption, this extends to an entire function of s. Moreover, since the Mellin
transform of f is bounded at infinity in vertical strips, this entire function is

bounded in any vertical strip.
//f |a|1 sd*Xad* x

Likewise, for s << 0,
//f (azx)|a|~ 2 d* ad” x

/lﬁ:(a)|a|7sdxa
/f’(x)|x|1*sczxx/k(a)\ar(lﬂ)czxa

P(s
/f (@)l =

Again this is an entire function of s bounded at infinity in vertical strips. We

conclude that
/9(a)|a|_sdxa _ /f@'(a)|a|_sdxa

in the sense of analytic continuation. Since both sides are bounded in any vertical
strip, this is enough to conclude that 6(a) = k(a). O

This is equal to
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4.4. Two variables generalization.

PROPOSITION 4.3. Let 0;, i = 1,2, be two representations of the Weil group.
Suppose f, f' are measurable functions on F* x F*. Suppose that the integrals

/ / F el Iyl d* edy / P (e p)lal gl d* zd*y

converge absolutely for Rs; >> 0, Rs1 >> 0. Suppose further that for any (o1,)
pair (hy, k1) and any (o2,v) pair (he, k2)

/f(x,y)hl(w)hz(y)dxxdxy=/f’(x,y)kl(w)kz(y)dxxdxy
Then the integral
/f(w,y)lxylsdxxdxy,
defined a priori for s >> 0, extends to a holomorphic multiple of
L(s,01)L(s,02),

bounded at infinity in any vertical strip. Likewise, the integral
YR

extends to a holomorphic multiple of L(s,o1)L(s,03), bounded at infinity in any
vertical strip. Finally, the equation

J '@ )|yl *d*wd*y  e(s,01,¥)e(s, 01,9) [ fla,y)|zy|*d*zd”y

L(1—s,01)L(1 —s,09) L(s,01)L(s,02)

holds in the sense of analytic continuation.

Proor. Clearly,

[ e lagparaaty = [ 1o ( / f(my—l,ywy) d*a

Likewise for f’. Now (hy * ha, k1 * ko) is a (01 @ 02,%) pair. Conversely, any
(01 @ 09,1) pair is a sum of such convolutions. Thus it suffices to check that

/(/fxy Ly)d” y)hl*h2 /(/f 2y, y) >k1*k2(x)d><$

A simple manipulation gives

/( f(acy_l,y)dxy> hyxhy(2)d*x = /(/ f(x,y)hl(act_l)hg(yt)dxxdxy> d*t.

Since
(z = h(at™ ),z [t] " ka (2t))

(y = ha(yt),y — [tk (2t ™"))
are (01,%) and (o9,1) pair respectively, we see this is equal to

/ (/ f,(x’y)kl(”)@(yt1)dxxdxy> 25t
- / (/f'(xy_l,y)dxy> ko % ko (2)d" .

Our assertion follows. O
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4.5. Holomorphic families of pairs. Let o;, 1 < i < r, be r unitary repre-

sentations of the Weil group of F'. Let u = (uq,us,...,u,) be an r-tuple of complex
numbers. Set
Oy = Z 0 Qay .
1<i<r

Fix a quadratic polynomial
P(s)=As*+Bs+C,A>0.

For every u, let (hy,k,) be the (oy,1) pair defined by o, and P. We say that
(hu, kv) is a holomorphic family of (o,) pairs.

LEMMA 4.3. The functions hy(x), ky(x) are continuous functions of (x,u). For
each x, they are holomorphic functions of u. If Q is a compact set of C" and a € Z,
there is a constant C' such that

lhu(2)] |2|* < O, [ku(2)] [2|* < C
foru in Q and x € F*.

PRrROOF. From the Mellin inversion formula

1 100 eP(s—a)

hy(2)|z]|* = — —|z|%ds.
u(@)l2] 2T J_ino L(s—a,au)| |
Suppose u is in a compact set. Then on the line s = iy, the integrand is bounded
2
by e=P¥" with D > 0. Our assertion follows. O

More generally, suppose U;-, 1 < j7 <7/, are another v’ unitary representations
of the Weil group and v = (vy,v2,...,v,) an r’-tuple of complex numbers. Then
we can define a holomorphic family of (o, ® o)1) pairs.

4.6. Example: the Tate functional equation. Let ® be a Schwartz func-
tion on F. Denote by ® its Fourier transform. Let y be a normalized character of
. Tate’s theory asserts that

[o@n@ialee, [owun@lla

defined a priori for s >> 0, extend to holomorphic multiples of L(s,u) and
L(s,u~1t) respectively, bounded at infinity in vertical strips. Moreover, the func-
tional equation

J3@p @t e, me) [B(@)u()alds

L(l—S,,u_l) - L(S?:u)
holds in the sense of analytic continuation.
Set FO = {x € F : |z| = 1}. We can apply the propositions of Section 4.3 to
the functions

f(z) = /FO O(zu)pH(zu)du, f(z) = /FO & (zu) p(zu)du .

We see that the properties of the Tate integral are equivalent to the assertion that
the functional equation

(4.2) /EI;(J:),u_l(x)k:(x)dxa: = /@(m)h(x)u(x)dxac
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holds for all (u,v) pairs (h, k). We stress that now both integrals are absolutely
convergent.

4.7. Example: generalization of Tate’s integral to GL(n). Let
p=(p1, 2, fin)
be an n-tuple of normalized characters of F* and u = (u1,ug,...,u,) € C". Set
Ou 1= B
Let (7,4, ) be the corresponding induced representation. We define a con-

tinuous invariant pairing on I, . x I,-1 _, by

(1, ¢2) = /K 1(k)pa2(k)dk .

Let £ be an elementary idempotent for the group K,. Let I, () be the range of
the operator [ 7. (k)¢(k)dk. Recall that the pairing is perfect when restricted to

the product 1, ,(§) x I,,-1,_,(§). Let ® be in S(M,(F)). If

16) = | r(ka)oa (k.
then the integral
2(s.1,9) ::/q’(g)f(g)ldetg\“%dg

has the following properties ([11]). It converges for s >> 0. It has analytic
continuation to a holomorphic multiple of

L(s,04).

It is bounded at infinity in vertical strips. Finally, it satisfies the following functional
equation
n—1 n—1

@3) [ 8o detgl" T dg = 1(5.0,0) [ @011 (9)]detgl T dg.

We recall that the Fourier transform ® of & is defined by

B = [ @()u(T(- XYY,

which is not the convention adopted in [11]. According to our previous discussion,
these assertions are equivalent to the identities

(4 /&g)f(gb)“(detg)'det9|r%ld9=/q’(g)f(g)@(detg)ldetgl%dg,
where (0, k) is any (o, 1) pair.

REMARK 4.4. In passing, we remark that if ¢; and ¢o are K, finite and & is
a standard Schwartz function, then

/ B(g)f(g)] det gl T dg = L(s, ) P(s)

where P is a polynomial.

In addition, we remark that both sides in (4.4) are continuous functions of
(P, ¢1,p2). Using this continuity and an argument of density, we see that to
prove (4.4), we may assume that ® is standard and ¢, ¢ K,-finite. Applying
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again the propositions of Section 4.3, we see that to prove that Z(s, f, ®) is a holo-
morphic multiple of L(s,o,) and (4.3) is satisfied we may assume ¢1, ¢o K, -finite
and ® standard. Both assertions were indeed established in this case in [11].

It will be necessary to obtain the functional equations (4.3) and (4.4) for a more
general type of coefficients. In a precise way, let A be a continuous linear form on
I,y For ¢ in I, , set

f(9) = Mmuu(9)9) -
Note that
A (9)8)] < v(mu(9)e) < llglM (e

)
where v, v are suitable continuous semi-norms. Thus |f(g)| =< ||g|| for a suit-
able M.

PROPOSITION 4.4. With the previous notations, for any P,

/q)(g)f(gww)'detg'%dg:/‘f’(g)f(gb)n(g)\detgl%dg.

Moreover,

= n—1 g4 n=1
/‘I’(g)f(g“)ldet9|1‘s+ 2 clg=v(s,ouﬂ/))/‘1’(9)f(9)|detgl“r = dy,
in the sense of analytic continuation.

PrOOF. Since |f(g)| < ||g]||, the integral

/ B(g)f(g)] det g|*dg

converges absolutely for s >> 0 by Lemma 3.3. It suffices to prove the first
assertion. By our estimates, both sides of the first equality are continuous functions
of @, that is, are tempered distributions. Thus it suffices to prove the identity when
® is a standard Schwartz function. Then there is an elementary idempotent ¢ of
K, such that

®(g) = //‘I)(k1gk2)f(k1)§(k2)dk1dk2-
It follows that

Bg) = [ [ Blhagha)é(k)e(ks)dbadr
Set

filg) = [ 0 gk ek )€ o)t

Then f; has the form
f1(g) = (Tuudr, d2)

where ¢ is a K-finite element of I, ,, and ¢2 a K-finite element of I,-1 _,. Thus
the required equality is true for the function f;. We have

/q’(g)f(g)@(detg)ldetgln%dg = /<I>(g)f1(g)9(detg)|detg|"T“dg

o~ n—1 -~ n—1
/‘P(g)f(gL)ﬂ(g)Idetngdg = /<I>(g)f1(gb)/f(g)|detngdg.
Our assertion follows. OJ

Similar arguments of continuity and density will be used extensively below.
Often, they will allow us to reduce our assertions to the case of K,,-finite datum.
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5. Convergence of the integrals

5.1. Integrals (n,n'). Let (w,V) and (7/,V’) be smooth representations of
GL(n, F)iand GL(n', F), respectively, of moderate growth. Let A (resp. \') be a

¥ (resp. 1) linear form on V' (resp. V).
Suppose n > n'. Forve V, v € V/, set

Wu(g) = Mr(g)v), W = A(w(g")v")

and consider the integral

_ g O
\Il(s,Wv,Wv/)/Wv( 0 1

n—m

) W (g)| det g~ "= dg.

We claim this integral converges for s >> 0. Indeed, for some M and all N >> 0,

—N
g 0 g 0 g 0
we(f ol )l=ea (80l ) 08 W)

Now, up to a scalar factor,

(8 10 )=o) = €nlo
<lgl}.

G2l

(W (g)l = llgll?" -

Thus we are reduced to the convergence of the integral

[ temloy gl det iy
Nop\Gom

M

I

for some r > 0. Moreover
M

By Lemma 3.5, given M, there are A, B, C' > 0 such that the integral converges for
N > A,s> B,CN > s. Our assertion follows.
Now consider the case n = n/. Then

(s, Wy, Wy, @) :/Wv(g)Wv'(g)‘I’[(O,Ow--,071)9]|d€t9|‘9d9~
Now we are reduced to the convergence of

[ enle)™ Nl 121(0.0,....0. 1] | det gPdsg.
Ny \Gn

By Lemma 3.5, given M, there are A, B, C' > 0 such that the integral converges for
N > A,s> B,CN > s. Our assertion follows.
In both cases, the proof gives a result of continuity. For instance, for n = n’,

s W W @) < [ Wil(g) [Wor(9)] [21(0,0,.....0, 1)g]| | detg[™dg

< p(o)p' (V)v(®)

where p, i/, v are suitable continuous semi-norms. Thus ¥(s, W,,, W/, ®) depends
continuously on (v, v, ®).

(5.1)
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5.2. Integrals involving a unipotent integration. To prove convergence
of the integrals W;(s, W, W’), we need a few elementary lemmas.
Consider a matrix v € *N,, (F). Let us write its rows as

(Xla 1,0)7 (X27 170)7 (X37 17 0)3 cee (X’n? 1)

where each X; is a row matrix of size ¢ — 1 and 0 represents a string of zeros of
variable length. For instance if

= O O

<
Il
NI

0
1
Yy
then
X1=0,Xo=2,X3=(2,y).
LEMMA 5.1. Consider the Iwasawa decomposition of v € N, (F):
v = ubk,
u € Ny, ke K,,
b = diag(by,ba,...,b,), b; > 0.
Then
b3 2 = 1.
For2 <i<mn,
b7,y by > 1+ ||XG][2
and
by =1+ Xal2.
There exist an integer M and constants C' > 0, D > 0 such that, for all i,

1 n
C == < <D][a+I11x,9)".
[T (L4 1X5][D)M 31;[ !

PROOF. Here we drop the index e from ||X;||.. Let e;, 1 < i < n, be the
canonical basis of the space of row vectors. Then
bEb7yy by = [l(ei Ao Aen) 0l

The entries of (e; A --- Ae,) v are polynomials in the entries of the matrices Xj,
1 <7 <n. Thus

n
bib7yy - bn < D+ 11515
j=i
for a suitable M and D. On the other hand, up to sign, the entries of X; are among
the entries of (e; A--- Ae,) v. Thus

b7y = l(ei Ao Aen) vl[F > T4 [[XG]12 > 1.

Moreover
by =1+ || Xal]?.
Now
1 n
b > >0 [ a+1x07,
b2, b2 1
? j=i+1
[T (1 + 1] )M =

j=i



34 HERVE JACQUET

The lemma follows. O

An immediate consequence of the lemma is the following observation.

LEMMA 5.2. There exist an integer r and a constant C such that, for any
a€AnR), any X € M(n —m xm, F),

. a 0 m n
L(xul) >o]fava) IT 0+ %P

PROOF. Indeed, write the Iwasawa decomposition

1, 0 B
< e 1nm>—vbk.

§s,n< ¢ 1n0m> [0 +a) I o).

=1 i=m-+1

Then

.

Thus for any integer r > 1,

. (a 0 - ,
(X 1nm)z“ 1+a262)'|| (1+b3)".
For 1 <i<m,

n
i>C I a+lxH
j=m+1
for some constant C. Since we may decrease C', we may assume C' < 1. Thus

a2
1+alb; >C |1+ ‘ .
( [T (L +[1X5]12)M

On the other hand, for a suitable integer r,

n n n

IT a+e) = T a+oed, H (1+11%11%)
Jj=m+1 j=m+1 j=m+
The lemma follows. O

Now we establish the convergence of the integrals ¥;(s, W, W’) for ®s >> 0.
We only treat the case j = n —n’ — 1. The other cases are similar. The integral at
hand is

0 0
/ Wy | X 1o w1 0 | Wy(ak)du(a)™!|detal*dadkdX ,
0 1

or, after a change of variables,

a 0 0 k 0 0
/Wv X 1,p-1 O 0 1,—p—1 O
0 0 1 0 0 1

X Wy (ak)d, (a)~t| det a|*dadkdX .
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The integrand is majorized by a constant times

a 0 0 a o o\|" /
Gl X lywo O X 1, w1 O lla||™ 6, (a)~!| det al®
0 0 1 0 0 1

times p(v)p'(v') where p, p’ are continuous semi-norms. After integrating over
k € K,, we are reduced to the convergence of

a 0 0
/ G| X Lacwen 0| a1+ |IX|*) Y26, (a) ! | det al*dad X,
0 0 1

with My, Ms given and N arbitrarily large. Now, up to a scalar factor,

a 0 0

0
gh,n X 1,1 O :gi,nfl |: ;( 1 :| .
0 0 1 non'=1

Furthermore £ > &;. Thus we are reduced to the convergence of the integral

Jea| & 0 el 1126 (@) detofdaa.
’ n—n’—1

By Lemma 5.2, we are in fact reduced to a product of two integrals

/H(l + a?)7N| |a |M15n’ (a)71| det al’da,
=1

n—1
JIL G Iy P
1=n’+1
The first integral converges for N > A,s > B,CN > s (Lemma 3.4). The second
integral converges for N >> 0.
The proof gives a result of continuity as in (5.1).

5.3. The tempered case. Let again 0 = (01,02,...,0,) be an r-tuple of
irreducible unitary representations of Wr and w an r-tuple of complex numbers.
Let n =), deg(o;). Then if u is purely imaginary, the induced representation I, .,
is unitary irreducible and tempered. Consider likewise another pair (¢’,u’) where

o' = (o1,0h,...,00,) is an r’-tuple of irreducible unitary representations of Wr and

s Ypl

u’ an r’-tuple of complex numbers. Let n’ =", deg(o7).

LEMMA 5.3. Suppose n > n'. If u and u' are purely imaginary, the integrals
Uy (s, Wy, Wy) converge absolutely for Rs > 0.

PROOF. We can use the majorizations of Propositions 3.4 and 3.5. Suppose
first k = 0. Then, for every N > 0,

‘Wf(“ok 0 >W},(ak)‘

1n7n’

0 -
<on (g, 0 ) o@s K+ flosal?)
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We have dropped the index e form ||logal|?. Thus we are reduced to the conver-
gence of an integral of the form

Jorr (610 ) @ M@+ ogal Py detal 5+ da.

But

5}/2<3 L )55/”2<a>=deta"z"ﬂ

so we are reduced to the convergence of the integral

/E;g(a)(l -+ loga\|)d| det a|®da .

Now (1 + ||logal?)? is a polynomial in the log(a?)2.

product of integrals of the form
[ tosteirial
(1+a2)N v
Such an integral converges for s > 0, 2N > s. Our assertion follows.

Now we assume k > 0. We only treat the case k = n —n’ — 1. We have to show
the following integral converges for s > 0.

Thus, we are reduced to a

ak 0 0 -,
/ Wil X lp—w—1 O [Wt (ak)| |detal®™ 2 dadXdk,
0 0 1
or, after a change of variables
a 0 0 k 0 0
/ Wy X lp—w-1 O 0 1,—p—1 O
0 0 1 0 0 1
X |W} (ak)| | det al*~*%* dad X dk
Write the Iwasawa decomposition
1 0
X 1nfn’71 = ’Ubkl
0 1

with
b= dlag(bl, bg, ceay bn—l) .
This is majorized by a constant times
— O T S
/gmﬁl ( ;, Lo ) (1+ || logal* + || logb|[*)" | det a|*dadX .
Applying Lemma 5.2, we are reduced to the convergence of a sum of products of
integrals

/ §;ﬁ(a)P1 (loga)|detal®da,

[ Pattog) [0+ [0 ax

where Pj(loga) is a polynomial in the log?a; and Py(logb) a polynomial in the
log? (b;). The first integral converges for N > 0, s > 0 2N > s. By the estimates of
Lemma 5.1, the second integral converges for N >> 0. O
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LEMMA 5.4. If u and u' are purely imaginary, the integrals U(s, Wg, Wy, @)
converge absolutely for Rs > 0.

PrOOF. Again we can use the majorizations of Proposition 3.4 and 3.5. In the
integral

/|Wf(ak)| |[Wy (ak)| |2[0,0,...,0,1)ak]|det a|*dadk,
we majorize
Wi(ak)| = &, (0)5,%(a)(1+ || logall)",
Wy (ak)| = 6,/%(a)(1+ [[logall)",
|®[0,0,...,0,1)ak]] =< (1+4+a2)" V.

Thus we are reduced to the convergence of

/&,n(a)_N(l + || log a||2)T| det al’da
or
/fsyn(a)*N(l + || log a||2)”| detal’da .

As before, this integral converges for s > 0, 2N > s. O

6. Relations between integrals

We will make extensive use of the Dixmier-Malliavin Lemma ([9]). For the
convenience of the reader, we repeat this lemma in the form we will be using it.

LEMMA 6.1 (Dixmier-Malliavin). Let G be a connected Lie group. Let (m,V)
be a C* representation of G on a Frechet space V. For any vector v € V, there
are finitely many vectors v; and smooth functions of compact support ¢; on G such

that
v = Z w(hi)v; -

The lemma will be applied to various subgroups of G,,(F).

6.1. Relation between ¥; and ¥, ;. Consider two induced representations
(m,I) = (7o us Iow) and (7', I') = (7gr ry Ior o) of GL(n) and GL(n'), respectively.
Let A (resp. \') be a non zero ¢ form (resp. ¥ form) on I (resp. I'). We claim that,
for 0 < j < n—n'—2, any integral ¥,1(s, W,W'), W € W(r : ¢), W' € W(r' : 1))
has the form ¥ ; (s, W1, W) for a suitable W; € W(r : ¢) and conversely. Moreover,
we claim that the the functional equation relating the integrals ¥; and WUy, with
k+j=mn—n'—1, implies the functional equation relating the integrals ¥;;, and
V1.

Indeed, let Wy be an element of W(r : ¢). Let ¢ be a Schwartz function on
the space of column matrices with n’ entries. Define a function W; by

1, O Z 0
0 1
W1<g>::/wo 0 0
0 0
0 0

[N el N

0 0
0 0 |g|lo2)az.
10

0
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Here and below * stands for the appropriate integer, in this case the integer
n— (n’ 4+ j + 2). Clearly, the function W; belongs to the space W(r : ¢). More
precisely, if Wy = A(7(g)vg), then Wi (g) = A(w(g)v1) where vy is the vector defined
by

1., 0 0 Z 0
0 1, 0 0 0
v = /ﬂ' 0 0 1 0 0 Vo ¢(Z)dZ
0 0 0 1 O
0 0 0 0 I,

In fact, by Lemma 6.1, any vector v can be written as a finite sum

o, 0 0 Z 0
0 1, 0 0 0

sz/ﬂ 0 0 1 0 0 vo ¢5(2)dZ
i 0 0 0 1 0
0 0 0 0 1,

where the ¢; are smooth functions of compact support. Thus any function W is a
finite sum of functions of the form Wj.
Let ¢ be the Fourier transform of ¢:

B(Y) = / (2 Y(-Y Z)dZ .

Here $ is regarded as a function on the space of row matrices of size n’. Similarly,
the function W5 defined by

l, 0 0 0 0
0 1, 0 0 0 -
Wal(g) :/WO Y 010 0 |g|é-y)ay
0 0 0 1 0
0 0 00 1,

belongs to W(r : ¢). Again, we may take 5 to be a smooth function of compact
support. Thus any function W is a finite sum of functions of the form Ws.

