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ON EULER PRODUCTS AND THE CLASSIFICATION OF
AUTOMORPHIC REPRESENTATIONS I*

By H. JACQUET AND J. A. SHALIKA

0. Introduction and Notations.

(0.1) In this paper we prove two theorems concerning automorphic
forms on GL,, both having their origin in the existence of poles of L-func-
tions.

Let F be a global field and A be the ring of adeles of F. To each auto-
morphic cuspidal representation 7 of GL.(A) one can attach as in [G-]] an
L-function L(s, 7). For r = 1, = is an idele-class character and L(s, 7) the
classical L-function of Hecke. For » > 1, L(s, =) is entire and satisfies a
functional equation

L(s, w) = e(s, m)L(1 — s, &),

7 being the contragradient representation. In an earlier paper [J-S], the
authors proved that L(s, w) does not vanish on Re(s) = 1. One of our re-
sults complements this. We prove in Section S that the Euler product for
L(s, ) is absolutely convergent in the half-plane Re(s) > 1. For r = 2
this was first proved by R. Rankin [R.R.]. Our proof is based on his. In
the same series of papers, Rankin also proves the non-vanishing of L(s, )
on Re(s) = 1, by means entirely distinct from ours. With more work his
method should also apply to the general case. As in the recent paper of
Moreno [C.J.M.], one should be able to obtain zero free regions as well.
We also refer the reader to the classical paper of A. Selberg [A.S.].

Our second result concerns the problem of classification of automor-
phic forms on GL,(A). We refer to Langlands’ Corvallis lecture [R.P.L.]
for the exact statement of this problem as well as a discussion of the in-
teresting concept of an isobaric representation. In this paper we consider a
special case. We prove that, if S is any finite set of places and if = and =’
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are automorphic cuspidal representations which are locally equivalent
outside S, then = and 7' are themselves equivalent. For r = 1 this is
another formulation of the approximation theorem. For »r = 2 it is a well-
known result of Miyake [T.M.]. Piatetskii-Shapiro [I.P.] has also given a
proof in the general case. Both authors suppose however that S does not
contain any infinite places. Moreover the assumption needed in our paper
is somewhat weaker than the one just stated.

In a subsequent paper we will use the results of this paper to establish
the full classification theorem.

We give an outline of the proof of our second theorem. Suppose first
that » = 1 and that x and x' are two idele-class characters of absolute
value one which agree locally outside S. Set

AGs) = I L(s, x,'X)» B(s) = II L(s, 1,).
veS ves

The hypothesis implies that
B(s)L(s, x'x) = A(s)L(s, 1).

But L(s, 1) has a pole at s = 1. On the other hand, a local L-factor cannot
be zero. Thus the right side has a pole at s = 1. Next, and this is an essen-
tial point, the factor L(s, 1,) does not have a pole at s = 1. Thus L(s, x"x)
has a pole at s = 1 and that implies x'x = l or x = x'.

Before passing to the case r = 2, note that one may obtain the
analytic properties of L(s, x), by utilizing an integral representation of the
form

L(s, x) = \

JFAX/FX

x@e]s L ®(E)d ", (1
teF

where & is a suitable Schwartz-Bruhat function on F,. Similarly if x, is a
character of absolute value one of F,* one has

L(s, x,) = x, (@) t]s ®@.()d *t, 2
JFWX

where ®, is a suitable Schwartz-Bruhat function on F,. The assertion that
L(s, x,) is holomorphic at s = 1 may be proved by showing that the in-
tegral on the right is convergent for Re(s) = 1.
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Suppose now r = 2. The exact analogue of the integral (1) is the in-
tegral

¢'dlg)|detgl L = 2Eg)de, 3

JeEn G {
where G = GL,, ¢ and ¢’ are cusp forms belonging to = and 7' respec-
tively, and ® is a Schwartz-Bruhat function on F,". The analytic proper-
ties of this integral are evident. We express this integral in terms of local
integrals which are the analogues of (2); the essential difficulty is to prove
that these integrals converge for Re(s) = 1 (Proposition (1.5) and Proposi-
tion (3.17)). For this one needs certain properties of the unitary represen-
tations 7, (Proposition (1.3) and (3.7)). With this the proof that 7 ~ 7' is
entirely analogous to the case » = 1 (Section 4).