LEMMA 6.2. For any g € Gy, X € M(j xn') (j rows and n’ columns)

g 0 0 0 0 g 0 0 0 0
X 1, 00 0 X 1, 00 0
/W1Y0100 dY = W, 0 0 1 0 0
Fr 0 0 01 0 0 0 01 0
0 0 0 0 1, 0 0 0 0 1,
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PRrROOF. We have

g 0 0 0 O 1, 0 0 Z 0
X 1 0 0 O 0 1 0 0 O
Wo Y 0 1 0 O 0 0 1 0 O
0 0 01 O 0 0 0 1 O
0 0 0 0 1, 0 0 0 0 1.
1l,, 0 0 gZ O g 0 0 0 O
0 1, 0 XZ 0 X 1, 0 0 O
=Wy 0 0 1 YZ 0 Y 0 1 0 O
0 0 0 1 0 0 0 0 1 0O
0 0 0 0 1, 0 0 0 0 1.
g 0 0 0 O
X 1; 0 0 O
=Y(YZ)W, Y 0 1 0 O
0 0 0 1 O
0 0 0 0 1,
Thus the left hand side of the formula of the lemma is equal to
g 0 0 0 O
X 1; 0 0 O
/WO Y 0 1 0 O WY Z2)p(Z)dYdZ ,
0 0 01 O
0 0 0 0 1.
that is, to
g 0 0 0 O
X 1 0 0 O R
/Wo Y 0 1 0 O o(-Y)dY
0 0 0 1 0
0 0 0 0 1,
which is the right hand side of the formula in the lemma. O

It follows from the lemma that, for any W',
\I/j+1(8, Wl, W/) = \Ifj(S, WQ, W/) .

Thus our first claim follows.
Now we claim that

\I/k(S, p(wnn’)@v I/—/17/) = \Ijkfl(sa p(wnn’)ﬁ\;lu W//) .
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g 0 0 0 0 1, 0 0 0 O
. X" 1z 0 0 O 0 1, 0 0 O
= [ Wy 0 0 10 0 |wew| 0O 0 10 0 (—1Y")dY’
0 0 01 0 Y0 01 0
0 0 0 0 1. 0 0 0 0 1.
g 0 00 0
0l X 1= 0 0 0
:Wl 0 0 1 0 0 Wn,n'
0 0 0 1 0
0 0 0 0 1.

Integrating the relation we have just found, we get
(s, p(wn )W, W) = W (5. p(uwn, )W, W)
Thus the functional equation for the integrals
U(s, W, W), Wy (1 — 5, p(wp, )W, W)
implies the functional equations for the integrals
U1 (5, W, W), W1 (1 = 5, p(wn )W, W)

and conversely.

We conclude that if we prove that the integrals (s, W, W’) have the required
analytic properties, this will imply that all the integrals W;(s, W,W') have the
required analytic properties. Similarly, the functional equation relating the inte-
grals Wo(s, W,W’) and U, _1(1—s, p(wp, )W W’) implies the functional equa-
tions relating the integrals ¥;(s, W, W’) and (1 — s, p(wy n’ )VV7 W’), for j+k =
n—n'—1.

6.2. Other relations. Consider a Casselman-Wallach representation (v, V)
of GL(n). Let A be a ¢ form on V. For each v € V, set W, (g) = A(7(g)v).

PROPOSITION 6.1. Let r < n. Given v € V and a Schwartz function ® on the
space of row vectors of size r there is vg € V. such that, for any g € G,.,

0 0
W, ( g -~ ) :Wv( g - )@[(0,0,...,1)9].

Conwversely, given v € V', there are vectors v; € V and Schwartz functions ®; such

that
W, (0 17”) ZWU,<0 1n0T>q>i[(o,o,...,1)g].

PROOF. For the first part, set

1, u 0 R
vg = /7r 0 1 0 v ®(u)du.
0 0 ln—r 1
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Here we regard ® as a function on the space of column vectors of size r. Then

g 0 0
w,| 01 o0
0 0 1nfrfl
g 0 0 1, u 0
:/WU 01 0 01 0 d(u)du
0 0 1n7’r71 0 0 1n7r71
(/g O 0 ) R
—w, o1 o /w[(0,0,...,l)gu]@(u)du
L 0 0 1n7r71
- p 0 0 .
=W, 0 1 0 ®[(0,0,...,1)g]
L 0 0 1n7r71

For the second assertion, we proceed similarly. Using Lemma 6.1, we write the
given vector v as

1, wu 0
v = Z/?T 0 1 0 v;®;(u)du
% 0 0 ]-n—r—l

with smooth functions of compact support ;. We obtain the desired decomposi-
tion:

g 0 0 g 0 0
w,[ o1 o0 =>w, [0 1 0 ®,[—(0,0,...,1)g]
0 0 1, : 0 0 lnp

PROPOSITION 6.2. Let (w,V) and A as in the previous proposition. Let r < n
and t < n —r. Let ¢(x,h) be a smooth function of compact support on F* x F*.
Then given v, there is vg such that

g 0 0 g 0 0
Wy | ¢ R 0 =W,| = h 0 oé(z, h).
O 0 ]-nfrft 0 0 ]-nfrft

PRrROOF. We may regard ¢ as a Schwartz function on F**! which vanishes on
F' x {0}. Our assertion follows then from the previous proposition. O

7. Integral representations

In this section, we discuss in detail an integral representation of Whittaker
functions for the group GL(n). The integral representation is a convergent integral
in which appears a Whittaker function for the group GL(n — 1) and a Schwartz
function on F™. In [13], the point of view is different. The integral representa-
tion described here is used inductively to establish an integral representation for
Whittaker functions which contains only Schwartz functions.
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7.1. Godement sections. Let u = (p1, pa, . - ., fin) be an n-tuple of normal-
ized characters. Let u = (u1, ug,...,uy) € C*. The pair (u,u) defines a character
of A, or A, 'N,,. We denote by 1, the induced representation of G. Thus I, , is
the space of C'*° functions f : G — C such that

n

f(vag) = f(g) [Lml@)laf" =7

i=1
for all v € N,,, g € G, and
a = diag(ay, as, ... ay) -

For fixed p, (I,.) is a holomorphic fiber bundle. A section f,(g) is a map
C" x G — C such that, for every u, the function g — f,(g) belongs to I, ,. Such a
section is said to be standard if, for every k € K,,, f, (k) is independent of w.

We construct another family of meromorphic sections of I, ,,, the Godement
sections. As in the case of GL(2) ([14]), they are used to establish the analytic
properties of our integrals. This type of sections was first introduced in the global
theory ([10]).

Set 1/ = (1, o, - -y 1), & = (ug,ug, ... up—1). If ®is a Schwartz function
on M((n—1) xn,F) and ¢; is a standard section of I,/ .+, we set

n—1
e

f‘b,dﬁl,un,un (g) ::Mn(detg” det g

(7.1) / . Ut B
X O[(h,0)g]d1(h™ )un(det h)| det A|**T2d*h.
Gr1(F)

It is easily checked that if the integral converges, then it defines an element of I,

ProproOSITION 7.1.

(i) The integral (7.1) converges absolutely for
(7.2) R(up —u;) >-1,1<i<n-—1.

(ii) It extends to a meromorphic function of u, which is a holomorphic mul-
tiple of

H L(uy —u; + 1,un,ui_1) .
1<i<n—1

(iii) Let Q, be the open set of matrices of rankn — 1 in M(n —1 xn,F). If
® has compact support contained in Q,., the integral (7.1) converges for
all u,,.

(iv) When it is defined, the integral (7.1) represents an element of I, ,,.

(v) For a given u, any element of I,,,, can be written as a finite sum of such
integrals, with ® supported on §2,..

(vi) Suppose u satisfies (7.2). Then any K, -finite element of I,, ., can be writ-

ten as a finite sum of integrals (7.1) with ® a standard Schwartz function
and ¢1 K, _1-finite.

PRroOF. Indeed, let us write
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where b is lower triangular, with diagonal entries a;, 1 <7 < n — 1, and below the
diagonal entries u; j. For example for n = 4,
a1 0 0
b= ui,2 as 0
u1,3 U3 ag
The Haar measure dh is the product of the measures d*a;, du, ;j, dk times
H |ai|i+1—n ]
1<i<n—1

We first integrate over k keeping in mind that ¢; belongs to an induced represen-
tation. We find

/ ®((h, 0)g)é1 (™ )pn(deth)| det A=+ an [ lasfH1"
Grn_1(F) 1<i<n-—1

n—1

= ®1(0) [ ] st " (@i) las

i=1

Up —U;+1
)

where ®1(b) is a Schwartz function on the vector space of lower triangular matrices
(ie., on F"~1 x F¥5™). Now we set

o(ar,az,...,an-1) = /@1(b)®dui,j-

Thus ¢ is a Schwartz function on F~!. We are reduced to an integral of the form

n—1
/gb(al, ag,. ..y ap_1) H oty ai) Ja [~ d % a, .
=1
The two first assertions follow.

The third assertion is trivial.

It is easily checked that when the integral is absolutely convergent, it represents
an element of I, ,. The same assertion remains true when the integral is defined
by analytic continuation.

We prove the fifth assertion. First we recall a well-known result: any element
fof I, , can be written in the form

(9 = [ otb) [T @aif "5 4170

where ¢ is a smooth function of compact support, d,-b a right invariant measure on
the group A,N, and the a; are the diagonal entries of b. This can derived from
Lemma 6.1. Indeed, we may assume

f(g) = / f1(92)61 (2)dz

with f1 € I, and ¢; a smooth function of compact support. Then we can take

6(g) = / £ (R)o1 (g~ K)dk

Let f; belong to the space J, EL of C*° functions f; such that

n,Un

f [( b1 0 M = fi(@n(an)lan

v an

n—1
U+
)
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which are compactly supported modulo the subgroup

Define {( 1n*_1 2 >} |
o= fal(3 ) (5 e

n—1
x iy (an)|an |7 g (aa)an| T TR (an ) an | T

X X X
x d ald CLQ"'d Ap_1,

—1
+1,"T

with v € N,,_1,
a = diag(ay,ag, ... an_1).

Clearly, f € I, . It follows from the result that we have recalled that any element
f of I,, , can be represented in this way for a suitable f; € Jzin,un'
The space Jiu is invariant on the left under the group of matrices of the

form
h 0
(0 1>,h€Gn1.

By Lemma 6.1, any element of ijun is a finite sum of elements of the form

[al(h &)

with f; € J! and ¢ € C°(Gp,—1). For an element of this form, the correspond-

ing f is givggﬁgf
h 0 1
= h™%)dh
1) /GflK 01 )g} Pollt)

bo(h) 5:/¢(vah)dv i (an)lan |7 g (ag)as| T T

where

_ _ _n-1
coox ppt (an—1)|ap—1 | T T T d%ayd ag - d¥ap -
with v € tN,,_1,
a = diag(ay,ag,...an—1).
Now
1
do(g) = ¢1(g)|det g2
where ¢; is in the space I, ,» with
,u/ - (HlaﬂQv cee 7Hn—1) 5 ’U,/ = (ulau27 cee 7un—l) .

Let Jy be the space of C* functions fy such that

o K 172;1 aon )g] = folg)

for all v € F"~1, a, € F* and fy has compact support modulo the subgroup

()
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Clearly, we can write

£1(9) = folg)pn(det g)| det g| =,
with fy € Jy. Thus
f(9) = pn(det g) Idetg\%/fo K

We claim there is a function ® € C°(12,) such that
folg) = @[(1n-1,0)g].

Taking the claim for granted at the moment, we finally get

g (1) )g] b1 (W™ ) (det h)| det h|“» T2 dh .

f(9) :Mn(detg)\detgluﬁ%l/@[(hao)g]fbl(h*l)un(det h)|det h[*=*5d*h.

We can view ® as a Schwartz function on M ((n — 1) x n, F) which vanishes on the
complement of £2,..
It remains to establish our claim. Consider the map
g (]-nflvo)g .
It passes to the quotient and defines a map

R\G — Q,.

This map is clearly surjective. We claim it is injective. Indeed, let g and ¢’ be two
matrices in G such that (1,,_1,0)g = (1,-1,0)g’. We may write

o=(x)0=(5)

where A has n — 1 rows of size n and X, X’ are row vectors of size n. Since the
rows of A and the row X are linearly independent, there is a row vector ¢ of size
n — 1 and a scalar d such that

cA+dX = X'.

Moreover, d # 0 since the rows of A and the row X’ are linearly independent.
Hence rg = ¢’ where r € R is defined by

(0 1),

Thus the map R\G — €, is bijective. Since it is of constant rank, it is a diffeo-
morphism and our claim follows. We have completely proved the fifth assertion.
Finally, assume u satisfies (7.2). For those values of u,, the bilinear map

(@, ¢1) — J®, 6110
M(TL* 1 x n,F) X I‘u/,u/ — I,u,u

is continuous. As we have just seen, any element of I, , is a sum of functions
J®,61,10m 0, With ® € S(M((n — 1) x n, F)) (in fact, ® € C°(Q,)). It follows that
the space spanned by the functions of the form

J@.61 1m0 >
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with ® standard and ¢; K, _;-finite, is dense in I, ,. Let { be an elementary
idempotent of K,,. The range I, ,(§) of the operator

JECECL
is finite dimensional. The space spanned by the functions fe 4, 4, ,u, With ® stan-
dard such that
(X)) = /@(Xk)f(k:)un(det k)dk
is dense in it. Thus it is equal to it. This concludes the proof of the proposition. [

7.2. Integral representation of Whittaker functions. For
(7.3) Ruy < Rug < ... < Ruy,,

let A, be the linear form on I, , defined by the convergent integral

M) = [ ).

By Theorem 15.4.1 in [26] II, the linear form extends by analytic continuation into
a linear form A, on I, ,, which is defined for all v and never 0. Suppose f, is a
standard section. Then we say that

Wulg) = Au(mp,u(9) fu)

is a standard family of Whittaker functions.
Now we use Godement sections to define other families of Whittaker functions.
We set

(7.4) Wa .61 mun (9) = A (P(9) 0,61 1) -

A priori, this is only a meromorphic function of u.
If furthermore u verifies (7.3), then we can write

Wt g0y (9) = /N Fbr g (09) B (0}l

We claim that if we replace f, by its expression as an integral, we obtain a double
integral which is absolutely convergent. Indeed, we may assume ® > 0, all u; are
trivial and all u; real. We may replace 0, by the trivial character. Then the
integrand is > 0. The iterated integral is finite. Our claim follows.

It will be convenient to introduce, for u satisfying (7.3), another integral:

v 0
(7.5) W61 10 un (9) :/ T, 61 ptm um K 0 1 >g] Oy n—1(v)dv.

Np—1
Again, if we replace f. by its expression, we obtain a convergent double integral.
Thus we can exchange the order of integration. After a change of variables, we
obtain

W61 1 un (9) = fin(det g)] det g|*n 7
x| ®[(h,0)g]W1(h™")un(det h)| det h[*~T2d"h,

where we have set

Wl(h) = /¢1(Uh)9n,1,w(v)d’v.
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With this notation, we have, for u satisfying (7.3),

_ 17’7,71 v vl 1n71 v
W¢,¢1,Mn7un (g) - /F"—l We,¢1,ptm un [( 0 1 >9:| 9w,n ( 0 1 ) dv.

For g € G,, and h € G,,_1, we introduce the notation
g9.9.h[X] = ®[hX¢].

We obtain in particular a C* left representation of G,, on S(M((n — 1) x n, F)).
If Y is in Lie(G,,), we denote by Y.® the action of ¥ on ®. Replacing wae ¢, .1, u.,
by its expression, we get

n—1
W61 41nun (9) = pin(det g)| det g[“»F 72

: / 9-®.h[Lr, oW (h™ ") (et h)dethwm,n( K

X
0 1>d hdv .

At this point, we introduce the partial Fourier transform P(®) of a function ® €
S(M((n—1) x n, F)) with respect to the last column. The function P(®) is thus
the function on the same space defined by

P(®)(X1, Xz, X1, X)) = /<I>(X1,X2,...7Xn,17U)@( HUX,)dU .

We denote by e;, 1 <i <n—1, the canonical basis of F" ! From now on we view
them as column vectors. With this notation, we get

n—1
(7-6) W1 0.u, (9) = pin(det g)| det g|*»+ 72
X /P(g.fb.h)[ln_l, en_1)Wi(h™ ) pn(det h)| det A%+ 2 d*h.
More explicitly,

n—1
(7.7) Wao .61 .mun (9) = pin(det g)| det g[*» 72

></ P(g.®)[h, h'en_1]Wi1(h™ ), (det h)| det h[* T2 "1d%h.
anl

At this point, some remarks are in order. A priori, the equality is valid for u
satisfying (7.3). The left hand side is a holomorphic function of u. As we are going
to see in the next proposition, the integral on the right converges for all v and
thus defines an entire function of u. Thus the equality is in fact true for all u.
Finally, the equality shows that the left hand side depends only on W; (which is a
holomorphic function of ' = (u1,usg, ..., u,—1). Thus we can also use the notation
Wa 4, W pun,u, for the left hand side.

PROPOSITION 7.2. Let Wi € W(my v : ) and ® a Schwartz function. The
integral (7.7) converges absolutely for all u,. More precisely, suppose that Wy =
Wi is a standard family of Whittaker functions. Then the integral converges
uniformly for u' in a compact set Q' of C* ' and u, in a compact set Q of C.
Furthermore, given Q' and Q and X € U(G,), there is M > 0 and a continuous
semi-norm cx on the space of Schwartz functions such that

|P(X)Wa w1 i un (9)] < ex(@)]]g]|M
forall®, v € Q, u, € Q.
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PROOF. Let us prove the convergence for g = e. We set
h=k(
where £ is in K,,_; and 3 is an upper triangular matrix with diagonal part
b= diag(bl, bg, ey bnfl) .
For the purpose of proving convergence, we may replace Wi (h~!) by
Enn—1 (0~ MBI
assume u,, real, u, trivial and replace P® by ®; > 0. We find
[ BalkB. Tt e ma] € (67N et b dd

After integrating over k, and the variables above the diagonal, we are reduced to

/qs biybay .o b1, byt )1 (671 7N [B]| M| det b[“» T2~ T (b)dbdk

where J(b) is a Jacobian factor and ¢ > 0 is a Schwartz function. Since ||b|| is

a sum of positive characters, we are reduced to showing that, given a character
x > 0, the following integral is finite, provided NV is large enough,

/¢ b17b2a--- n— 17 n— l)fhn 1(b 1)_NX(b)db
Now, for N >> 0,

n—1
d(by, by .. by 1, b7t H 1+ Na+v2 )N
and there is m > 0 such that
n—1
Enm_1(b") (1 + b2, H (1+40b;2

Thus we are reduced to an integral of the form

n—1 n—1
/ [Ta+e)=N T +0;2) " Nx(b)db

which converges for N >> 0.
Let us prove the estimate for X = 1. We write g = vak, v € N —n, a € A,,
k € K,,. Since k.® remains in a bounded set, we are reduced to the estimate for
g = a. Since W, transforms under a character of the center, we may even assume
an, = 1. Following the above computation, we are led to replace ¢ by a character
n(a) times
¢((L1b1, a2b2, . 7an,1bn,1, b;il) .
Now ) .
1 < +a
1+a2b2 = 1402

Thus for every N,
¢(a1b17a27b27‘"7anbn7b,;i1) j HaHM H (1+b?)_N(1+b;LE])_N7
1<i<n—1

where M depends on N. Our assertion follows.
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Finally, to find the estimate with a given X we observe that W, transforms
under a character of the center. Thus we may assume X € $(SL(n, F')) and then
replace ® by X.®. O

Writing explicitly the definition of P(®), we get from (7.6)
Wb o Ws s un (9) = fim(det g)| det g|"n 72
x / </ 9.9y, X]o5( ten_lX)dX) Wi (h=1)u (det h)"e+3 d* .
anl Fn—1

The formula is to be understood in terms of iterated integrals, as each of the
indicated integrals converge absolutely. Furthermore, we can replace h by hv with
v € Np—1 and h € G—1/Np—1. We get then

i (det g)| det g[*+ 72"
« / / ( / 9.3k, vX]5( tean)dX) Ty s (0) AW (A~ ) (dlet )+ d

We can change X to v !X to get
i (det g)| det g+
X // </ g.®.hlv, X]( tean)dX> O 1 (v)dvWy (B~ 1), (det h)“n T2 dh .

The outer integral is over Gp,—1/Np_1.
We can combine the iterated integrals in v and X into a double absolutely
convergent integral. We arrive at the following expression

(7:8) Woty s (9) = fn(det )] det g 7"
* / (// 9-2-hlo, XJi( ten—lX)ew,n—l(U)dXﬂ)) Wi(h™ Y (det h)“ 2 dh.

Here v € N,,_1, h € G,—1/Np—1 and X € F"~! (column vectors). We stress the
finiteness of the integrals

// |9.@.hfv, X]( ‘en—1X)0y 1 (v)| dXdv < 00

and
/’//g.q).h[v,X]z/J( ten—1X)0pn—1(v)dXdv| [Wi(h™ ), (det B)“ T3 | dh < oo

7.3. A functional equation. We now prove that our integral representation
satisfies a functional equation. Recall the notation
W(g) = W(wng").
PROPOSITION 7.3.
%74 -1
Wo Wi, (9) = i (=1)"" Wg 535 =1, -

PrOOF. We need a lemma.
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LEMMA 7.1. For any ® € S(M((n—1) x n, F))
/ / wn B[, XTB( ten1 X)8y s (v)dX dov
. / / By [0, XJ(en1 X) 01 (v)dXdo

where the integrals are for X € F" ', v € N,,_;.

Proor. We illustrate the case n = 5 but the argument is general. Then the
formula reduces to the equality of the following two integrals:

T11 T21 31 T4 1

4
| %12 222 @32 10
T13 T23 1 0 0
Z1,4 1 0 0 0

@(xm + o3+ 32+ Ta1) Ddxj,

0 0 0 1 Ys,1
0

Y 0 1 Ya,2 Y52

¢ ’ ’ + Y33+ Ya2 + R dy; ; -

/ 0 1 Yss Yss U 1/)(3/2,4 Y3,3 T Ya,2 y5,1) Yi,j
1 you4 Y34 Yas Y54

The equality follows from the Fourier inversion formula. O

With
W= W‘I’,w,W17un7un>

we have

W(g) = pin(det wy, ), (det g)| det g| ~4n =7

« / < / / wn g ®.hv, XTB( ten_lX)t%n_l(v)dde)

X Wi (h™ ), (det h)| det h[“»t2d*h.

We apply the previous lemma to the function g*.®.h whose Fourier transform is the
function g.®.h* |det g|" ! |det h|~". We get

pin (det wy) iy, ' (det g)| det g| ~#n 52

/(//gcbh wn—1[v, X]¢h( ten—lX)9¢,n_1(v)dde)

x Wi (h™ V), (det h)| det h|*“~2d*h.
We do a last change of variables setting hg = h*w,_1. Then
Wi (h™Y) = Wi(hg'), pn(det h) = pi,(det wy_1)p;  (det hg) .
Thus we arrive at

pin (det wy, det w,, _1)mu, *(det g)| det g|_“"+n2;1

X / (//g@.ho[u,X]w(ten_lan_l(u)dxczu)

X Wi (hg M) (det ho)| det ho| "+ F dhg .

Since det w,, det w,, _; = (—1)""1, our assertion follows. O
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REMARK 7.2. In the above functional equation, the following replacements take
place:

(Up, U2y .o Up—1,Upn) = (—Up—1, —Up—2,. .., —U1, —Up)
(i, piz, e pintspin) = (gl oy iy )
Yo P
In particular if u satisfies (7.2), in general the n-tuple
(—Up—1, —Up—2,...,—U1, —Up)
does not, unless
(7.9) —1<Ru, —Ru; <1,1<i<n—-1.

8. Theorem 2.1: principal series, pairs (n,n), (n,n — 1)

In this section and the two next sections, we prove Theorem 2.1 for the induced
representations I, ,, (principal series). In this section, we treat the case n’ = n and
n’ = n — 1. The proof is by induction on n. The case of the pairs (1,1) or (1,0)
is simply the local theory of Tate’s integral. Assuming the theorem for the pair
(n,n —1), we prove it for the pair (n,n) by replacing the Whittaker function W on
G,, by its integral representation. The integral representation contains a Schwartz
function ®. Formal manipulations transform the integral ¥ (s, W, W' ®;) into the
product of an integral for the pair (n,n — 1) and an integral Z(s, f, ®) ([11]) for
the group G,. The Schwartz function ®( is built out of ® and ®;. Likewise,
assuming the theorem for the pair (n —1,n — 1), we prove it for the pair (n,n —1).
Again we replace the Whittaker function W on G,, by its integral representation
which contains a Schwartz function ®. Formal manipulations transform the integral
U(s, W, W') into the product of an integral for the pair (n—1,n—1) (which contains
a Schwartz function ®;) and an integral Z(s, f, ®g) ([11]) for the group G,,—1. The
Schwartz function ® gives rise to the functions ®y and ;.

8.1. Statement of the Theorem. For clarity we state again the functional
equations (n,n) and (n,n — 1) for the induced representations I, ,,.

For the case (n,n), we consider two pairs (u,u) and (v,v) where p and v are
n-tuple of normalized characters and u,v are in C". We let W be in W(m, ., : ¢)

and W’ € W(m, , : ¢). Finally, we let ®; be in S(F™). Then the integral
W(57 I/I/’ Wl’ él) 3
defined for Rs >> 0, extends to a holomorphic multiple of
TTLGs+ wi + vy, pavy)
0,J
bounded at infinity in vertical strips. Likewise,
\IJ(’S, W? Wla (I)l)
is a holomorphic multiple of

HL(S —u; — vj,,u;lz/j*l),

4,9
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bounded at infinity in vertical strips. Finally, the functional equation
W1 — s, TV, 8y)
1 71
Hi,j L(s —u; —vj, p; )

= Hﬂj(—l)n_l He(s + u; + uy, 1V, )
J

.9

lI/(S7 VV, I/V/7 (bl)
Hi,j L(s + wi +vj, pivy)

holds, in the sense of analytic continuation.

For the case (n,n — 1), we consider two pairs (u,u) and (v,v) where p is an
n-tuple of normalized characters, v is a (n — 1)-tuple, u € C", v € C"~1. We let
W € W(mpuu 2 ¢) and W € W(m,,, : ¥). Then the integral

U(s, W, W),
defined for Rs >> 0, extends to a holomorphic multiple of
HL(S + ui + 5, pivj)
i,
bounded at infinity in vertical strips. Likewise
U(s, W,W’)
is a holomorphic multiple of
HL(S —u; — vj,,u;lz/j*l) ,
i,
bounded at infinity in vertical strips. Finally, the functional equation
U(1—s, W, W’)
Hi,j L(s —u; — Uj’ﬂflyfl)

U(s, W, W)
= lwE=D v €(s + u; + uj, pivy)
1:[ 1:[ ! 1_][ DI L(s + i+ vg, pavy)

holds, in the sense of analytic continuation.
As we have seen in Section 2, it suffices to prove the assertions for one choice
of 1. Thus we may assume 1) standard. Set

ou = (B ® ") @ (Br; @ a).

As the notation suggests, v will be constant in the computation. We let (0, k)
be a holomorphic family of (o,,%) pairs. We define

(6, W, W' &, / W(yg 0. (det g)®1(eng)dyg,

Uy, W, W7, B) = / W (9) " (g)ru(det 9)1 (eng)dy

These integrals are absolutely convergent. Then the above assertions for (n,n) are
equivalent to the functional equations

U(0,, W, W, 01) = [ [ pua(-1)""" 1Huj Uk, W, W', 31).

Now let W = W, be a standard family of Whlttaker functions. Then both sides are
entire functions of . Thus it suffices to prove the assertions for v in a connected
open set, for instance, the open set defined by (7.3). Moreover, if we write W as
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Wy with ¢ € I, then both sides are continuous functions of ¢. Thus we may
assume W is K,-finite. Likewise, we may assume W’ is K,-finite. Furthermore,
both sides are continuous functions of ®;. Thus we may assume ®; is a standard
Schwartz function. In addition, W being K, -finite is then of the form

W= W<I>,W1,un,um¢ )

with W, K,,_q-finite and ® standard. Thus it suffices to prove the assertions of
Theorem 2.1 for ®; standard, W’ K, -finite, W of the above form, and any u.
The case (n,n — 1) is similar with

wo W) = [w( 8 )W) deg -ty

8.2. Case (n,n). We assume that we know Theorem 2.1 for the pair (n,n—1).
We prove Theorem 2.1 for the pair (n,n). To that end, we consider

\I](Sa W» Wl? (bl)

where W = Wa y w, . u, and W € W(m,, , : 9). Assume for now that u is in the
set defined by (7.2). Then we can set

w = w{’ﬂl’ywl sHn,Un

- fo[( 5 V) e

Indeed, the integrals are absolutely convergent under assumption (7.2).
Then

and write

Vs WWLe) = [ WOW (9)ileng] |detgl*dg
N?L\G’IL
= [ W g)ileng] det glds.
anl\Gn
where we embed N,,_; into G,, the obvious way:
(v 0
v 0 1 )-
Replacing w by its integral expression, we get

/ \G | det g|***% +4n i, (det g)
Np—1\Gn

X (/ ®[(h, 0)g)Wr(h™")pun(det h)| det h|“”+”/2dh> W' (g)®1[engldg.
Gn-1
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Now

/ B[(h, 0)g] W1 (A~ )jun (det )| det B[/ >dh W (g)
anl

_ /Gn_l/Nn_l </N ® [(h,o)( ol )g:| Wl(h—l)en_w(u)du>

X i (det h)| det AT/ 2dRW (g)

oo (Lm0 (3 ) (5 2):)e)

X iy (det h)| det h|™/2dh,.

Combining the integral over N,,_1\G,, and N,,_1, we can write the formula for ¥ as

n—1

/ ( [ U000 () gl et g+ *“”un(detg)dg>
anl/anl Gn

x Wi(h™ ) pn(det h)| det h|“" 2 dh .

)
o 1)%

We change g to

We get
[ 1det gl "5 4 et 90111, )l
X W' [( h(;l (1) )g} Wi (h~1)| det h|Y/2~*dhdg .
We set

®o(9) = @[(1n-1,0)g]P1[eng] -

After changing h to h™!, we arrive at our final expression

h O
s wewwiey=[ [ w (g 0 ) ] e
Gn Nn—l\Gn—l
% i (det g)| det g|“n T3 dgWy (h)| det h|*~ 2 dh .

We need to justify our computations. We claim the following. Suppose that 2
is an open, relatively compact set of C™. Then there is A such that for Rs > A and
u € €, the double integral (8.1) is absolutely convergent. Moreover, the convergence
is uniform if we impose B > fs > A. If we take € contained in (7.2), this will
show that our computation is justified. Moreover, by analytic continuation, this
will show that if Q is any open, relatively compact set of C™, there is A such that
for v € @ and Rs > A the integral in (8.1) is absolutely convergent and equal to
(s, W, W', &).

It remains to prove our claim. To that end, we may assume ®3 > 0. We may

replace |W’| by
—N
ho0
g0 1) IR gl
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and |W1| by ||h||M. We are reduced to study the convergence of the following two

integrals:
hoo\ " 1
Jou (G 1) imlaecn-,

n—1
/ Bo(g) 19l |det gl +Runt 5 4y

By Lemma 3.5, there are A, B,C such that the first integral converges for

N > A Rs > B,CN > Rs. The convergence of the second integral for Rs >> 0

follows from Lemma 3.3. Our claim is proved. Thus formula (8.1) is true for any wu.
Similarly, for fs << 0,

U(1—s, W, W, &) :un(—l)”_l/ W' K 8 ? )g] ®(9)

n—1

x 11 (det g)| det g| =15 gy (h)| det b2~ 5dh .

Indeed, by Proposition 7.3, it suffices to replace W’ by 17[7/, ®, by @, ® by </I\>, Wy
by Vf[\//l7 tn by gt u, by —u,, and insert the factor ju, (—1)"~.

To orient the reader, we first establish the functional equation formally.
Applying the (n,n — 1) functional equation to the h-integral, we find that
U(l-— s,AW/,ﬁ//’,(i\l) is equal to

pa(=0" 0 T (=1 T w0 II (s +us + 5, vy, ¥)

1<i<n—1 1<j<n 1<i<n-1,1<j<n
<JIw (6 1) o] Botown eta)l et o= g (] aee 1.
Recall

(s + u; + ”Uj;/liVj,E) = pi (=) (=1)v(s + ui + vj, pivy, ) .

Thus we can rewrite the above expression as

H pi(—1)" H Y(s +ui + vy, vy, )

1<i<n 1<i<n—1,1<j<n
<[ W/[(’g ‘j) gﬁ] Bolg)u; ! (det g)] det g+ 5 dgW¥, (h)| det h|**+Fdh

We now apply the functional equation of Proposition 4.4 to the g integral. We get
IT w-n IT G+ i+ v, v, )

1<i<n 1<j<n,1<i<n

SIS, 11>

></ w’ K g ? ) g] o (g)un (det g)| det g|** T dgWy (h)| det h|** 3 dh..

Thus we get the correct functional equation.

Now we make the proof rigorous. As we have observed, we may assume that
the Schwartz functions are standard and ) is standard. Then the rest of the proof
does not depend on the theory of the (oy,%) pairs. The function ®q is then K-
finite on both sides. Thus there is an elementary idempotent £ on K,, such that

/K Do (k™1 X ) (det k)< (k) dk = By (X).
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We can insert this in the integral for ¥ and change g to kg to obtain

WATRRERPLILED

X @o(g)pn (det g)| detg|“”+5+"771dgwl(h)| det h|57%dh.

Now let v} be a basis of the image of the operator

/ £(k)my o (k)
K,

in the space I,,,. Let W/ be the corresponding elements of W(m,,,, : 7). Then
[ wiakg)etiar = Y Wi,

where the functions f/ are matrix coefficients of the representation I, ,. We see
that ¥ decomposes into a sum of products, namely,

;/W{ K vy )} Wi ()| det h|*~% dh

n

X/‘I)O(Q)f{(g)un(detgﬂdetg\“n+8+ T dg.

Thus
(8.2) U(s, W, W/, ®y) =Y (s, W/, W1)Z(s, R0, f] @ pin) -

By the induction hypothesis, ¥(s, W/, W) is a holomorphic multiple of
H L(s +ui +vj, pi ®v5)
1<i<n—1,1<j<n—1
bounded at infinity in vertical strips. On the other hand, Z(s, ®¢, f! ® uy,) is a
holomorphic multiple of
H L(8+Un+’l]j,/1/n7/j),
1<j<n—1

bounded at infinity in vertical strips. Thus the analytic properties of the integral
have been established. Likewise for the symmetric integral. It remains to establish
the functional equation.

We have

/ Bo (k™ X )y (det k)E(k)dk = Bo(X)
or, changing k to k*,

[ Bt Xt kg () = Bo(X).
On the other hand,

[ Wiakgle ik = 3" Wita) Fia).

where we have set

1(9) = filg").
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Thus
W(1— s, W, W, B0) = i (~1)" 1Y W(1 — 5, W/, W) Z(1 — 5, fl @ i, L, @) .

The stated functional equation follows now from the induction hypothesis and the
functional equation of Proposition 4.4.

8.3. Case (n,n —1). Now we assume Theorem 2.1 for the pair (n —1,n — 1)
and we prove Theorem 2.1 for the pair (n,n — 1). As before, for now, we only deal
with principal series representations.

Here we use the integral representation for

W =Wa Wi p,un

in the following form. We assume as we may that ¢ is a product in the following
way. If Y isan n —1 xn — 1 matrix and X a column matrix of size n — 1, then

(Y, X) =21 (Y)P2(X).

g 07 _
W(O 1>—|detg

< /@1[119}62 [hten 1] jon(det h)| det h["* 3 ~dh |

Then

T 1 (det g)

Now we substitute this integral representation of W in the integral ¥ (s, W, W”’).
We get

W(s, W) = [ [ |detglts 451 det )] det iP5, (det )
x @1 [hg|®s [Aen_1) Wi(h™ )W (g)dhdg .
We change h to hg—!.

/ | det g|°| det h

Next we change g to gh. We arrive at

w3y, (det h) @y (h) Dy [kt Pgen—1] Wa(gh™) W (g)dhdg .

un+s+%71‘un(det h)

U(s, W, W' :/ det g|°| det h
oy VW) [l

X @1 (h)Fy(P2) [ “gen—1] Wi(g)W'(gh)dhdyg .

Here g € Ny 1\Gp—_1, h € G, 1.
To justify our computations, it suffices to prove the last expression is absolutely
convergent for s >> 0. As before, we majorize

W (gh)| < lgll}" |IhM,
Wilg)l < &nm-1(9) " Vgll?*.

We are reduced to prove the absolute convergence of integrals of the form

/ gh,n—l(g)iNHgH;w ‘:I\)Z‘ [ tgen—l] ‘detg|msd97
Np-1\Gn_1

/|det h%s ||n||M @, (h)dh .
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For the first integral, there are A, B,C such that the integral converges for
N > A/Rs > B,NC > Rs (Lemma 3.5). The second integral converges for
Rs >> 0 (Lemma 3.3). Our assertion follows. B
For the symmetric integral, we must do the replacements ¢ — 1, &1 — Fy,(P1),
®y — Fy®; (and other replacements). Since FFy(P2) = @2 we get, for Rs << 0,
(8.4) W(l—s, W, W) :pn(fl)"*l/\detg|1*5\deth\*“"Jrl*H%*lu;l(det h)
X Fy(®1)(h)®s | ‘gen-1] Wi (g)W'(gh)dhdg .

Again, we first prove the functional equation formally. By the functional equa-
tion for the pair (n — 1,n — 1) applied to the g-integral, we get that
U(1—s, W, W) is equal to

TG Y [ ITIICS Vi 11 (s +ui + v, pavy, ¥)

1<i<n—1 1<i<n—1,1<j<n—1
X / | det g|*| det h[' =+ 317, (det h) "W ()W (g h) Py (h)®a[— "gen—1]dhdg,

because ®; is the Fourier transform of X — Zﬁg(—X). After changing g into —g,
we find

I wEy I w-D 11 V(s + ui + vj, pavj, )

1<i<n 1<i<n—1 1<i<n—1,1<j<n—1

></|detglsldethll‘”%‘l‘""ﬂn(deth)‘lwl(g)W’(g 1) ®1(h)®s [ *gen—1] dhdg .

Now we apply the functional equation of Proposition 4.4 to the h integral. We get

IT w-n" [ w1 11 Y(s + ui + vj, vy, )

1<i<n 1<i<n—1 1<i<n,1<j<n—1

x / [ det gI*| det A|** 5 1% 1, (det ), (h) B2 [ “gen 1] Wi(g)W' (gh)dhdg.

Now we make the proof rigorous. We assume as before that ®; is a standard
Schwartz function. Thus there exists an elementary idempotent & of K,,_; such
that

/ (k™" X ) (det k) "L (k) dk = Dy (X).

Substituting this identity into the integral for ¥(s, W, W’) and changing h into kh,
we get

/|detg|8|deth\"ﬁ“%*lun(deth)

X <I>1(h)$2 {tg < g >} Wi(g) (/ W’(gkh)g(k)dk) dhdg .
As before,
[ wtgkhie i = Y wito) 4
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with W/ € W(m’v;@) and f; a matrix coefficient of 7, ,. Thus our integral is then
a sum of products

(s, W, W") Z\Ilswl, ) Z(s 4 un, [i ® tin, P1) .

In each term, the first 1ntegral is a holomorphic multiple of
H L(s + u; +vj, pivj) ,
1<i<n—1,1<j<n-—1

bounded at infinity in vertical strips, and the second integral, a holomorphic mul-
tiple of

H L(8+un+vjvﬂnl/j)7
1<j<n—1
bounded at infinity in vertical strips. Thus the integral ¥ has the required analytic
properties. Likewise for the symmetric integral. The functional equation is proved
as before.

8.4. Partial Proof of Theorem 2.7. To prepare for the proof of Theo-
rem 2.7, we prove a partial result.

PROPOSITION 8.1. Let (u,uw) and (v,v) be as before. Suppose
up Sug <0 Sy, 01 SV < <oy
Let f € 1,4 be Ky-finite and f' € I, be K, -finite.
(i) Suppose n’ =n —1. Then
(s, Wy, Wp) = P() [ Bl + s+ 1y i 0 1)

where P s a polynomial.
(ii) Suppose n' =n. Then, if ® is a standard Schwartz function,

U(s, Wy, Wy, ®) = P(s) HL(S + wi + Uy, gy @ )
where P is a polynomial.

PRrROOF. We recall that an integral of the form

/f(g)l det g|*+*7" dg

where f is a K,-finite coefficient of I,, ,, is a polynomial multiple of [] L(s +u;, ;).
In particular, our assertion is true for n = 1. Suppose the assertion of the proposi-
tion is true for the pair (n,n—1). To prove it for (n,n), we recall that any K,-finite
element f of I, , is a sum of elements of the form

f<1>,¢1’un,un

where ® is standard. So we may as well assume f = fo 4, 4,,u,- Then Wy =
W& 45, Wi i ,un- Then the function ®¢ in (8.1) is also standard. As we have seen,
U(s, W,Wy,®;) (formula (8.2)) is a sum of product of the form

Z\I/'SW/ (5+unaq)07fi,®ﬂn)'

In each term, the first factor is a polynomial multiple of

H L(s + u; + vj, ;)

1<i<n—1,1<j<n
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and the second factor a polynomial multiple of
H L(s+ up + vj, ;) .
1<j<n

Our assertion follows. One proves similarly that the assertion of the proposition
for (n — 1,n — 1) implies the assertion for (n,n — 1). O

9. Theorem 2.1: principal series, pairs (n,n — 2)

In this section, we prove Theorem 2.1 for pairs (n,n — 2) and principal series
representations.

9.1. Review of the integral representations. We keep the notations of
the previous section. We set

W =Wo pwi,pn,u, -

We first review the integral representation for W. We assume, as we may, that ®
has the form

O(X,Y,Z) = &1(X)P2(Y)P3(2),

where Y and Z are column matrices with n — 1 rows, and X is a matrix with n — 2
columns and n — 1 rows. Then, for g € G,,_o,

w

o o

00 B
1 0 | =[detg|" "= py(detg)
0 1

></<I>1 [h( g )} ® [hen_1] B [h en_1] Wi(h™ ") pun (det B)| det h|“ T2~ 1d" b .

hy O
hzh?( 01 1)

with hy € G,,_2, We have then to take hy in a suitable quotient space. We will take

_ 1n—2 0 1n—2 Y
o) e (7 ) (5 Y.

Then

The integral is for h € G, 1.
We will write

d*h = d*hydhsy, dhy = dkaJ(a)d*adY

where J is a suitable Jacobian factor. For comparison with formulas which appear
in the functional equations, we remark that we could take

1,5 0 1o O
h2:k2( n02 a1)< Y2 1)’

with dhy = J (a)dY, where J is another Jacobian factor. These two choices of hy
and dhs are exchanged by the automorphism h +— h*.
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t
g 0 0 )
Wl 0o 1 0 |=|detg["t"F pu,(detg)
0 0 1

x /@1 [h2< "9 )} s [hoen_1] By [yen—_1] Wi K hgl ) )h;l}

X i (det hy)| det by [“ 27 d% by, (det ho)| det ho|“n T2~ 1dhy .

Recall that we have proved this expression is absolutely convergent for all w,,.
Similarly, we have the following lemma.

LEMMA 9.1.

g
[w|x
F 0

o (B e [ 4]

X fin (det hy)| det by |“* 2= d* hyp,, (det ho)| det byt 2 ~dhod X |

O = O

0
0 |dX = |detg|“"+%un(detg)
1

the integral being absolutely convergent.

PROOF. We need only prove the absolute convergence of this expression. For
Ny >> 0 (see formula (3.1) and Lemma 3.1)

g a2 gl
[0} X < =4 7 4
/’ [h( X >”d 2 T BN,

(1))

for a suitable M and arbitrary Ny (see Lemma 3.8). Thus, we are reduced to
showing that the following two integrals converge absolutely:

/ Eim—a ()TN (L ([P |2) N ||| det b [“dha
Gn_2

= &na ()TN B || || R [M

where v and M are given and Ny, N, are arbitrary, and
[ el s lhaer] @ e, dha.

where M is given.
For the first integral, we write h; = k1(b+ U) where b is diagonal with positive
entries and U upper triangular with 0 diagonal. Then, for a suitable M,

1Al < lolI7™ (L + T2
For a suitable m,

fiﬂL—Q( ) —gzn 2 1:[ 1+b

Also )
(1+1mal12) H (1+b2)(1+ [[U][2).
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Thus, after a change of notations, we are reduced to the convergence of
/ HbIIM | det b[* J (b)
121+ 02N (1 + b)Y

1
———dU
/(1+|U|§)N

where M, u and J(b) are given and N is arbitrary. It is easy to see that the integrals
converge for N large enough.
For the hs integral, recall hy has the form (9.1). Then

and

1Rl = (a® +a™)M (1 + ||V )Y

for a suitable M. Moreover,
Y
athc, )l = o i ()] = @B a e
with N; and Ny arbitrary. Finally,

|®3(hben—1)| = [P3(ksa ten—1)| 2 (1+a %)~

with N3 arbitrary. Changing notations we are reduced to the convergence of the

integrals
/ dy
(L +[YHN

/ (CL2 + a_Q)MJ(a’) d><
1+a®>)N1+a2)N

with M and the Jacobian character J given and N arbitrary. Again it is clear that
the integrals converge for N large enough. O

a,

In the previous expressions, we change h; to h1g~'. We get

g 0 0
9.2) W 0 1 0 | =|detg|/?
0 0 1
Rt o0,
X /@1 |:h2< >:| (I)Q [hgen 1] q)g [h2€n 1]W1 |:( gol 1 >h2 1:|
X n(dethl deth2)|deth1 deth2 u"JriildXhlth
and
g 0
(9.3) /W X 0 | dX =|detg|'/?
0 1

o

0
1
0
h —~ hit _
[hz < : ) en1:| Dy [hoen—1] P3 [hoen—1] Wi K g 01 1 > hs 1]
%t (det hy det ho)| det by det ha|*» 5 ~1d* hydhadX .
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Similarly,

[P(wn,n—2)W]

o O

0 0
10 | = pa(=1)] det g|"**%" pu, (det g)
0 1

g / " [h< 0 )} Dafhen—1]Ba[h e 1 ]Wi(h ™" Yo (det h)| det b3 ~1d*

or, introducing h; and ho as before,

(9.4)  [p(wp.n_2)W]

) /(I)l [hQ( }f)l )} O3 [hgen_1] By [hhen 1] Wi K ghofl (1J >h21]

X i, (det hy det hy)|det hy det b2~ d*hydhs .

O oK
O = O

0
0 = |detg|1/2Mn(_1)
1

9.2. Formal computations. We compute U(s, p(wy n—2)W, W’) by replac-
ing p(wp, n—2)W by its integral expression (9.4) and changing g to gh,. We get

(9.5) U(s, p(wp n2)W,W’) :,un(—l)/,un(dethgﬂdet ho|tntE =t

h —~ 0\,
X /‘1)1 |:h2 ( 01 )} D3 [hoen—1] Po [R5en—1] Wi [( g 1 ) hs 1} W' (ght)
X fin (det hy)| det by [T T2 | det g|*~Y/2d* hydgdhs .

We compute ¥y (s, W, W’) using (9.3) and changing g to ghy. We get

(96) \111(5, VV, W’) = /}Lﬂ(det h2)| det h2|u"+%71
< [ @ o (") @0 Dy [h wi (90 Y ngt wign
R e 2 [haen—1] @3 [hhen 1] W1 0 1 2 (gh1)
X fin(det hy)| det by [*T4n T2 | det g|*~1/2d* hydgd X dhs .
These expressions converge for s >> 0 but we postpone the proof to the next
subsection.

Now we prove the functional equation formally. We apply formula (9.6) com-
bined with the functional equation of Section 7.3 to get

(9.7) Uy (1— s, W, W) :un(—l)"*l/u;l(dethg) | det g~ 2

— h —~ . — 0 ]~
X /(191 [h2 ( AX% >:| @y [hoen—1] @3 [hsen—1] Wi [( g 1 ) h; 1:| W' (ghy)
x ot (det hy)| det hy |54 2  det g5 20X hyd” gd X dhs .
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We first apply the functional equation (n — 1,n — 2) to the g integral. We get

H wi(=1)" H vi(—=1) H v(s 4+ w;i + vj, uivy, )

1<i<n 1<j<n—2 1<i<n—1,1<j<n—2

X un(—l)/u;l(det ho)| det hg| "+ "5

Sl ()] B nesmenm [(§ ] )n] wion

x ;7 (det hy)| det by |*=5 457 | det g|* Y/ 2d* hydgd X dhs .

Finally, we apply the functional equation of Proposition 4.4 to the h; integral and
the Fourier inversion formula to the X integral. We get

I wn ] w1 11 Y(s + ui + v, pivy, ¥)

1<i<n 1<j<n—2 1<i<n,1<j<n—2

2

X tta(~1) / 1 (det hy)| det h| ~n= 7"

I [h;( n )} B [haen 1] Bs [hben 1] W1 K - )h;b] W (ghy)

n—3

X pin(det hy)| det hy [P T4+ | det g|* =/ 2dhydgdhs .

After changing hs to h4 in the integral, we arrive at the following expression:

IT wn" ] w1 11 Y(s + ui + v, vy, )

1<i<n 1<j<n—2 1<i<n,1<j<n—2

N, 1) >

X pn(fl)/un(dethgﬂdethg

/q>1 [hg ( }; )} Oy [hen_1] Bs [hoen_1] Wi [( (9) (1) )hQI} W' (ghs)

X i (det hy)| det by |70+ | det g|* Y/ 2d* hyd* gdhs .
Comparing with the expression (9.5) for U(s, p(wy, n—2)W, W'), we see that we have
“proved” that

(9.8) Uy(1— s, W, W) = H pi(=1)" 2 H vi(—1)

1<i<n 1<j<n—2

X H V(8 + i +vj, vy, ) U(8, p(Wnn—2) W, W').

1<i<n,1<j<n—2

n—2
Un+—5—

9.3. Rigorous proof. To make the proof rigorous, we will appeal to Propo-
sition 4.3. In order to do so, we first establish the convergence of some integrals.

LEMMA 9.2. Let v € C. The following three integrals converge absolutely for
Rs1 >> 0, RNsy >> 0.

(9.9) /\dethzv/&i [hz( ’;(1 )]
< [ Balncaiwalisen W[ (40 )it o)

n—3

X Y (det hy)| det hy |1 7Un T2 | det g[%2 /2% hyd* gd X dhy
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(9.10) /|deth2\”/<171 [h2< }; )}
x Dy [hoen—1] s [Ayen1] W) [( - )hz] W' (ghs)

x ot (det hy)|det hy [ Ut 2 | det g2/ 2d% hyd* gd X dhs |

(9.11) /|deth2|”/<1>1 [h2< }61 )]

— 0\,
X @3 [hoen—_1] @a [hen_1] W1 [( o >h2 1] W' (ghy)
X fin(det hy)| det oy |12 | det g[*2~Y2d* hyd* gdhs .

ProoF. Consider the integral (9.9). In the integrand, we use the following
majorizations

AAEE ol
X )= GHIXR S 0+ Tl

where N, is arbitrary;

W (gho)| =< llgha 1™ < llgl™ [1As][*
for a suitable Mq;

— 0 0\] ™
‘Wl Kg 1 >h ] = &1 [(g . )} llgl[M2 ||| M

for suitable My and arbitrary Ns.
Accordingly, we are reduced to a product of four integrals.

dx
———dX,
/ 1+ || X[2)M

[ha|lz" | det he|*
dhy
/1+Ih1| M

—N2
Jal(8 3] ol jaeegi=as.

[ Baltacn)Baltsens) [l | det gl dgdh .

The first integral converges for N7 >> 0. By Lemma 3.3, there are A, B,C
such that the second integral converges for Ny > A,s; > B,CN; > s;. Similarly,
by Lemma 3.5, there are A’, B, C" such that the third integral converges for No >
A’,s9 > B',C'Ny > so. For the last integral, we write

1o O o Y
h2k2< 02 a_1>( 02 1)'

dhy = Jo(a)d*adY dky , ||he|| < (a® + a= )M (1 +||Y||2)Mz
Y
Balhacar) =@k (11 )| 5 e v
®3(hbe,_1) = ®(kbae,_1) < (14 a?)~ N2,

Then
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Here M, is a suitable constant and N3 is arbitrary. After a change of notations, we
are reduced to a product of integrals

/ dy
T+ [[Y2)N

J@+a " et M@l Maa.

Here M, J are given and Nj is arbitrary. These integrals converge for N3 >> 0.
We are done with integral (9.9).

The convergence of the integral (9.10) is similar because the factor containing
W' admits the same majorization as before, namely,

(W' (gh)] = lgll™ N1l1* = [lgl|™ 11ha]]*.

The convergence of the integral (9.11) is also similar but somewhat simpler because
there is no X integration. This time, we have

o ()] =l gy

with N arbitrary and

(W' (gha) < [lgl[™ (||
and the other majorizations are as before. This concludes the proof of the conver-
gence of the integrals (9.9) to (9.11). O

This already shows that formula (9.5) for ¥(s, p(wy n—2)W,W’) and formula
(9.6) for Wy (s, W, W') are absolutely convergent for Rs >> 0, as was claimed.
Let (01, k1) be a 1 pair for

n—1 n—2
(@M ®a’“> ® @Vj ® a®
i=1 j=1

and (62, k2) a ¢ pair for

n—2

L @ @ @ @ v; @ ot
j=1

The previous formal computation leading to the functional equation (9.8) is replaced
by the following sequence of computations.

/u,;l(det ha)| det hg| ~n "2
N hy N L (1. g 0 —1| 1177
X (I)l hQ X (I)Q [hgen_l] (I>3 [h2€n_1] Wl 0 1 h2 w (ghl)
x ot (det hy)| det by |74 T2 ky (det by ko (det g)| det g|~/2d* hydgd X dho
n—1 n—2
= [T TLws-0) [ et o) det ol 5°
i=1 j=1
— hq _ . g 0 — / v
X (I)l h2 X CI)Q [hg@nfl] (I)g [h26n71] W1 0 1 h2 w (ghl)

x gt (det hy)| det by |7 T2 ki (det by )0z (det g)| det g ~/2d* hydgd X dhy =
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n—2

n—1
[T =02 TLws-1) [ @t ] dot ol =5
i=1 j=1

x /@1 [h2< ’Bl )} Oy [hoen_1] @5 [hhen_1] Wi [( g (1) )hz] W' (ghs)

n—

% fin(det hy)| det by [“ T2 0, (det hy )02 (det g)| det g|~/2d* hydgdhs

n—1 n—2
[T w172 TL v [ (et det ol +5°
i=1 j=1

h \] — 0\,
X /@1 [hQ( 01 )} Dy [hhen_1] @3 [hoe,_1] Wi [( g . )h2 1} W' (gh1)
X i (det hy) | det by "2 0y (det by )0a(det g)| det g~/ 2dhy dgdhs.

Indeed, all the integrals converge absolutely by the previous lemma. The first
equality is a consequence of the functional equation (n — 1,n — 2) written in terms
of pairs:

[ (49 ) ]| o) wataet gl aengi g

n—1 n—2
n— 0 —tL
=Lt w0 fm (5 )
i=1 Jj=1
x W'(ghy)ba(det g) | det g|~*/*dg .

The second equality is a consequence of Proposition 4.4 and the Fourier inversion
formula:

/‘5\1 |:h2 ( f;{l ):l W’(ghi),u;l(det h1)|det hl‘iu"JrnT_g.Iil(det hl)dhldX

wanre fo (4 )

X W (ght) i (det hy) | det hq|" "2 0 (det by )dh, .

The last equality is obtained by changing ho to hj.
We now apply the equality we have just obtained and Proposition 4.3 to obtain
our conclusion.

10. Theorem 2.1: principal series, pairs (n,n’)

We now prove Theorem 2.1 for all pairs (n,n’) and principal series representa-
tions. We prove our assertion by induction on the integer a = |n — n/|. We have
already established our assertions for a = 0,1,2. We now assume a > 2 and our
assertion true for a — 1. Again, we assume n > n’ so that here n —n’ > 2.

10.1. Review of the integral representation. We first review the integral
representation for

W =Wo pwi,pn,u, -
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Recall that if ® is a Schwartz function on the space of matrices with n — 1 rows
and n columns, we define the Fourier transform of & by

d(X) = / DY (tr(Y *X))dY .

It is a function defined on the same space. We also define the partial Fourier
transform P(®) with respect to the last column:

P(@)[U, X] = /‘P[U, Y[P('XY)dY .
Then
W (g) = pin(det g)| det g|“»* 5

></ P(g.®)[h, Bren 1]Wi(h~)n(det h)| det h["+ 3~ 1d% R
Gn_1(F)

For g € G,,—1(F), we find
w8 ) = ldeng)] detgltns s

unt el

X / P(®)[hg, h'en 1)W1 (h™ ) un(det h)| det h
Gn-1(F)
Now assume that ‘ge,,_; = e,_;. Changing h to hg™!, we find
g 0\ 1
(10.1) W( 01 ) = |det g|2
x/ P(®)[h, hen1]Wi(gh~)n(det )| det h["+3~1d<h.
Grn-1(F)

We can use this formula to evaluate

g 0
(6l )
with g € G,/ (F). We write

(1.0 Ly, Y hy 0
h_k( 0 g2 ) ( 0 1n—n/—1 ) ( 0 1n—n/—1 )

with hy € G,/, Y a matrix with n’ rows and n — n’ — 1 columns, k € K, _1,
g2 € Gpn_1—n. Then

d”*h = dkd* go| det go| ™ d*hy .
We further write
g2 = k’gLLZ

with @ a diagonal matrix in G, _, _; with positive entries and Z € Ny,_,/_1,
kQ S ann’fl. Then
d* go = dkobp_pn—1(a)dadZ .

Altogether we may as well write

h 0
h:h2<01 1_,_1)
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with hy € G,,» and

1, 0 1, Y
102 (0 ),

where ks € K,,_,,/_1, a is a diagonal matrix in G,,_,/—1 with positive entries, Y is
a matrix with n’ rows and n —n’ — 1 columns, and Z € N,,_,,,_1. Then

d*h = d*hydhy , dhy = dkyS, 1 (a)| deta| ™" dYdZda.

Recall that d* hq is a Haar measure on G,,/.
We find then

(10.3) W(S 10 >=|detg|5

h 0 . hit 0 _
<Srona (5 ) (30 ) menm (750 )]
X i (det hy det hy)| det hy det ho|* 2~ d*hydhsy .

This integral is absolutely convergent. We need a more general formula.

LEMMA 10.1.
g 0 0 )
/W X lp-p-1 0 | dX =|detg|2
0 0 1

hq 0 B ghi* 0 1
X /7)(‘1)) [h2 ( X >7h2 ( Lyory >7h2€n1} Wi K 0 1,1 hy
X in(det hy det )| det y det B[+ 5 ~Ld* by dhad X |

the integral being absolutely convergent.

PRrROOF. We first compute formally. To evaluate

g 0 0
w X 1n7n’71 0 )
0 0 1

we apply the previous formula with ® replaced by the function

1, 0
(%0 Ve

To arrive at the stated formula, we integrate over X. To justify our formal compu-
tation, we only need to prove the absolute convergence of our expression for g = e
and ® a product. Thus the contribution of ® has the form

(8 (L s

for suitable Schwartz functions ®;. The proof is similar to the proof of Lemma 9.1.
First, by Lemma 3.1, for N7 >> 0,

hi ||h2||g1
o, |h dX < ——=281
/ 1[ 2( X >” T (L h|BH)M




ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 71

hTl o0 _ oo - — Ny
(M52 =ean [(M 2 )]

for a suitable M and arbitrary N,. Thus we are reduced to showing that the
following integral converges absolutely.

[t aa o ()0 )] @attsen

petooN, ] -
<o (M0 )0t Il ) dmane

Now

Here M is given and Ny, No are arbitrary. We may as well assume ®o, 3 positive

and K,,_1 invariant.
v O Ly Y
hQ_k2<o a—1>(0 Z)

Now we write
where a is a diagonal matrix with positive entries, Z = 1,,_,v_1 + U isin Np_,/_1.
Then

@3(h§€n_1) j (1 + a’i—n’—1)7N3
with N3 >> 0 and

—1 -1
(4 )i [ )

Now there is m > 0 such that

1 m 1
Ehn—1 K h%) 2 ﬂ (1+ai_n/_1)m > &sn—1 K hé 2 ﬂ

TLTL

:gs,n’(hl_l) 1 +(l
i=1

Thus we are reduced to the convergence of the following integrals:

n—n’'—1
/Hha\lﬁ?““ [T avay™onli(y 0 ],

i1 n—n'—1

[ o G Ul 0 )~y

Here M is given and N7, Ny are arbitrary.
For the first integral, we observe that

el = Hlallg (L+ [V (1 + U2

0 n—n'—1 o B B
ol (0 )] =TT ey ™ e @ iR g
i=1
for suitable M; and N3 >> 0, Ny >> 0. The convergence of the integral follows
for suitable N4 and Ny, N3 large with respect to INVy.
For the second integral, we apply Lemma 3.6. O
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10.2. Alternate expression. There is an alternate expression for the integral
representation. We only give it when ® is a product of the following form:

n—n'

O[X0, X1, Xa, ..., Xn_w] = o(Xo) [ ®:(X3).
i=1
Here the matrices have n — 1 rows, X has n’ columns and the other matrices have
only 1 column. Under this extra assumption, the original formula takes the form

o w(3,2, ) -t ()

n—n'—1 . h71 0
X H (Di(h2en'+i) (I)n—n’(héen—l)Wl |:( 901 ) h2_1:|
=1
X i (det hy det hy)|det hy det ho|* 2~ 1d*hydhs .

The alternate formula has the following form:

(10.5) W( (g) 173“, > = |detg|%/q>0 [h2< }61 ﬂ

n—n'—1 1
— h 0 _
X (I’l(h2en'+1) H (I)i+1(h2€n/+i)W1 [( gol >h2 1:|
1

1n7n’7
=1
X pin(det hy det ho)| det hy|“n T3 71 det ho|“n T 175 A% hydhs .

In this new formula, hy is taken modulo the subgroup of matrices of the form

0 Y
(g 1,11>7 QEGn’a

where Y} is a matrix with n’ rows and n —n’ — 2 columns. In a more precise way,
in this new formula, we may take

_ 1, 0 1, Yy O 1,, 0
hz_k?(o a><0 1nn,1>(0 Z)’
where Y} is a column matrix with n’ rows and Z € N,,_,,v—1. Then

dhy = dksSp—n—1(a)| det a| ™ dadYodZ .

To see that the alternate formula is correct, we start with the original formula.

We write
B 1y, 0 1, Yo 0 L, 0 Y
hz"”(o a>(0 1n_n,_1>(o Z )
where Y} is a column matrix with n’ rows, Y7 has n — n’ — 2 columns and n’ rows

and Z € N;,_,/—1. We then apply the following lemma.

LEMMA 10.2.

n—n'—1

Ly 0 Y —
/ 1:[2 P; [h2< 0 P )enfﬂ} dY10,(2)dZ

n—n’'—1 L
= | det hy| =772 / 11 a[hz( 18' 2) en'ﬂ‘l} 04(2)dZ.
=2
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ProoFr. To prove the lemma, we may assume hy = 1. The lemma follows then
from the Fourier inversion formula. We illustrate the case n = 6,n’ = 2 but the
argument is general.

T T2

Y1 Y2 .
/@2 Z1 (1)3 Z9 w(21 + tz)dxldxzdy1dy2d21d2’2dt2

1 to
0 1

0 0

- 0 - 0

= /<I>2 1 i 0 Y(u + w)dudvdw.
U 1
v w
O

We also record the corresponding formula for p(wy, - )W. The original formula is

0 w, 0=t
(W) (83 ) = (et hunldet o) detgl*+
></ P(wn o ®)[hg, hen_1]Wi(gh™ ) un(det h)| det h[“» T2~ 1d*h.
anl(F)
The alternate formula for p(w, ,/ )W is

106) Glanai) (& 10 ) = patdetun-alaeratt [ e ()]

n—n'—1

- L ghfl 0 -1
X Qn—n’ (h26n’+1) H (bn—n’—i(hzen/+i) Wl 0 1 hQ

1n—n’—
=1
X pin(det hy det ho)| det by |“r T3 =1 det ho|“n T 15 4% hydhs .

Before proceeding, we remark that it is convenient to choose our variables in
such a way that | det ha| = 1. Indeed, in the original formula, we can write

h 0
h:h2<01 1_/_1>

o — ke (deta)™"1, O 1, 0 1,/ Y
2= 0 a 0 Z 0 lp_p-1 )’

with r = ni, Then |det ho| = 1 and
d*h = dhad*hy, dhy = 6,_p/—1(a)dkodadZdY .

Recall that GO = {g € G,,(F) : |det g| = 1}. In other words, now hs is integrated
on the quotient of G2_, by the subgroup of matrices of the form

0
(g 1_/_1), geG?L/.
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A similar remark applies to the alternate expression. Then hs is in the quotient
of GY | by the subgroup of matrices of the form

g 0 Y% 0
, €G,,
( 0 lp—p—1 ) g "

where Y] is a matrix with n’ rows and n — n’ — 2 columns. In a more precise way,
in the alternate formula, we may take

ho — ke deta™"1,, O 1, Yy O 1, 0
2T 0 a 0 lp—n—1 0o 2z )

dhg = (5n_nr_1(a)dk2dadZdY0 .

Then

10.3. Formal computations. We now prove the functional equation for-
mally.

We compute ¥(s, p(wy, )W, W') by replacing p(wy, /)W by its alternate inte-
gral expression and changing g into gh;. We find the following result.

LEMMA 10.3.

\I’(57 P(wn,n')VVa W/) = Mn (det wn—n’)

n—n'—1
h - L
X /(bO |:h2( 01 >:| q)n—n’(hQSn’+1) H (bn—n’—i(hgen/—i-i)
i=1

n—1-n'

0 - .
< (g )i g det gl g

1n—n’—

n'—1

Un+5+ 2 Mn(det hQ)dXhldh’2 ?

X pn(det hy)| det hy

where hy € G2_, is integrated modulo the subgroup of matrices of the form

n

g 0 U
0 1 0 , g€GY,.
0 0 lp—po

We compute ¥,,_,»_1(s, W, W’) by replacing W by the formula of Lemma 10.1
and changing g to ghi. We get

ocwctcmr= [([rofu (4 (.2, )] )

0 - g_mn=l=n’
w800 )t ket g g
% pin(det hy)| det by |55 1, (det ho)d” hadhs,

where hy € GO_ is integrated modulo the subgroup of matrices of the form

g 0 0
<O Loy ) , g€G.

This can also be written in the following way.
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LEMMA 10.4.
\Ijn n'— 1(8 WW /(/P |: ( 1>,h2<1 0 ),h%€n1:|dy>
n—m’/—1
g 0 0 o
x W, U lypw-o 0 |hy'| W(ghy)|detg|*™ dg
0 0 1

X fin (et hy)| det By |57 u, (det ho)dhy dhadU

where hy € G%_, is integrated modulo the subgroup of matrices of the form

g 0 0
U 1,_—2 0 , g€ Gg/ .
0 0 1

ProOF. Indeed, it suffices to integrate in stages and to change variables as

follows

O

Now we start the formal computation. Taking into account the previous lemma
and Proposition 7.3, we get

(10.7) W1 (1—s, W, W) =un(—1)”‘1/ (/&?0 [hz( };1 )] dY)

n—n'—1 . g 0 0 _
X H 2h26n /41 (I)nfn’(héenfl)wl U 1n—n’—2 0 hgl W/(ghl)
i1 0 0 1
x| det g\~ =" dgut (det hy)| det by |~ H ST dhy s (det o) dhadU .

We apply the (n — 1,n) functional equation to the g-integral. We get

(10.8) pa(-0)" I =0 ] wi-D)

1<i<n—1 1<5<n’

T [ ([ (2)] )

1<i<n—1,1<5<n/

n—n'—1 g 0 0
X H A h2€n’+z (bnfn’(héenfl)wl 0 1n—n’—2 0 wnfl,n’hziL Wl(ghLl)
i=1 0 0 1
x| det g|*~ 5 dgp ! (det h1)| det ha| =5+ T dhy ot (det ha)dhs .)

Recall that hy is taken modulo the unimodular subgroup of matrices of the form

g 0 0
U 1n7n’72 0 , g€ G?L/ .
0 0 1



76 HERVE JACQUET

We change hg into how,—1,, and then hs into h4. Now hy is taken modulo the
subgroup of matrices of the form

g 0 U
0 1 0 , gEeGY,.
00 1n—n’—2
We get then
(10.9) pin (=)™ i (det Wy 1) H pi(=1)" H vi(=1)
1<i<n—1 1<j<n’

~ 1, h
X H ’y(S-‘v-Ui‘f'UjaMiVjaw)/(/q)o[ 2( y} )} dY)
1<i<n—1,1<j<n’

n—n’'—1
— . 0 -~ .
X (I)nfn’(thn’Jrl) H @n,n/,i(hzen/H)Wl |:( g 17; > h2 1:| W/(ghl)

—_n!—
i=1 n'—1

n—1-n’

x | det g|*~ "5 dgu (det hy)| det by |~ H5 25 dhy g (det ho)dhs

Next we apply the functional equation of Proposition 4.4 to the hy integral and
the Fourier inversion formula. We get

(10.20)  pn(=1)" M pn(detwo—1) [ m(=0"" [ wi(-D

1<i<n-—1 1<5<n/

L e fafn(4)

1<i<n,1<j<n’

n—n'—1
— 0 B
X ®p_pr(hoeni1) H D pr—i(hyen i)W [( g Ly )hz 1] W'(gh1)
=1

1—n’

x| det g|*~ 5 dgpun (det h1)| det by [“n 5+ 25 dhy i (det ho)dhs -
Now
Nn(*l)nilﬂn(det Wn—n'—1) = fin(det wn—n’)ﬂn(*l)n, .

Thus the expression we get is the one we wrote down for W (s, p(wn n—n/ )W, W')
(Lemma 10.3) times

H Y(s + wi + vy, piv, )
1<i<n, 1<5<n/

and

n

[Tm-0" ITw(-D.
Jj=1

i=1

So we are done.
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10.4. Rigorous proof. Let (01, 1) be a ¢ pair for

n—1 n’
(@Ml(gaul) ® <@ll]‘®aw>
i=1 j=1

and (02, ko) a 1) pair for

Mn®aun ® (@Vj@&vj> .

j=1
As before, the correct proof is based on the sequence of equalities obtained by
replacing in the previous sequence |det g|'=* by r1(detg), |det g|® by 6;(detg),
|det hq |1 =% by ka(det hy), and |det hq|* by fa(det h1). We have to show that our
computation and our use of the pairs is legitimate. As before, this reduces to
checking the convergence of three integrals. We now establish the convergence of
these integrals. The rest of the proof is the same as before and is omitted.

LEMMA 10.5. The integral

J{ ey )00 ) )

x W1 |:< g ) 0 1 )h21:| W/(gh1)|detg|82dg|deth1|81dxh1dh2,

n—mn'—

where hy € G, g € Ny \Gor, ha € GO is taken modulo the subgroup of matrices

of the form
g 0 0
< 0 1n7n’71 ) NS Gn/7

converges absolutely for s1 >> 0, Rsy >> 0.

PRrROOF. For simplicity we assume that ® is a product (it is in the applications).
We may further assume that it is > 0 and K,,_; invariant. Thus the contribution
of the Schwartz functions is

EE )
foul (8 o= s

(W (gho)] = lgl™ Ao

g 0 g 0 N
Wi [( 0 1y w1 >h51] = hn-1 K 0 1, >h51} glI™ ||he][™

—n’—1
for some M and all N. After a change of notations, we are reduced to the conver-
gence of two integrals.
The first integral is

(|7 det ha |
(L+ [[ha][2)N
For given M, there are A, B, C such that the integral converges for N > A, s1 > B,
CN > s; (Lemma 3.3).

d*hy .
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Now we change notations again. We write M for M + N. The second integral
is then

0
/||h2||M<1>1 [hg( 0 )} By [Rsen 1]

N
0 . .
<o (500 )t N et agans.

1
71/ 1n/ Y
om0 0 0 Y (1 1)

where a is a diagonal matrix with positive entries, Z € N1, Z =11+ U
with U upper triangular and 0 diagonal Then

dhg = dk’ng(a)dadYodU,
1ol = llall3 (1 + |0l (1 +[|U]12)Y
for a suitable M;. The contribution of &1, ®5 is

(I)l( detan YO >®2(an—n’—1en—l)

We write

14+a U
[lal]**
= A+ %R0+ [V +ap )N
with Ny arbitrary, M, depends on N,, and N arbitrary. Now &, ,—1 does not
depend on U, Yy, ko. We are left with the product of two integrals

/ dYodUdks
(1 + [|Yo|[5)N2= 2o (1 + [|U]|2)Na=M0?

1 -N
[laf[* 2.1 (a) deta"wg 0 M 52
(1+anin,71)N§ m—1 0 a llg]|™ |det g|**dgda .

The first integral converges for No >> 0. In the second integral, we change g to
gdet a=". We have

1
[lal| "2 Jy(a) || det an g[[* < [[al| ™ ||g||* .

We are reduced to

al|Ms | det al*2 0\ " R
St e (8 0]l 1decglas.
Ap—nr—1

We use again the fact that

. 0\]" 0
(1+a%7n/71) gh,nfl |:( g a >:| t gs,nfl |: g a ):|
n—n'—1
= gs,n’(g) (1 +a?)
i=1
to arrive at a product
[la| \deta\sz s -
/= S e [l (et (o) g,

There are A, B, C such that the integrals converges for N > A, so > B, CN > s,
(Lemma 3.4 and Lemma 3.5). O
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The first step in the rigorous proof comes from (10.7) with x;(det g) replacing
|det g|*~* and ko(det hy) replacing |det hy|'~%. Correspondingly, we need to verify
the convergence of the following integral.

LEMMA 10.6. The integral
h 0
Jlale(3 ) (0l ) e
g 0

0
x Wi || U Lo_w_s 0 | hy'| W' (ghy)|det g|*2dg|det hy|** d* hydhadUdY
0 0o 1

where hy € G2_, is integrated modulo the subgroup of matrices of the form

hy 0 0
(10.11) U lpwo 0|, heG,
0 0 1

converges absolutely for Rs; >> 0, Rsy >> 0.

PROOF. Indeed, we recall that the present integral is obtained from the previ-
ous one by a simple change of variables. Namely, we replace hy by

1, 0 0
ho| =U 1p_p—2 O
0 0 1

so that hy is in G2_; modulo the subgroup of matrices of the form (10.11) and then

we replace Y by
U
v (U )

The second step in the rigorous proof comes from (10.9). Correspondingly, we
need to establish the convergence of the following integral.

O

LEMMA 10.7. The integral

[ ope(y )t (,5 ) )o0)

x Wy [( g ) 70,71 ) h;l] W’(ghi)‘detmszdmdet he|**d* hidhs

where hy € G, g € NJ\G., ha € G%_, is taken modulo the subgroup of matrices
of the form

g 0 U
0 1 0 , g€aY,
0 0 ]-nfn’fQ

converges absolutely for ®s; >> 0, Rsg >> 0.

PROOF. As before, we may assume ® > 0, K, _i-invariant and a product.
Then the contribution of ® takes the form

()] omernfa(,.0)]
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Moreover,

wil (g0 ) e

1n7n’71

N
g 0 —
e (800 )| el kel Il

for suitable M and N >> 0.

As before,
hy [|ha| I
D1 | h dy < ——="43___
/[<Y)] = ([N

for N >> 0. We are reduced again to a product of two integrals. The first one is
17| || det By [
(L+ [[ha][2)N

It converges for N > A, s1 > B, CN > s.
The second integral is, after a change of notations,

. 0
J[ el @athac, e i (1, 0 )]

g 0 -
<ol | (5,0 Jrat] laetgragane.

—n’/—1

dhy .

Here &, is a Schwartz function on the space of column matrices with n — 1 rows
and ®3 a Schwartz function on the space of matrices with n — n’ — 1 columns and
n—1rows. The variables are as follows: g € N,»\G, and hs in a quotient of G¥ _;.
More precisely,

detan 1., 1, (Y, 0O
hQ—kz( eta tn a01>(0 (%, )>-

Here a is a diagonal matrix of size n —n’ — 1 with positive entries, Yy a column with
n' rows and Z € N_p—1, 'Z = 1,_p—1 + U, where U is lower triangular with 0
diagonal. Then

dhy = dkyJ (a)dadYodU

deta= = 1, 0
he = ké( * a+alU ) ’

lhall3 = Nlall 3 (14 [[Yolle) ™ (1 + [JU[])™ .
Thus the contribution of ®5, 3 has the form

det an Yo
—1
aq 0
2 2 3 [( a+aU )]
0
. la] 3¢ |
T (L YlD)N (14 [UN[2)N2 (1 4+ [|al[2) M
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where N5 is arbitrary, My depends on Ny and Nj is arbitrary. On the other hand,
&h,n—1 does not depend on U, Y. We are left with a product of two integrals:

/ dUdYodks
(14 [[Yol[2)N2m M (1 + ||U2) 2=

al|M1+M: —7%/ -

14 [[al[?) a
The first integral converges, provided Ns is large enough. We treat the second
integral as the analogous integral in Lemma 10.5. O

The last step in the rigorous proof comes from (10.10). Correspondingly, we
need to establish the convergence of the following integral.

LEMMA 10.8. The integral

h .
/@ {hz ( 01 > ah26n’+1ah2€n—1:|

x Wi |:( g ) 70,71 ) hg—l} W'(gh1)|detg\‘”dg|dethl\‘“dxhldhz7

where hy € GO _, is taken modulo the subgroup of matrices of the form

hi 0 U
0 1 0 , h1€GY.
0 0 1n—n’—2

converges absolutely for Rs; >> 0 Rsg >> 0.

PROOF. We may again assume ® > 0, K,,_; invariant and a product. Then
the contribution of ® is

h
(pl |:h2 ( 01 >:| ég(hgenq_l)@g [h%en_l] .

The proof is similar to the proof of the previous lemma. Here, there is no integration

over Y. We have
ha |[ha| |
08} {hz ( )] R v
0 (1 +[|ha]12)N

(W (gha)| = Mgl [[AaI™

The other majorizations and the rest of the proof are the same as before. O

11. Theorem 2.1 for general representations

We have proved our assertions for the induced representations of the principal
series. Thus if F' = C we are done. We assume F' = R. Consider two pairs (o, u)
and (o', u"). Thus o is an r-tuple of unitary irreducible representations o;, 1 < ¢ <r
of degree d; = 1,2. Let n =) .d;. Let m; = m,, be the corresponding irreducible
representation of GL(d;,R). Thus if d; = 2, then m; is a subrepresentation of
a principal series representation I, ., ,, with v1;,v2; not normalized (see the
Appendix). If d; = 1, then 7; is a character of R* that we also write as vy ;. Let p
be the n-tuple formed by the v; ; and v the n-tuple formed by the complex numbers
u;, repeated d; times. For instance if r =3, dy = 1, do = 2, d3 = 1, then

m= (V1,17 V1,2,V2,2, 1/3,3), v = (u17u2,u27u3) .
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Then I, , is a sub representation of I,, ,. Let A be a non-zero v form on I, ,. Since
I, ,, admits a non-zero v form, the restriction of A to I, ,, is non-zero (Lemma 2.4).
Define similarly (1/,v") and let A’ be a v form on I,/ . It follows that the results
of the previous sections apply to the integrals Wy (s, Wy, Wy/) or Wy (s, Wy, Wy, @),
with f € I, ., f' € I, . In particular, these integrals converge for fs >> 0 and
are holomorphic multiples of

HL(S + vi + VG, gy ) -
For clarity, let us repeat what we want to prove. Consider first the case n > n’.
PROPOSITION 11.1. Suppose n' < n. Then the integrals
U (s, Wy, Wyr)
are holomorphic multiple of
L(s,0,®0.,).
They satisfy the functional equation

1
L1 —8,6_y®0 _y)

n’ 1
:wﬂa,u(_l) Wr , ,(—1)6(S,O'u®U;/,w)Wk(S,Wf,W}/)m.

\I]n—n’—l—k(]- - S, P(wn,n')w;, m/7f/’)

PrOOF. We claim that, for given u, v/,
L(s,0,®0y) = P(s) H L(s+v; + v}, ® /1;'/,1'/) ,
where P is a polynomial, and

V(5,00 @ 0l ) = [ [7(s + vi 4 viry i @ prjrir)

Indeed, it suffices to prove this assertion when o and ¢’ are irreducible. This is
checked in the Appendix. Thus we already know that Uy (s, Wy, Wy/) is a mero-
morphic multiple of L(s,0, ® o0],) and we know the functional equation of the
proposition. It remains only to show that in fact Wy (s, Wy, W) is a holomorphic
multiple of L(s, 0, @ 0l,,).

If uw and u are purely imaginary, then in the functional equation, by Lemma 5.3,
the left hand side is holomorphic for s > 0 and the left hand side is holomorphic
for ®(1—s) > 0, that is, fts < 1. Thus both sides are actually holomorphic functions
of s. Thus we have obtained our assertion for u and ' imaginary. Let (0, 4/, Ky, )
be an analytic family of (o, ® o/, %) pair. As explained before, our assertions are
equivalent to the identity

\I]n—n’—l—k(/fu,u/v p(wn,n’)wj; V[,/:/f//) = wﬂ'(,)u (*1)71 wﬂ'v/’u/ (71)\Ilk(9u,u/a va WJ/") .

We have thus obtained this identity for (u,u’) imaginary. Since both sides are
holomorphic functions of (u,u), the identity is true for all (u, ') and we are done.
O

The case n = n’ is treated similarly using Lemma 5.4.
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12. Proof of Theorems 2.3 and 2.6: preliminaries

We first change our notations somewhat. Let o be a semisimple representation
of Wr. We can write
o= @ g; X O/;—vi

1<i<lr
where the o; are normalized irreducible representations and

Rup < Rug < -+ < Ru,y .

This decomposition is not unique but the equivalence class of the induced repre-
sentation (7(s,),(u,)s In(e),(u:)) depends only on 0. We will denote it (74, 1,). We
will call the real parts of the u;’s the exponents of 0. The exponents of ¢ are the
opposites of the exponents of o. We will write o < ¢’ if the largest exponent of o
is less than or equal to the smallest exponent of ¢’. If sy is a pole of L(s, o), then
there is an exponent u of ¢ such that

Rsog+u<0.

Let 7 be another representation of Wr. We will denote by Z(c,7) the space
spanned by the integrals ¥(s, W,,) (or W(s, W,,®)) for v € I,&I,. We will prove
first that Z(o,7) € L(oc ® 7). Then we will prove that the two spaces are in fact
equal.

12.1. The spaces L(0). Let o be a semisimple representation of the Weil
group Wr. Recall that we denote by L(o) the space of meromorphic functions
F(s) of the form

F(s) = L(s,0)h(s),
where h is an entire function, such that, for any n € N and any vertical strip
a < Rs < b, the product s"F(s) is bounded at infinity in the strip. For o = 0, the
zero representation, £(0), is the space of entire functions F(s), such that for any n
and any vertical strip, the product s”F(s) is bounded at infinity in the strip.

In this subsection, we establish some simple properties of these spaces.

LEMMA 12.1. Let o1 be a subrepresentation of o. Then L(o1) C L(o). In
particular, £(0) C L(o).
PROOF. Indeed, o0 = 01 ® 02. If Fis in L(0y), then
F(s) = h(s)L(s,01)
with h entire. We can write
__hls)
 L(s,09)’
and k is entire. Hence F' € L(0). O
PROPOSITION 12.1. Let o be given. Let P(o) be the set of poles of L(s,o).

For every sg € P(0), let ns, be its multiplicity. Suppose we are given, for every
so € P(o), a polar part

AnSO AnSD—l Al
Pleo) = (s —s0)™<0 - (s — sp)" 01 A s—So

Then there is an element F' € L(o) having at each sg € P(o) the polar part P(so).
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PRrOOF. Indeed, suppose first o is irreducible. Then L(o) = £(€2) where ( is
a character of F*, FF =R or F = C. Then the poles of L(s, ) are simple. For any
® € S(F), the analytic continuation of the integral

/@(x)Q(x)|x|f:dXx

belongs to L£(Q). Its polar parts at the poles of L(s,2) depend only on the deriv-
atives of @ at 0, as can be seen by integrating by parts. By Borel’s Lemma, these
derivatives are arbitrary. Our assertion follows in that case.

Now we can proceed by induction on the number m of irreducible components
of 0. Thus we assume m > 2 and our assertion is proved for m — 1. We write

o =01D02
where o7 is irreducible. For each sg € P(01), let ng be its multiplicity in L(s, o).
At sp the Laurent expansion of L(s,o3) has the form
kno—l
(s — sp)m0—1
with k,,—1 # 0 (and ng — 1 > 0). By the previous case, we can find an element

F € L(01) such that, for any so € P(sg), the residue of F' at s¢ is Anok;}lﬁl. Then
the leading term of the polar part of F(s)L(s,03) at sq is

An
0
(s — sg)m0
Now F(s)L(s,02) is in L(c). Thus we are reduced to the case where, for every
S0 € P(01) , the given part P(sp) has the form
AnS -1 A

% + -+ L .
(s — sg)™=0 s —$p

P(so) =

But an element F' of £(o) whose polar parts at any sg € P(o1) has this property
is in fact in £(o2). We then apply the induction hypothesis to o2 and the inclusion
L(o2) C L(o) to reach our conclusion. O

PROPOSITION 12.2. Suppose that
o=01Doy.
Then
L(0) = L(o1)L(s,02) + L(02).

PRrOOF. If oy is irreducible, this follows from the proof of the previous propo-
sition. We prove our assertion by induction on the number m of irreducible com-
ponents of o1. Thus we may assume m > 2 and our assertion established for m — 1.
We write

01 =T1Dm
where 7 is irreducible. Then

L(o1 B 02) = L(11)L(5,72 & 02) + L(T2 & 02) .
By the induction hypothesis, this is also:
= ,C(’Tl)L(S, TQ)L(S,OQ) + E(TQ)L(S70-2) -+ ,C(CTQ)
= (ﬁ(Tl)L(S7 TQ) + E(TQ))L(S, 0'2) + ﬁ(o’z).
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Since 7 is irreducible, this is equal to
L(T1 ® 12)L(s,09) + L(02) .
The proposition follows.
PROPOSITION 12.3. Suppose that

oc=01®02,01 X02.

Then
o L(S7O'1)
£(0’) = E(Ul) + mﬁ(d’g) .
PROOF. Any element of
L(s,01)
L0500~

is indeed a holomorphic multiple of

L(s,01)L(s,09) = L(s,0).

85

Moreover, it follows from the Stirling formula that its product by a power of s is
bounded at infinity in a vertical strip. Thus it is indeed in £(o). Moreover, as we

have seen, L(o1) C L(0).

Now we claim that a pole sg of L(s,02) cannot be a pole of L(1—s,07). Indeed

if it so, then there is an exponent u of o1 and an exponent v of o5 such that

Rsg+v <0 and 1 —Rsg —u<0.
Adding these inequalities, we get
1+v—u<0

which is a contradiction since v — u > 0.

Let so be a pole of L(s,03) and ngy its order. Let n; > 0 be the order of sy as
a pole of L(s,01). Since sg is not a pole of L(1 — s,07), the Laurent expansion of

L(Sagl)
at sg has the form
An,

(s —sp)™

with A,,, # 0. On the other hand, the polar part of f € L(02) at sy has the form

na

B;
LG

i=1

where the B; are arbitrary. Thus the polar part of the product

L(Sa Jl)
f(S) L(l _ S,EI)
has the form
ni+nz Cz
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where the C; are arbitrary for n; +1 < i < ny 4+ ne. Hence if F is given in L(0)
we may choose f € L(o2) such that at any pole sg of L(s,o2) the difference

L(S, (71)
F - 4 —~—
(S) f(S)L(l _ 8,0'1)
has a pole of order at most nj, where n; is the order s; as a pole of L(s,oq). This
difference is in £(o;) and we are done. O

We need a strengthening of this proposition.
PRrROPOSITION 12.4. Suppose that
o =01 D0o2
where oy s irreducible and o1 < o9. Suppose that
T=T1 DT
where 19 is irreducible and 71 < 9. Then

L(s,01®7)

E(U@T):£(01®T)+m

Loa@T)+ L(o®T).

PROOF. As before, each term in the right hand side is contained in L(o ® 7).
Let u; <wg--- < wu, be the exponents of o, u; being the exponent of o;. Likewise,
let v1 < vy < --- < wg be the exponents of 7, v; being the exponent of 5. We first
observe that L(s, 7 ® o) and L(1 — s,01 ® T) do not have a common pole. Indeed
if s is such a pole, then

Rso+vs +u; <0 and 1 —RNsg—u; —v; <0
for some ¢ and j. Adding the two inequalities, we find
1+vs —v; +u; —up <0.

Since vs —v; > 0, uj —u; > 0, this is a contradiction. We have to find an element
of the right hand side which at any pole s of L(s,0 ® 7) has a given polar part. If
s is a pole of L(s, 01 @ 7) but not L(s, 09 ® 7), this is possible because of the term
L(o1 ®@7). If 89 is a pole of L(s, 09 ® 7) but not a pole of L(1 — s,01 ® T), one can
use the term %E(ag ® 7) as before. If sg is a pole of L(s,02 ® 7) and a
pole L(1 — 5,01 ® T), then sq is not a pole of L(s,0 ® 72). Thus it is in fact a pole
of L(s,0 ® 7). One can use the term £(o ® 71) to complete the argument. O

We have also the following lemma.
LEMMA 12.2. For any o,
L(o) = L(0)L(s,0) + L(0).

PROOF. As before, the right hand side is contained in the left hand side. Let
F be an element of £L(o). Let P(sg) be its polar part at a point sg € P(c). Thus
An An—l Al
n + n—1 et :
(s —s0)™ (s —s0) (s = 50)

. 2 . . .
Since e®" never vanishes, its Taylor expansion at sg has the form

ko + kl(S — 80) + -+ k‘nfl(s — So)n_1

P(so) =
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with kg # 0. The equation

(oo ot o)

X (/fo + ]{31(8 — S()) + -+ knq(s - So)n_l)
A, An—1 Ay
IR N S e C)
gives a triangular linear system of equations for the B;, hence can be solved uniquely.

Call P1(sg) the polar part given by the B;. There is a function Fy in £(o) with
polar part P;(sg) at each so € P(o). Then

2

Fy(s) = F(s) — Fi(s)e’
has no poles thus is in £(0). On the other hand,
Fi(s) = L(s,0)h(s)
where h(s) is entire. Recall that for x fixed and |y| — +o0
(@ + iy)| ~ (2m) /2]y >~/ 2e= 510
It follows that in a vertical strip |h(s)| is bounded by €Y, for some C. Thus the

product h(s)652 is rapidly decreasing in any vertical strip and thus is in £(0). O

12.2. Proof of Theorem 2.3. Let (75,4, Is.) and (T o, Ior ) be generic
induced representations. Suppose n > n'. For clarity, we state again the result we
want to prove.

ProprosITION 12.5.
(i) For every f € Ipu, [ € Ios ar, the function s — W(s, Wy, Wy:) belongs to
Loy ®al,).
(ii) The bilinear map
(fa f/) = \I/(S? Wf7 Wf’)
Ipy X I — L(oy ®0),) is continuous.

PRrROOF. We set m = 7y, and 7’ = 7y . We first prove that if P(s) is any
polynomial then

P(s)Wp—p—1(s, Wg, Wyr) = Z‘I’n—n'—l(&de(x,;)f,Wdrr/(X;)f/)
,J
where X; € U(G,,), X; € U(G,). Indeed, it suffices to prove this for a polynomial

of degree 1. Say F' = R. Let U € Lie(G,) with Tr(U) = 1. Thus detexptU = €.
It easy to see that the integral

getV 0 0
/Wf X 1,1 0 ||dx
0 0 1

converges, uniformly for g and ¢ in compact sets. In fact, it is equal to

, g 0 0 etV 0 0
p(n—n 71)t/Wf X 1p-m-q O 0 1,1 O dX.
0 0 1 0 0 1
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The integral

getV 0 0 o
(12.1) /Wf X 1y O Wi (ge'V)| det g’V |*~ = dgdX
0 0 1

is independent of . We compute its derivative and write that the derivative is 0.

Let us set
U 0
- ( L0 ) .

Then the derivative of (12.1) is equal to
getV 0 0

/Wd”(v)f X Ay 0 || dX Wp(geV)|det getV |~ 5
0 0 1
getV 0 0
+/W X ].nfn’fl 0 dX WdTr’(U)f’(getU)
0 0 1
0 0
N 1 g
+(s—ng+(n—n/_1)>/W X 1,1 0 |eY|ax
0 0 1

n—n’—1

x W (ge'V)|det getV |5~ 2

Moreover, if ¢ is in a compact set and s is fixed, then each term is bounded by
&(9)™N ||g||¥ with M fixed and N >> 0. Thus we can integrate with respect to
g, provided s >> 0. Hence we can differentiate (12.1) under the integral sign.
Writing the derivative at ¢t = 0, we find

\Ijn—n/—l(sv WdTI'(V)f? Wf’) =+ \I/n—n’—l(sa Wf7 WdTr’(U)f’)

!
+ (s + "Zl> Uy o1 (s, Wy, W) = 0.
Our assertion follows.

A similar, easier to prove, assertion is valid for the integral W(s, Wy, Wy/).

Since any integral ¥ is bounded at infinity in any vertical strip, we see that
any product P(s)¥(s, Wy, W;/) where P is a polynomial is bounded at infinity in
vertical strip. The first assertion is proved.

For the second assertion, we recall that if a is sufficiently large and a < b then
for a < Rs < b the majorization

[ (s, Wy, Wf’)| < :u(f):u(f/)
‘\Ilnfn’fl(sa Wf? Wf/)| S u(f)u(f/)

for suitable continuous semi-norms p, /. Now Wf = Wf~ and likewise for f’. Thus
for a < Rs < b we get

@1 (s, Wy, We)| < B(H)(f)

for a large enough and suitable semi-norms on the space Iz, I

o However,

f— ﬁ(f), f— ﬁ’ (f’) are continuous semi-norms. So, finally we can assume that
we have also

(W1 (3, Wy, Wp)| < ()l f') -
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Combining with our earlier observations, we conclude that given a polynomial P,
for a large enough, there are continuous semi-norms pu, ' such that, for a < fs < b,

[P (s)¥(s, Wy, W) < pu(f)u(f)
andfor 1 —-b<Rs<1-—a
|P(8) -1 (5, plwn ) W, Wy )| < p(F)lf").
Now consider the functional equation
P(S)\I/(& Wfa Wf’)
L(s,0, ®0!,)(det 0, )"~ det o’

= S P(8)Upy_pr_1(5, p(wnn YW, Wy).
L(1— 5,50 ® 0l )e(s, 00 @ 7", ) P

Now if a is large enough and yq is large enough, the ratio
L(s,0, ®0),))
L(1—s,0,® UZ,)E(&JH ®al,,Y)

is bounded for 1 — b < Rs < 1 —a and |Ss| > yo. Suppose in addition that
P(s)L(s, o, ® o)) is holomorphic for 1 — b < s < b. By the maximum principle,
we have then

[P(s)W (s, Wy, Wp)| < (C+ 1)u(f)u(f)
for 1 — b < Rs < a. This proves the continuity in assertion (ii). O
Let again 7 = 7, ,, and 7’ = 7y, be generic induced representations. Suppose
n =n'. Again, we state the result we want to prove.
PRroOPOSITION 12.6.
(i) For every f € I ., f' € Iy, every ® € S(F™), the function s —
U(s, Wy, Wy, ®) belongs to L(o, @ al,).
(ii) The trilinear map
(f7 flv (P) = \I/(S, va Wf’7 q))
Ipu X Iy X S(F™) — L(0y, @ 7)) is continuous.

The proof is similar.

12.3. Extension of Theorem 2.1 to the tensor product. Let us keep to
the notations of the previous subsection. To every f € Ig’uéi)[g/,u/ we associate
a function Wy on G, x G,/. As explained before, we can consider more general
integrals involving the functions W;. For instance, assume n’ = n — 1. Then we set

0 o1
‘I'(&Wf):/wf K g 1 )w’} |det g|*~2dg.

We have also the integral
(s, Wy)
where
Wi(9.9') = Wi(wng',warg").
The integrals converge for s >> 0. Let (0, k) be a (o, ® o), ) pair.
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Consider the identity

0 1
/Wf K 01 >,g’]9(detg)|detg| 2dg
= [w (4 0) o] maetadetal-as.

Both sides converge and are continuous functions of f. The identity is true when
f is a pure tensor, or a sum of pure tensors. By continuity, it is true for all f. IE\fBI—
lows that the assertions of Theorem 2.1 are true for the integrals U(s, Wy), U(s, Wy).
Then, as in the previous subsection, one proves that ¥ (s, Wy) € L(o, ® o)) and
the map f — U(s, W) is continuous.

12.4. Proof of Theorem 2.6 for irreducible representations of the
Weil group. In this subsection, we prove Theorem 2.6 for two given irreducible
representations of the Weil group that we shall denote by o and 7. We first consider
the case when they are both of degree 1. In this case, our assertion reduces to the
following elementary lemma.

LEMMA 12.3. Suppose w is a normalized character of F*. If F is in L(w),
then there is a Schwartz function ® on F such that

/@(w)|x|sw(x)dxx = F(s).
PROOF OF THE LEMMA: In any case, for any ®, the analytic continuation of

/@(x)|x|sw(x)dxx

is in £(w) and the residue at any pole sg of L(s,w) is arbitrary. By linearity, we
are reduced to the case where F(s) is in fact entire. In this case, there is a function
f on R such that

F(s) = /OOO f(t)ts%

The function is O(¢™) for any n € Z and for any m, the derivative % has the
same properties. Now define a function ® on F' by

(z)w(z) = f(lz|p).
The function & is a Schwartz function with the required properties. O

We now prove the theorem when one representation has dimension 2 and the
other has dimension 1. Then the theorem reduces to the following lemma.

LEMMA 12.4. Let 2 be a normalized character of C*. Let o be the representa-

tion of Wg induced by Q. Let (75, ) be the corresponding irreducible representation
of GL(2,R). Let F € L(0) = L(Q). There is W € W(r, : ¢) such that

/W(g ‘1)) lal*~2d*a = F(s).

PROOF. We recall the construction of 71 = 7, (see [14] for instance). We
first construct a representation my of G4 = {g € GL(2,R) : detg > 0}. The
representation 7 is induced by 7. Let S(C, Q) be the space of Schwartz functions
on C such that

d(zh) = Qh)"1d(2)



ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 91

for all h such that hh = 1. Then, for a = hh,
T ( 0 ) ®(z) = B(zh)Qh)(hE)?

D(2)¢(227)

T+

oSO = o
— 8
N—

K

—~

N

Il

0 1 ~
(5 o) ®e = 486
where v is a suitable constant. The operators are unitary for the L? norm

213 = [ 12(:)Pdz.

Thus, we obtain a unitary representation on the space L?(C, <) of square inte-
grable functions such that

®(zh) = Q(h)"1d(2)

for all h such that hh = 1. The unitary representation is topologically irreducible.
In fact, its restriction to the space of triangular matrices in G is already irreducible.
Let m_ be the representation obtained by replacing ¢ by . Then 7 is the direct
sum of T4 G w_.

We take for granted that S(C, ) is the space of smooth vectors in L?(C, ().
Then the linear form

A(®) = (1)

is a Whittaker linear form on S(C,Q2). We extend it by 0 on w_. For any ® €
S(C, ), the corresponding function Wy is defined by

Wa(g) = m1(9)®(e)
if det g > 0 and Wg(g) = 0 if det g < 0. We have

/% < o0 ) ¥ d*a = /CI)(Z)Q(Z) (22)%d" .

By the previous lemma, we can choose ®; € S(C) such that

/<I>1(z)Q(z) (42)°d*z = F(s).
If we set
B(z) = / @ (zh)Q(h)dh,
hh=1
the function W has the srequired property. O

Now we prove the lemma when ¢ and 7 are both of dimension 2. We may
assume that o and 7 are induced by normalized characters of C*. We may also
assume that 1 is standard.

PROPOSITION 12.7. Given F(s) in L(o @ T), there are finitely many vectors v;
in I,®I,; and Schwartz functions ®; such that

ZW(S,in,¢i) = F(s).
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PROOF. Recall that the integrals U(s, W, ®) converge for Rs > 0. We first
claim that given s with Rs > 0, we can choose v K x K-finite in I, ® I, and ®
such that

U (s, W,,®) #0.
Indeed suppose that, for all such v, (s, W,,, ®) = 0 for all P.

Indeed, this integral can be written as

[ (3 e §) e oo

where w is the product of the central characters and

f(g) = ®[(0,1)g].

Any function f invariant under the subgroup

o 1))

and compactly supported modulo this subgroup can be written as f(g) = ®[(0,1)g]
for a suitable ®. Thus we find

Ful(s )3 &)

for all K x K-finite v. By continuity, this is then true for all vectors v in the tensor
product I,®I,; in particular, this is true when v is a pure tensor. Thus we find

ol )] (3 )] e

for all v; € I, and vy € I,. But this is a contradiction, because given functions
f1, f2 in S(RY), we can find vy, v, such that, for a > 0,

wa (6 1) =h@oma (g )= r.

and

for a < 0.

Thus the entire functions

U(s, Wy, , Wy, , P)
L(s,c®T)

with vy, vy K-finite and ® an arbitrary Schwartz function have no common zero for
Rs > 0. By continuity of the integral as a function of ®, it follows that the above
entire functions for vy, v, K-finite and ® a standard function have no common zero
for s > 0. By the functional equation, they have no common zero for 8s < 1 as
well, that is, they have no common zero.

Now we claim that there are K-finite vectors v;, v and standard Schwartz
functions ®; such that

Z (s, Wy, Wy, ®;) = L(s,0®@7).

This is checked by direct computation in [12], but we give a more conceptual proof.
The representations 7, and 7, are contained in induced representations I,,, ,,, and
I, ., respectively with p; = pda®i, v; = 10abi| 51 < s9, t1 < t2 (see the Appendix).
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For K-finite vectors vy,va in Iy, u,, Iy, 0, Tespectively, and ® standard, we have
proved that

U(s, Wa,, Wa,, @) = P(s) [ ] L(s, pivy) »

where P is a polynomial. The vector space spanned by the polynomials P for vy, vg
K-finite in I, I, respectively and ® standard is an ideal. Let Py be a generator
and set

Lo(s) = Po(s) [ [ L(s, miv;) -
By direct computation (see the Appendix), we have

L(s,0®7) = Qo(s) [ [ L(s, mivy) .

where Qg is another polynomial. Thus
_ Po(s)
Qo(s)
But Lo(s) is a holomorphic multiple of L(s,o ® 7). Thus

Lo(s) = Ro(s)L(s,0 @)

L()(S)

L(s,0®T).

where Ry is another polynomial. Hence every integral U(s, W,,,, W,,,, ®) with vy, vo
K-finite and ® standard is a polynomial multiple of Ro(s)L(s,o0 ® 7). Thus any
zero of Ry is a common zero of the ratios
U(s, W,,, W,,,®)
L(s,c@71)

Hence Ry is a constant which proves our assertion.
Now let F' € L(oc ® 7). By Lemma 12.2, there are F; € £(0), i = 1,2, such that

F(s)=Fi(s)L(s,0 @ T) + Fa(s).
Let f € S(RY) such that

/OOO fOw Y (Bt25d*t = Fy(s).

Recall that we have found K-finite vector v;, v, and standard Schwartz functions
®; such that

> (s, Wy, Wy, @) = L(5,0 7).

We set
o) = [ @l )l Emace,

These functions are still Schwartz functions as follows from the following lemma.

LEMMA 12.5. Let V be a finite dimensional F-vector space. Let ® € S(V) and
f e SRY). The function

®O(v) := /OOO O(tv) f(t)d*t

is in S(V).
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PRrROOF. The integral converges and represents a continuous function of v. For
every N,

Cn
] <
OIS T ey
Fort>1,
Cn
d(t <
[*E) < T Ew
Thus
d(tv)||f(t dxtg/ f)|dt—N
| i< [ ot s
Fort <1,
_ Cn
< N__ N
) < T TR
o ool ot < [ 1erYae—CN
d(tv ftdtg/ foE N —N
/o' JFolde < J O d ey
Hence |(I)0(U)| < C’J/V
ST Py

If D is a constant vector field on V, then D®° exists and is given by
D3 (v) = / fOtD®(tv)d*t.

Thus D®° is of the same form as ®, with f replaced by f(t)t and ® by D®.
Inductively, it follows that ®° is a Schwartz function. O

Now we compute
W0, 92,89 = [ W laWelo) ([ @100 0100t ) el
Exchanging the order of integration and changing g into gt~'1s, we find
/f(t)w(t—l)t—%dXt U (s, Wa,, Wy, ®i) = Fi(s)U(s, W, Wy, ;) .

We conclude that
D U (s, W, , Wy, ®)) = Fi(s)L(s,0 @ 7).

Fy(s) :/h(a)|a\sdxa

with h € S(F*). We may apply the Dixmier-Malliavin Lemma to the translation
representation of R* on S(R*) to conclude that

ma) = | " ha(at) fuld

with hy € S(F*) and f, € C°(R*). After a change of notations we see than we
can write

Fg(s):Z/ha(a)|a|sta /fa(b)|b|28w(b)de
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with hy € S(RX) and f, € C°(R*). Now hy(a) = kq(a)QQ (a) with ky € S(F™).
Now we have the following lemma.

LEMMA 12.6. Any element h of S(R) can be written as a sum

= he(a)ke(a)

with he, ke in S(R). Any element of S(R*) can be written as a sum
> he(ake(a)
with he, ke in S(R).

PRroOOF. For the first assertion, replacing the function by its Fourier transform,
it suffices to show that h is a finite sum of convolutions > he * ke with he, ke in
S(R). Applying the Dixmier-Malliavin Lemma to the translation representation of
R on S(R), we obtain our assertion (with ke € C2°). For the second part of the
lemma, we remark that any h in S(R*) can be written as

h(z) = hy(x)ha(z™1)

with h; € S(R). We then apply the first part of the lemma. O

Coming back to the proof of the proposition, we see that we have written

Z/ ha(a)ka(a)al*d*a /fa (b)|b]**d*b,

with hqg, ko € S(R*) and f, € C°(R*). There exists vectors v, and v/, such that

a 0 a 0
an ( 0 1 ) :h,a(a)|a|l/2, Wv;v ( O 1 > :ka(a)|a|l/2.
Then

S w0 )we (5] )eae [ owenFas = me).

Now let us apply the Dixmier-Malliavin Lemma to the subgroup N and the repre-
sentation (7, ® 7., I,®I;) restricted to N. We conclude that for each «, there are
vectors vg in the tensor product and ¢g € C°(R) such that

Woo (9)Wer, (9) =zﬂ:/Waﬁ {g( i (1) ),g( }U (1) ) ¢p(z)da .

Changing notations, we see that we have obtained the formula

R CHIHCHIE R

x pp()dz | fa(b)w(b)[b]**d”b= Fa(s),
where ¢g € C(R) and fg € C°(R*). For each 3, set
ol =09 (2) 1)

This is an element of S(R?) such that
D(xb,b) = ¢p(x) f5(b).-
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The above formula can then be written in the form

> U(s, Wy, Bg) = Fa(s).
B

This concludes the proof of the proposition. O

12.5. Reduction step for GL(2). We will now reduce Theorem 2.6 to the
case where ¢ and 7 are irreducible. This requires further preliminary work. In
this subsection, we explain the reduction step in the case of GL(2). For clarity, we
repeat what we want to prove

PROPOSITION 12.8. Let p1, po be two normalized characters of F*, uy,us two
complex numbers with Ruy < Rug. Given F € L{pa™ & pea®?), there is v €
Ly o ur s SUCh that

U(s, W,) = F(s).

Proor. The space of the representation I, ,,,u;,u, is the space of C° func-
tions f on GL(2, F) such that

f K s a.; )9} = g1 (a1)ar|" 2 pa(az)|az| "2/ 2 £ (g) .

xT

Let ® € S(F'). Define a function f by the following rule. If

a b
g_<cd>va#07

then we can write G uniquely in the form
o [25] 0 1 Yy .
9= < T as ) ( 0 1 ) ’

£(9) = pa(a)|ar | =2 pa(az)|az |20 (y) .

If a = 0, then we define f(g) = 0. We claim the function f is C*°. Let Q; be the
set of g such that a # 0 and €5 the set of g such that b # 0. It will suffice to show
that the restriction of f to each open set if C'°°. This is clear for ;. If g is in Qg,
then g can be written uniquely in the form

_ aq 0 1 0
9=\ ¢ as w2, 1 )
It will suffice to show that
f 1 0
w2 z 1

is a C'*° function of z. Now, if z # 0, then

10\ [ = 0 1 27t
2l 1 )7l =t 0o 1 )
Thus, if z is not zero,
10 _ U — o — _
Plus (21| = o ).

On the other hand, for z = 0 we find f(wz) = 0. It easily follows that f is a C*
function of z, even at the point z = 0. We will write f as fg .

we then define
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If Ru; < Rue, then we define a 1 linear form A, on I, 1, u,,u, Dy the convergent

integral
= [1( g 1) v

Au(fo.u) = ®(1).
By analytic continuation, this formula remains true even for Ru; = Ruq. Set

Wq’,u(g) = Au(ﬂulyﬂg,u1,u2 (g)f<1>,u) .

A simple computation shows that

0 - 3 u
”@“(3 1>M|“2—¢mmm@M1.

In particular,

Thus

(s, Wa) = /ff(a)ul(a)m\”“ldxa.
As we have seen before, for any F' € L(pu;a*t) we can choose ® such that the right
hand side is equal to F'. Hence we have proved that for every F' € L(ua%) there

is a vector v € I, 15 us,up SUuch that W(s, W,) = F(s).

Consider now the representation (7 -1

-1 A -1 1
Mo "My U2, —UL Mo sy s —U2,—

for every ® € S(F) there is a vector v’ such that
W(s, W) = /cf»(a)ugl(a)|a|s—“2dxa.

Now 17[/\; = W, for a suitable v and
\11(87 W’U) :MIMQ(_l)’y(S + Uy, K1, 1/})_17(8 + U2, [2, w)_l

X /:Is(a)pgl(a)\aﬂ_s_“?dxa.

Using the functional equation of the Tate integral, we can write this as

waww:uwaW@+mwhw*/émmxwwmw.

Thus for every F' € L(ppa™?), there is v € Iy, 1y uy,up Such that
L(s + w1, pi1)
LI —s—unp))
To finish the proof we appeal to the following lemma, which is a special case of
Proposition 12.3.

u,)- Likewise,

U(s,W,) = F(s)

LEMMA 12.7.
L(s+ uy,
L(ima™ & pa®) = Limats) + — 8T pi ey,
L= s —un,p )
This concludes the proof of the proposition. O

13. Bruhat Theory

In this section, we prove that certain naturally defined functions belong to the
induced representations at hand. This result is due to Casselman. According to
Casselman, the methods developed in [4] can be used to prove the result that we
need. For the sake of completeness, we have included an elementary proof.
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13.1. Preliminaries.

LEMMA 13.1. Suppose that Y, € G (F) and
lim Y, =Y,
n—-4oo

where det Yy = 0. Then
lim [|Y, e = +oo.

PROOF. Indeed, at the cost of replacing Yy by g1 Yoge with g1, g2 invertible, we
may assume that the first column of Yy is 0. We proceed by contradiction. Let e;,
1 <i < n, be the canonical basis of F™. If the assertion is not true, then, at the
cost of replacing Y,, by a subsequence, we may assume that ||Y,; || < K for all n.
Then

1Y, Yaerlle < K|[Yaerlle — K|[Yoer|| = 0.

However, ||Y, 1Y, e1|le = ||e1]|le = 1, so we get a contradiction. O

LEMMA 13.2. Let Yy € M(n x n,F) with detYy = 0. Let Y1 € M(n X n, F).
FEither det(Yp+tY1) = 0 for allt or there is, fort € R small enough, a C*° function
B(t) with values in GL(n, F) and an integer r > 0 such that, for t # 0 and small
enough,

(Yo+1tv1)~ "' = B)ﬁ@ .

PROOF. Indeed, assume det(Yy + tY7) is not identically zero. Then
det(Yo +tY1) =t"Q(t), r >0, Q € C[t],Q(0) £ 0.
Let A(t) be the adjugate of Yy 4+ tY;. Thus
(Yo +tY1)A(t) =t"Q(t)1,, .
For t # 0 small enough, Q(¢) # 0 and

o+ 1v)t = PO gy - AW
O

The lemma implies that if ® is a Schwartz function on M (nxn, F), the function
defined by

H(¥) = {cp(y—l) if detY #0

0 if detY =0
is C*°. We consider a more general situation. Let V be a Frechet space and V a
finite dimensional complex vector space with Euclidean norm || - ||. Let ® be a C*°
function

O:MnxnF)xV —=V.
We assume that for any differential operator D with constant coefficients, and any
continuous semi-norm g on V, there is M and, for each N, a constant C such that

A+ 121"

A+ Y)Y

We let P be a polynomial function on M(n x n, F') x F. Finally, we let 7 be a
smooth, moderate growth, representation of G,,(F) on V. Let X € U(G,(F)).

W(DR(Y, 2)) < C
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ProrosiTiON 13.1. The function
U:MnxnF)yxV -V
defined by

(Y, Z) =

(V) (dr(X)®)(Y 1, Z)P(Y,det Y1) if detY #0
0 if detY =0

is C*°.
PRrROOF. The function ¥ is continuous on G, X V. Let us prove that it is

continuous on M(n x n, F) x V. Let Y, with det Yy =0 and Zy € V. Let ¥,, — Yj
and Z, — Zy. We have to show that

(Y, Z,) — 0.

If det Y,, = 0, we have ¥(Y,,, Z,) = 0. Thus we may as well assume that detY;, # 0
for all n. Then ||V, || — oo and ||Z,|| < 1. If u is a continuous semi-norm on V,
there is 7 and another continuous semi-norm v such that, for all v,

p(r(Y)o) < [[Y][gv(v) .
Hence
W (Y, Z0)) < [PV, det V)| [[Val v ((dr(X)®) (Y, Z0)
Next
[P(Yn, det Y,7H)] < [[Y][5"
for a suitable M. Since v — v(d7(X)v) is a continuous semi-norm,
v ((dr(X)@)(Y, !, Z0)) < CA+Zal )M 1+ (Y, ™Y < O+ 1Y D)7
Altogether
(¥ (Yo, Z3)) < OnIYall L+ 1Y, IR Y

for some My and all N. Now ||Y,|lz = ||[Yall? + ||V, M2 < C'(1 + |]Y,7 Y ?).
Thus, if N is large enough, then ||V, ||22(1 + ||Y;7|2)~N — 0. We conclude that
w(¥(Y,, Z,)) — 0. Hence ¥ is indeed continuous.

Now we prove that at a point where detY = 0 the partial derivatives of U of

order 1 exist and are 0. We start with the partial derivatives with respect to Y.
Thus we have to show that
(Y3, Z)
lim ———= =0
t—0 t
where Y; =Y +tY1, Y1 € M(n x n, F). This is clear if det ¥; = 0 for all ¢ because
then U(Y;, Z) = 0 for all t. Otherwise, ||Y;|| ~ Ct~" with r > 0. As before for any

continuous semi-norm g,

w¥(Ye, 2)) < CA+ V)Y <ot

Thus }irr(l) M = 0. As for the partial derivatives with respect to Z, for Z; € V,
WY, Z+tZ
i 224
t—0 t

trivially since ¥ (Y, Z 4+ tZ;) = 0 for all t.
Next we show that the partial derivatives of ¥ at a point where detY # 0
exists. We compute
dv(Y +tYh, 2)
a0
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using the product rule. For any vector v
dr(Y +tY1)v dr(Y(1+tY~'V7))v
a0 = dt fe=o-
Now let Y, be a basis of M(n x n, F), then

Y'Y =) (Y)Y,

where the &, are polynomials in (Y,detY’). Thus
dr(Y +tYq)v
Th:O = za: ga(Y)T(Y)dT(Ya)v .
By the chain rule,
do((Y +tY1)7 1, 2)
dt

im0 =Y (YL, Z)P(Y, det Y )

where the ®; are partial derivatives of ® and the P; are polynomials. By assumption,
the ®; satisfy the same conditions as ®. Finally,
dP((Y +tY1)™%, Z)
dt li=0

is a polynomial in Y and det Y 1.

We conclude that for detY # 0, %h:o do exist. Hence %hzo
exists for all Y and is a sum of functions of the same type as ¥. The same assertion
is trivially true for

dv(Y,Z +tZy)
T a
The proposition follows then by iteration. O

13.2. The first term in Bruhat’s filtration. Let ni,n, be two integers
such that n = n; + no. Let P be the parabolic subgroup of G,, of matrices of the

form
g1 O
s i € GL,. .
(% o) weoL.

Let G(P) be the open subset of matrices of the form

C¢ D

Every matrix g in G(P) can be written uniquely in the form

()5 L)
I=\ x g 0 1, )
More precisely, the map

(91,92, X,2Z) — g

is a diffeomorphism onto G(P). Let (01, I;) and (o9, I3) be two Casselman-Wallach
representations of G, (F) and G, (F'), respectively. Let (m,I) be the representa-
tion of G,, induced by (o1, 02). Let v be a (smooth) vector in the space L, &®I,. Let
® be a Schwartz function on M (n; X ng, F'). Define a function f on G with values
in [;®I, by

0 1, A4 _na ny
f [( {; g2 ) ( 0 1 )} = 01(g1) ® 02(g2)v| det g1 |~ | | det go| T B(2).

2

(A B ) LAEGy, (F),De Mg xny, F).
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and f(g) =0 if g is not in G(P). We call such a function a Casselman function.

PRrROPOSITION 13.2. The function f is C*° and belongs to the space I of the
representation induced by (o1, 03).

PROOF. Let ¢;, 1 <1i < n, be the canonical basis of F™. It will be convenient
to write V' = F™ as a direct sum

V=Vial

where Vi, V5 are subspaces spanned by the vectors e;,1 < i < nqp, and e;,n; +1 <
i < n, respectively. Then any element M of Hompg(V, V) can be represented as a

matrix
A B
v-(& )
of linear operators, with

A € Homp(V1,V1), B € Homp(V2, V1),

C € Homp(V4,Va), D € Homp(Va, Va).

Then P is the set of invertible matrices with B = 0 and G(P) is the set of invertible
matrices with A invertible. To continue we write G = GL(V) as a union of open
sets. Each open set is attached to a direct sum decomposition

Vi=VieVE, Vo=Vl V2
where each space is spanned by vectors in the canonical basis and
dimV + dimVy' = dimV; .
Then we can write
A= (A1, Ay), A € Hom(V}, V1), Ay € Hom(V2, V1),

B = (B1,Bs), B; € Hom(Vy', V1), By € Hom(ViZ, Vi) .
Then
(Az, By) € Hom(VZ @ V3, Vi) .

The open set ) attached to this decomposition is the set of invertible operators for
which (As, By) is invertible. Our task is thus to prove that the restriction of f to
Q is a C*° function.
We may relable the vectors e; so that Vj' is spanned by the vectors e;,

1 <11 < myq, V12 is spanned by the vectors e;;m; +1 < i < nq, V21 is the space
spanned by the vectors e;,n1 +1 <1i <nj; +mp and V22 by the remaining vectors.
Here m; verifies 0 < my < inf(ny,ns). It is convenient to set mg = n; —my. Then
Q) is the set

0 0 1, 0

0 1n,, O 0
lm, O 0 0

0 0 0 ln,om,

Recall that every element of G(P) has a unique decomposition of the form

g1 0 1n1 A
X g 0 1n2 ’

GP)w, w=
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Since f transforms on the left under a representation of P, it will suffice to show
that

1m1 0 T1 Y1

0 177L2 T2 Y2
(13.1) f 0o 0 1. 0 w

0 0 0 lum,

is a C'* function of x1,y1, 2, y2. Now

1m1 0 X1 Y1 X1 0 lmg Y1
0 1y, o Y2 w— 2 lm, O Yo
0 0 1, 0 lm, 0 0 0
0 0 0 luym 0 0 0 lum,

This matrix is in G(P) if and only if z; is invertible. Then it can be written as
g1 0 1n1 Z
X g2 0 1712

o X1 0
g1 = ( O >
-1 —1m, 0 )
92 ( 0 ]_nz?m1
1

—1
o X1 0
7= ()

The value of f on this element is thus

rp 0 1 x (1
"1(952 Lo, >®"2 < 0 Lo, >”1

—1 -1
ni—n2 X i
X |detx1| 2z P 1 1 11 4
—XoX; —T2T1 Y1+ Y2

1y, 0
V1 = 02 0 1 v.
na—mi

ni—n x 0 _ x 0
T((El):|detl’1‘ 12 20‘1( 01 lm >®U21< 01 1n . )

The previous expression is the product of
1 0 _ 1
7(z1)01 < ;;1 Lon, > ®oy! ( 6“ 177,2yjm1 >v1
and the scalar factor
P ( ])1_171 xi_llyl > )
—ZT2X —T2%y Y1+ Y2
Set

Z1 T1Y1
P =¢
o(z1, @2, 41, 92) ( —Tox1  —ToT Y1 + Yo >

1m1 0 —1 1m1 Y1
X 01( 2y >®02 ( 0 I V1 .

with

where

Set
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If D is any differential operator with constant coefficients, the function

D®g(x1,x2,y1,y2)

is a sum of functions of the form

P’ T T1Y1 P(x1, %2, 1,
( —T2X1 —X2%1Y1 + Y2 (@12, 91,92)

Lin, 0 -1 I, Y /
xal( zs >®02 ( 0 Tnym v,

where ®' is a Schwartz function, P is a polynomial function, and v’ € V. It follows
that ®¢ and its derivatives are rapidly decreasing with respect to x; and slowly
increasing with respect to the other variables. Now the value of f at hand (13.1)
is given by
T(l’l)(I)o(£81_171'2,y17y2)
if detx; # 0 and 0 otherwise. By Proposition 13.1, the resulting function of
(xl,xg,yl,yg) is O, O
14. Proof of Theorem 2.6

14.1. Consequences of Bruhat Theory. Let
o=01D02,01 203,

be a representation of the Weil group. Thus 7, is equivalent to the representation
induced by by (75,,7s,). We set

ny = d(O’l),TLQ = d(O’g) .

PROPOSITION 14.1. Given vy € I,, and a Schwartz function on ® on F"* there
is a vector vy € I, such that, for all g € GL(ny, F),

0 ng
W ( 01 ) =W, (9)2((0,0,...,0,1)g] |detg|Z .

ngy

PROOF. Let A1 and A2 be ¢ linear forms on I,, and I,,. Let us write

1
r P

o1 :@Ji®a“i,02:@ag®a”1,
i=1 i=1

where the Uf are irreducible normalized representations and
Rup <Rup < ..o <Ry < Pop < Rop <0< Ry
If Ru, < Rvq, there is a ¢ linear form A\ on I, such that

A(f)z/h@& [f( 181 15; ﬂ@w[( 16“ 11; )]dY.

If f is a Casselman function, the integral converges even if Ru,, = Rv;. By analytic
continuation, we conclude that this formula remains true when f is a Casselman
function and Ru, < Rvy. If f is determined by the formula

1, Y
f( 01 1 )Z‘I)(Y)UOaUO:Ul@UQa
N

then the corresponding function Wy verifies

(3 2 )-men (3 2) (5 0 oo
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where € is the matrix with ng rows and n; columns whose last row is (0,0,...,0,1)
and all other rows are zero. After a change of variables, we find

M(r(ge el det gl F [ @(Y)0 (~Trtegt)) ay

= Ao (02) Wi, (9)] det g| £ @1((0,0,....,0,1)g)
where @ is the Schwartz function on F™ defined by
® (u) = (U),

where U is the matrix with ny rows and n; columns whose last row is v and all
other rows are zero. Clearly, ®; is an arbitrary Schwartz function. Our assertion
follows. O

One can easily establish the following variant.

PROPOSITION 14.2. Let o, 01, 02 be as above. Let also T be another representa-
tion of the Weil group of degree m. Let v be a vector in I, QI and ® be a Schwartz
function on F™ . There is a vector vy in I,@I, such that, for all g € GL(n1,F),
g € GL(m, F),

0 ng
W [(§ 1)) = Walag)#(0.0.....0.0g] [detgl

The proof is similar and based on Casselman functions for the representation
&7, of the group G, (F) x Gp,(F), this tensor product being regarded as an
induced representation.

14.2. Reduction step.

PROPOSITION 14.3. Let 0 = o1 ® o2 be a reprsentation of the Weil group of
the with o1 = o03. Let n; be the degree of o;, n = ny + ny. Let T be another
representation of the Weil group of degree m. Then
(14.1) I(o,7) 2 Z(o1,7),

L(s,01 ®T)
L(l-—s50®7)

PROOF. We prove the first assertion of Proposition 14.3. Suppose n; = m.

Given v; € I,,®I; and a Schwartz function ® on F"!, consider the integral

(14.2) Z(o,7) D Z(oo,7)

(s, Wy, , ) :/Wvl(g,g)ldetg\s‘ﬁ[(()ﬁ,---70, 1)g]| det g|*dg .
By Proposition 14.2, there is vy € L,@IT such that

0 _n2
Wor(00)210.0... gl =Wy [ (50 ) o] laerg %
na
Since ny = n — m, we find
U (s, Wy, , ®) = ¥(s, W,,)

which proves our assertion in this case.
Now assume m < n;. Then given vy € I,,®I,, consider the integral

\IJ(S7W'U1):/W'U1 [(g 1 0_ )79] |det9|57n1;mdg'
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Applying Proposition 14.2, (with ®[(0,0,...,1)] = 1), we see that there is vy €
I,®I, such that

0 g 0 0 B
W'Ul |:< g 1 ) 7g:| = W’Uo O lnl_m 0 g ‘detgl_72 N
mm 0 0 1,

Then
U (s, Wy, ) = V(s,W,,)

and we are done in this case.
Now we assume that n; < m. Recall that Z(o; ® 7) is the space spanned by

the integrals
/ w {g’(g 1 )]Idetglsm?ldg
Nny \Gny 0 Lmn,

with v in L,l@IT. By Proposition 6.1, it is also the space spanned by the integrals

of the form
0 s_mon1
[oomla (g L)) etenatdea e ag
Niy \Gny m—ni

with v in L,l@IT and ® a Schwartz function on F™. Thus it suffices to show such
an integral belongs to Z(o, 7). By Proposition 14.2, it has the form

g 0 g 0 g momtmon
L/LK“{< 0 Ln, )’( 0 Li—n, )}d“g| dg

with vy € I, &1,
We formulate a lemma. Applying the lemma to the case r = nq, we see that
the previous expression is indeed in Z(o, 7).

LEMMA 14.1. Let o and T be representations of the Weil group of degree n and
m respectively. Suppose r < n,r < m. Let

ve LRI .
The integral

g 0 g 0 g_n=rtm=r
(88 (32 e
/NT\GT U[ 0 In—p 0 Iy

belongs to I(o,T).

It remains to prove the lemma.

PRrROOF. Suppose n > m. For r = m, the integral of the lemma belongs to
ZI(o,7) by definition. Thus we may assume that r < m and for each v the integral

0 9 0 _n=(rtDdm—(r+1)
WU[(Q )( )]|detg|s + dg
/Nr+1\Gr+1 0 lp—po1 0 1,—p_1

belongs to Z(o, 7). Then we prove that for each v the integral

0 g 0 _n-—rim-r
w (80l ) (8 1, Jasaray
/NT\GT N0 1 N0 1,

belongs to Z(o, 7). By descending induction, this will establish the lemma.
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Given v € Ig@)IT, we can find vectors v; € I,®I, and smooth functions of
compact support ¢; on F” x F* such that

a(h)™ 0 0 1
v = Z/Wo x h 0 ® Ty < a(};) 2 )'Ui ¢i(x, h)dz|h| d*h.
i 0 0 1,—m
Here
r—1
——
a(h) = diag(h,1,1,,...,1) .

Indeed, this follows from Lemma 6.1 applied to the group of matrices of the form

-1
(a(h) 0), he FX z € Fr.
T h

After a change of variables, the integral of the lemma becomes

g 0 0 0
Siwe ||z n 0 N éi(x, h)dx
- i 0 0 z h

Ln—m
X | det g|Fm T 1 g s BECEREmECD oy
By Proposition 6.2, this has the form
Z/Wui i«g 8 a<§2>da:
i 0 0 lyp_m
x |det g~ " ET I gy e R g,

for suitable vectors u;. Now
g 0 -1 X
f»—>/f<gU h)dm|detg dg d*h

gives an invariant measure on N, ;1\G,4+1. Thus we may write the above expression

T —
Nry1\Gri1 n2

i
which by hypothesis is in Z(o, 7). We have proved the lemma in the case n > m.
It remains to treat the case m = n. The inductive argument we have just used
shows that the integral of the lemma is equal to an integral of the form

00 ) (6 )|
W , det g|°~"dg .
/Nn—l\Gn—l |:< 0 1 0 1 |

We use once more Lemma 6.1 to write
_ a(h)*1 0 a(h)*l 0 n .
UO_Z/};‘nleFX T ( xT h ) ®7TT ( €T h Vg ¢1(x7h)|h| dm d h

with ¢; smooth of compact support on F"~! x F*. Then the integral takes the

form
E W 9 9 | det g|° 1\h|s¢'(x h) dx d*h dg
- vi x h )\ z h o ’
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Let ®@; be defined by ®;(z,y) = ¢;(x,y) if y # 0 and ®;(x,y) = 0 otherwise. Then
®; is a Schwartz function and the integral is equal to

> (s, Wy, ®;).

This concludes the proof of the lemma and the proof of the first assertion of the
proposition. O

For the second part of Proposition 14.3, we remark that
g=02®07
and thus
I(0,7) 2Z(02®7T).
By the functional equation, Z (o, 7) contains all functions of the form
V(s,01 @7,) (s, 00 @7, 00) T f(1—s)
with f € Z(02®7). Using again the functional equation, we see that Z (o, 7) contains
V(s,o1 @ 7,0) (02 @ 7)

or
L(s,01 ®7T)

L(1-s5,00®7)

This concludes the proof of Proposition 14.3. O

I(O’Q ® 7') .

14.3. End of Proof of Theorem 2.6.

PRrROOF. If o and 7 are irreducible, we have already established Theorem 2.6.
Next we prove Theorem 2.6 when one representation, 7 say, is irreducible, thus
of the form 7 = 7o ®a" with 79 unitary irreducible, v real. The proof is by induction
on the number of irreducible components of . Thus we may write
0o=01Do02
where o7 is irreducible and o7 < o9. The assertion of the theorem is true for the
pair (o1, 7). By induction, we may assume it is true for the pair (o9, 7). We have
L(s,00®T)
I(o,7) D I(o1,7)+L(02,T) —————.
( )7 (1 ) (2 )L(1—8,0'1®7-)
By the induction hypothesis, this is
L(Sa 01 ® 7_)
L(1-5,00®7)

L(s,01®7)

(01, 7) + L(02,7) -s507

=L(01®7)+ L(02®7T)

Now

CRT=01RTD02@T
and 01 ® T < 02 ® 7. By Proposition 12.3,
L(s,00®7)

E(U]_ ®T) +E(O‘2 ®T>m

=L(oc®T).
So we are done.

Now we establish our assertion by induction on the sum of the number of
irreducible components of ¢ and the number of irreducible components of 7. We
may further assume ¢ and 7 reducible. Thus we may write

o=01®D 02
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with o7 irreducible and o1 < 092 and
T=T1D7
with 75 irreducible and 7, < 75. We may further assume our assertion established
for the pairs
(Ulv T)a (UQa 7)7 (Tla o’) .

As before,
L(s,01®7)
T o7 T —_— .

(037) = (0'1,7') + (UQ’T)L(l — 8,07 ®7_)
Also

I(o,7) 2 I(m1,0).

By the induction hypothesis,

L(s,00®7T)
L(1—s,01®7)
By Proposition 12.4, the right hand side is £(c ® 7) and we are done. O

Z(o,7) D L(o1 @ T) + L(02 ® T) +L(n®o).

15. Proof of Theorem 2.7

PROOF. We prove Theorem 2.7 for (n,n — 1). The proof for (n,n) is similar.
With the notations of the theorem, the induced representation I, is a closed
subspace of the space I, , of a principal series representation. Likewise I,/ ./ is is
a closed subspace of the space I,/ ,» of a principal series representation. Of course,
we may have equality. Now we claim that

L(s,0,®0.,) = Py(s) H L(s 4 vi + v, i 5)
Jsk
where P is a polynomial. Indeed, it suffices to prove this when the tuples o and
¢’ have only one element. This case is checked directly in the Appendix.
After a permutation, we may assume

1 SV <<y,

The permutation does not change the irreducible components of the principal series
representation. Thus, a priori, the representation I, , is now only an irreducible
component of I, ,, that is, is equivalent to the representation on a subquotient of
I,.,. But by Lemma 2.5 I,, is in fact a subrepresentation of I,, ,. Thus we can
view I, as a closed invariant subspace of I, ,. Likewise, we may assume

’U:/[S’U/QS”'S’U:@

and I, is a closed invariant subspace of I,/ ..

We have already remarked (Proposition 8.1) that for every K,-finite f € I,
and every K,,_-finite f € I,/ ,» the integral (s, W;, W) is a polynomial multiple
of HLk L(s + v; + v}, pip'j), thus a rational multiple of L(s, o, ® 0,,). Since it is
in fact a holomorphic multiple, we conclude that

U(s,Ws, W) = P(s)L(s,0, ®0l,)

where P(s) is a polynomial. The vector space generated by the polynomials P is
in fact an ideal. Let Py be a generator and sy a zero of Fy. Now the map

(f, f1) = (s, Wy, W)
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from I, X Iy 4 to L(oy ® 04) is continuous or, what amounts to the same, the
map
vi— U(s, W,)
from Imu@x\)lggu: to L(oy, ® o) is continuous. If s is not a pole of L(s, o, ® 0l,,),
then all functions W (s, Wy, Wy/), with f € I, , Ky-finite and f" € I,/ . K, _-finite
vanish at sg. It follows that all functions ¥(s, W,,), with v € Ic,,u@[(,/’ur7 vanish at
So. Similarly, if s¢ is a pole of order r of L(s, 0, ®07,,,), then the functions ¥(s, W,),
with v € Imut@IU/,ur, have a pole of order < r—1 at sg. In any case, this contradicts
the fact that L(s, o, ®0),) = ¥(s,W,) for a certain v. Thus P, is a constant. Thus
we find
L(S, Oy X O';/) = Z \I’(S, ij, Wf]/)
J
for suitable K, finite elements f; € I, and K, _; finite elements fj’- €lyro. O

16. Appendix: the L and ¢ factors

For the convenience of the reader, we recall the precise definitions of the L and
€ factors attached to a representation of the Weil group Wy and we prove some
relations between them.

We recall the definition of the Weil group. First W = C*. Denote by k €
Gal(C/R) the complex conjugation. Then Wr is the non-trivial extension

C* - Wgr —{1,k}.

Thus Wgk contains an element k¢ which maps onto x and verifies

m%:fl,nozmalzfifzé(cx.

Moreover
Wr = C*ucC* KQ -
The homomorphism
Wgr — R*
defined by
Ko —1, 2+ 2Z

is surjective. Its kernel is the derived group of Wgk. Thus we can view any one
dimensional representation of Wr as a one dimensional representation of R*.
First, for any representation o of the Weil group Wg,

L(s,c ®@ap)=L(s+u,0), e(s,0 ® afp,v) =€e(s+u,0,0).
Second, if 0 = 01 @ 09, then

L(s,0) = L(s,01)L(s,02), €(s,0,1¥) = €(s,01,¢)e(s2,0,1) .

Thus it suffices to define the factors for ¢ irreducible. We may even assume o
normalized, that is, we may assume that the restriction of o to Ri is trivial.

We first recall the definition of the L and e factors attached to a one dimensional
representation of Wr, or, equivalently, to a character p of F*. The book [27] is a
convenient reference. Up to a scalar, the factor L(s, i) is essentially defined by the
condition that, for any Schwartz function ® on F, the integral

(5,1, ®) = / B (o) | o pu()
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be a holomorphic multiple of L(s,u). More precisely, when ® is standard, this
integral is of the form P(s)L(s,u), where P is a polynomial, and any polynomial
P occurs for a suitable ®.

Suppose F' = R. For y = 1gx

L(s,1gx) = 75T (%)

and
2

Z(s,1gx,®g) = L(s, 1gx ), where ®p(x) =™ .
Denote by 7 the sign character of R*. Then

S 1
L(s,m) = T (S + )
2
2

Z(s,n, ®,) = L(s,n), where ®,(z) = xze™ ™" .
Now suppose F' = C. For p = 1¢x
L(s,1¢cx) = 2(27) " °T'(s)

and

and
Z(s,1¢x,®0) = CL(s,1¢x ) where ®g(z) = e™ 277 |
and C' is a suitable constant. The definition of the L factors is so chosen that
L(s,1¢cx) = L(s,1gx ) L(s,m),
as follows from the duplication formula.

If u(z) = 2™(2Z)~% where m > 1 is an integer, then

L(s, p) = 2(2m) 5T (s+ %)

and
Z($7 1y (I)m) - CL(S, [IJ) where (I)m(z) — 2m6727m2 )
If p(z) = 2™ (2z)~ %, then

L(s,p) = 2(27)~*~%T (5 + %)

as before and
Z(s, 1, ®,,) = CL(s, 1) where ®,,(2) = zMe 2%,
The € factor is defined by the functional equation
Z(1—s,pu 1, Z(s, 1, ®
(—4) = (s, 1, 1/))g
L =5 p71) L(s,1)

We have already indicated the dependence on .
Suppose F = R. We take yr(x) = e?™®. Then Fy, (®o) = ®o and so

E(S, 1R>< y 'I)ZJR) =1.
On the other hand, Fy, (®,) = —i®,, and so

6(57777 wR) =—1i.

Suppose F = C. We take ¢c(z) = Yr(z + Z) = 27+ Then F,.(®g) = D
and so
E(S, 1c>< N @[J(C) =1.
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On the other hand,
Fope(Pm) = (=) Pz, Fye(Pm) = (=1)" O,

% or pu(z) =2™(22)" %, we find

6(37 Hs ¢<c) = (_i)m .

Now let 2 be a character of C*. We can induce it to Wkr. We obtain a two
dimensional representation o of Wg. If we replace ) by the character 2% defined
by Q"(z) = Q(z), the class of the representation does not change. If Q does not
factor through the norm, then oq is irreducible. Within equivalence, the irreducible
representations of Wy are the representations of dimension 1 and the irreducible
representations of the form oq. At this point we may as well assume €2 normalized.

If Q = 1¢x, then oq is reducible. In fact,

and so, for p(z) = 2™ (2%z)

g = 1R>< EB .
Thus
L(s,0q) = L(s, 1gx)L(s,n) = L(s,Q).
On the other hand,

6(87 oQ, ¢R) = 6(87 Igrx, TPR)G(& UE ¢R) =—1= )‘(C/R7 ¢R)€(57 Q, WC)
where
)\((C/R, ’(/)]R) = —1.

This motivates the following definitions. For an arbitrary €,

L(S, UQ) = L(87 Q) ) 6(57 aQ, wR) = A((C/]Ra ¢R)€(87 Qv wC) :

When F' = R we need some relations between those factors. Suppose that 2 is a
normalized character of C*, say Q(z) = 2™(2Z)~ % where m > 0 is an integer. The
representation (7,,, Is,) of GL(2,R) is a discrete series representation (or limit of
discrete series if € is trivial). Its construction in terms of the Weil representation
is described for instance in [14]. In the same reference, it is shown that there exists
two (non-normalized) characters 1, o of R* such that 7, is a subrepresentation

of 7, . u,- Thus we can view I, as a closed invariant subspace of the space I, ,.,
of C* functions f on GL(2,R) such that

(% o )o] =m@la a2 ).

X

It is in fact the only proper closed invariant subspace if € is non-trivial. If  is
trivial, it is the whole space.
Suppose m is even. We have two choices for (u1, p2):

pn(t) = il (), pa(t) = Ity *
and . -

p () = [t po(t) = [tlg * n(t).
The map u — ! exchanges these two sets of characters. Suppose m is odd. We
have again two choices

pi(t) = [tlg , pa(t) = t|g *
and . .
py(t) = [tlg n(t) , pa(t) = Itlg > n(t) -
We will not consider the second choice.
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LEMMA 16.1. Suppose that I, is a subrepresentation of I, ,.,. Then
L(s,00) = P(s)L(s, p1)L(s, p2) ,
where P is a polynomial. Moreover,
V(s 00, ¥r) = (s, pi1, Yr)Y(S, p2, Yr) -

REMARK 16.2. The lemma is true for any choice of (u1, p2). However, we only
prove that there is a choice for which the lemma is true because this is all what we
need.

ProOOF. Recall the duplication formula
211 (s) — 1l/2p (f)r s+1
2 2 ’

L{t+r)=Q-(t)(t)

and the formula

where

(16.1) Qrt)=(t+r—1)(t+r—2)---t.
Note the functional equation

(16.2) Qu(t) = (~1)7Qu(—t —r+1).

Suppose first m is odd. Let us write m = 2r + 1 with » > 0. Then
1
L(s,0q0) =L(s,Q) = 2(27r)7(5+r+%)1j (8 +7r+ 2) .

By the duplication formula, this is

1 1
L(s,00) — o (sHrDp (s+r+ Q)F(s+r+2+1> '

2 2
On the other hand, with

m m

pa(t) = [¢]=2 pa(t) = [¢[=

we get
s s+r+1 s—r—1
L(s,pa)L(s,p2) =7 ‘F( B) Q)F( 5 2)-
We have ) )
str+5+1 s—r—3
— = 1.
5 5 r+
Thus we find
—r—1 S_T_%
L(SaOQ) =T Qr+l(t)L(S7M1)L(SaM2)a = f .

Similarly, oq is the representation induced by Q~! = Q*, thus is in fact equivalent
to oq. We find then

L(87 6:(/2) = ﬂ-_r_lQTJrl(t)L(S’ MI)L(S’ MQ) = ﬂ-_r_lQTJrl(t)L(sv M;l)L(S’ M;l) .
Now replacing s by 1 — s replaces ¢t = Sﬂ;% by —t —r. Thus we find

Qr-i-l(_t — T) L(l — Sa/h_l)L(l - 57/’62_1)
Qr+1(t) L(s, 1) L(s, p2) '

’Y(Sa oQ, w]R) = 6(37 Q7 ’L/)C))‘((C/R7 '(/)]R)
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Now @51t — (1)L, (s, Q,¢hc) = (—i)>*1, A(C/R, ¢pm) = —i. Thus

L(l — SvMII)L(l —5 Ngl)
L(s, p1)L(s, p2)

Thus we find the required identity.
Now we assume m even and we write m = 2r, r > 0. Then

L(s,00) =227)°""T'(s+7r).

7(870971/}]13) = = W(SaulawR)’Y(sa/‘QawR) .

By the duplication formula, this is

1
L(s,00) =7 >0 <S;T> <s+;+ ) .

Now, with
pa(t) = [EF0(t), pa(t) = |67 %
we get
el fs+r+1 s$—r
Do) s, ) =4 (T ) (257
We find
_ s—r
L(s,00) =7 "Qr(t)L(s, u1)L(s, u2), t = 5

Similarly, with
ph(t) = (8%, pa(t) = [t F (),

— 1
L(s, ) L(s, ph) = 73T <S +r) r (S Tt ) :

This time we find

L(S7UQ) = ﬂ'irQT(t/)L(Shu’ll)L(Shu;) ’ tl =

we get

s—r+1
5 .

We remark that changing s to 1 — s changes t' to —t — (r — 1) where t = *5". We
also remark that

L(s, 1 )L(s, 3 ') = L(s, 1) L(s, 1)
At this point, we find

Qr(=t—(r=1)) L1 = s,py HL(L = 5,415 )
Qr(t) L(57 /’Ll)L(sv /’LQ) .

Now @01 — (1) (s, 9,40c) = (i), A(C/R, ) = —i. Thus

LA —spr L = s 5t
"}/(S,O'Q,'l/)R) =t L(S,Ml)L(SaNQ) '

’Y(Sa gQ, ’IZJR) = 6(8, Qv 1/’@))\(@/]& w]R)

On the other hand,
6(57 M1, 1/}R)€(57 M2, 1/’]1{) =—1.
Thus we find the required relation. O

We need a more complicated lemma of the same type.
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LEMMA 16.3. Let Q and = be two normalized characters of C*. Choose as
before (u1, po) (resp. (v1,v2)) such that ma, is a subrepresentation of m,, ., (resp.
Tonve-)- Then

L(s,0q0 ®og) = P(s) HL(S, Wilj)
,J
where P is a polynomial. Moreover,

Vs, 00 @ oz, ¢r) = [ [ (s, pavy, vm) -
i,J
REMARK 16.4. Again, the lemma is true for any choice of the characters. We
only prove it is true for one choice.

PRrROOF. We may assume
O(z) = Zm(zz)—m/Q , E(z) = Zn(zz)—n/z m>n>0.

The representation o ® o= is the direct sum of the representations induced by the
characters Q= and Q=" respectively. Moreover

m+n m—n
2

NZ(z) = 2™ (22) , QER(2) = 27" (22)” 2
Accordingly, we find

L(s,00 ® o=) = 2%(27)~2~™T (s + m2—|—n) r <s + m2—n)

and
6(87 oq ® oz, ’(/}]R) = )\(C/R7 ,L/JR)Z(_Z’)WL-&-R-FWL—TL = (_1)m+1 :
By the duplication formula,

L(s,0q®0=) = w257 m~1

2 2 2 2

Suppose that m and n are both odd. Then (—1)™*! = 1. The characters Hilj
are the following characters

m+n m—n n—m m+n

L I B 1 Bl L B

The map p +— p~! permutes this set of characters. Now

m—+n m—n n—m m-+n
o (St s+ 75 s+ 5 S 3
”L(s,uiyj)—ﬂ 5F< 5 >F( 5 >F( 5 r 5 .

Thus

L(s,00 ®o=) =7 " P(s) [ [ L(s, pivy)

n—m _ n+m
P(s) = Qmp (+2> Qg <2) -

This proves the first assertion. We use once more the functional equation (16.2) to
conclude that

where

P(1 —5) = (—1)™"'P(s) = P(s).
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Note that here the functional equation of @) mi1 exchanges the two factors of P.
We finish the proof as before. We have
L(1—-s,0q®o0g)

L(S, o ® OE)
P(1—s)[1L(1—s,pvj)
= P(S) HL(&LLil/j) = HV(&/’%VW"#R).

Now we assume that m and n are even. Then (—1)"*! = —1. The characters

1iv; can be taken to be the following ones:

7(87 aQ ® O—vaR) -

+n

8172

m+4n

N e O N IO T

is a permutation of that set. It follows that

Note that p+— p=!

[] LG pavs) = (m) =2
s+ mFn s+ 14 m5n s+ 14 15m 5 — min
xF( 5 )F( 5 r 5 r 5
L(S7UQ ®UE) = ﬂimP(S)HL(S"uiljj),

Pls) = Qs (ﬁ’”) 0 (2’”*) |

Thus the first assertion is proved. For the second assertion, we get again
P(s)=P(1l—s)(-1)"=P(1—s)

Thus

where

and

PO -9 TIL( —s,pvy)  TTLA = s, vy )
'V(S,O'Q ® O'Ewa) - P(S) HL(Syl/JiVj) - HL(S,,LLiVj) :

Now
HG(SaMz‘Vj7¢) =-1.

Thus we get the required relation.

Now suppose m even and n odd. Then we have two choices for the characters
corresponding to €. Call them as before (u1, pu2) and (p}, 15). For E we consider
only the first choice. Thus p;v; are the characters

m+n m—n n—m

[t T ) [T ()

and plv; are the characters

m+n —m—n

7= (), =), o=

1

The map p — p~ ' exchanges the two sets. As before, we have

L(s,00® 0s) = 7™ P(s) [ ] L(s, pivy) = = P'(s) [ L(s, i)

n—m _ ndm
p(s) — Q% <s+1—2i—2> Q% (‘Hl22)

s+ nam s — ngm
o (25705 (55)

where

N

J

P
V)

&
|
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We have P(s) = (—1)™P'(1 —s) = P'(1 — s) and

PO —s) [TL0 —s,pmpy) _ TTLO =505 ;)
P(s)  TIL(s,pavy) TTL(s, )

(s, 00 ® 05, Yr) = —

Now
HG(S,MZ'I/]',’I/J) =-1.
Thus we get again the required relation.
Finally we assume m odd and n even. This time we have two choices for the
characters corresponding to =, v; and V;—. For €2 we only use the first choice. Thus
p;v; are the characters

m

n— —m—n
)

+n m—n m
(L= (), [t = [t = (), [t
and p;v; are the characters

m+n m —m

s U (O R e T OF
Again, the map p +— ! exchanges the two sets. We argue exactly exactly as in
the previous case. This time

n—m _ nt+m
P(s) = QmTfl (SJFIQQ) Q’"TH (522)

, _ S+n—2m S_’_l_m;-n
Pis) = Qf( 2 >Q21< 2

but we have again P(s) = (—1)"P'(1 —s) = —P'(1 — s). O
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