In Section S, we give an application to the absolute convergence in
Re(s) > 1 of certain Euler products L(s, 7 X 7') attached to pairs of
unitary forms respectively on GL, and GL,,. Forp = 1 and =’ trivial they
reduce to the functions L(s, ) considered earlier. These functions enter
implicitly in the proof of Theorem (4.7). In fact, for » = p they are essen-
tially given by (3) (see also (2.1.2) below). For r = 2 they are the classical
Rankin-Selberg convolutions.

We note finally that recently, by methods entirely similar to [J-S], but
using the full theory of Eisenstein series for GL,, F. Shahidi [F.S.] has
shown that L(s, # X w') is non-zero for Re(s) = 1. This together with our
results will be used in proving the classification theorem for forms on GL,.

(0.2) Upon first reading one should concentrate on Section 1, Sec-
tions (2.1), (2.2), the statement of Proposition (2.3), then (3.1), the state-
ment of Proposition (3.5), (3.13), and finally Section 4 and Section 5.

(0.3) We now give a list of our most frequently used notations.

The ground field F is either a local field or an A field. The group
G, = GL, = GL(r) is regarded as an F-group. We denote by Z, the center
of G,; often we identify Z, with the group GL,. The group of matrices of

the form
m u
p = ) m € Gr—ly (1)
01

will be denoted P,. The unipotent radical of P,, the subgroup of p € P,
with m = 1, is noted U, while the transpose of U, is often noted U,.
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A parabolic subgroup R of G, will always be an F-parabolic
subgroup. The unipotent radical of R will be denoted by Ug. For the most
part we will only consider standard parabolic subgroups, i.e. groups of
matrices of the form

m, %
mp
&= (2)
0 m,
where m; € G, and (ry, 5, ..., r,) is a ¢-tuple of integers such that

rntrnt - F+r,=r

The ¢-tuple is the type of the parabolic subgroup. The transpose of a stan-
dard parabolic subgroup is termed a lower standard parabolic subgroup.
The standard parabolic of type (1, 1, ..., 1) (the standard Borel sub-
group) is denoted B, and its unipotent radical N,. We denote by A, the
group of diagonal matrices; the set of simple roots A is the set of simple
roots of A, with respect to B,, i.e. the homomorphisms «; € Hom(A4,,
GL(1)) defined by

oi(a) = a;/a;4, if a = diag(a,, a3, ..., a,), l<i=sr—1.

The index r is often dropped when this does not create confusion.

When F is local we use standard notation: |x| also denoted by ag(x)
or even ofx) is the module. If F is non-archimedean, Ry = R will denote
the ring of integers of F, @ will be a generator of the unique maximal ideal
of % and we will set ¢ = |®|~'. For any F we will denote by S(F") the
space of Schwartz-Bruhat functions on F”. We often view F" as a space of
row vectors. If ¢ is a non-trivial additive character of F, the Fourier
transform of a function ® € S(F”) is the function ® € S(F”) defined by

dx)=| ®(y)¥(y'x)dy. ©))
JEr

Of course dy is the self-dual Haar measure on F”.
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Similarly when F is an A-field we denote by |x|, ag(x) or a(x) the
module of F. If v is a place of F we denote by F, the corresponding local
field. We fix, once and for all, a non-trivial character ¢ of F,/F. Then we
write ¥ = II,¢,. Again we denote by 8(F,") the space of Schwartz-Bruhat
functions on F," and by & the Fourier transform of a function & in $(F A7)

We will make extensive use of standard terminology in representation
theory. We will deal mainly with unitary representations although ad-
missible representations will occasionally make an appearance. If G is a
locally compact group and H a closed subgroup, a representation ¢ of H
on a vector space V induces a representation = of G; it will be denoted by

Ind(G, H; o). 4)

The exact definition depends on the context, but in any case the vectors ¢
in the space of 7 are functions (or classes of functions) on G with values in
V which satisfy

d(hg) = by' 2(h)oG ™" 2(h)o(h)d(g); h € H, g € G. ()
Here 65(resp. ) is the module of G(resp. H). More precisely if d,(g) and
di(g) are respectively right and left Haar measures on G, then d,(xg) =

bg(x)d,(g) and dy(gx ') = 65(x)d(g). Of course 7 acts by right transla-
tions:

m(x)o(g) = o(gx); g, x € G.
For instance, if G = G,.(F) (F being local), if R is the standard parabolic

subgroup of type (r;, 75, ..., r,) and foreach i, 1 < i < ¢, =, is a represen-
tation of G,,(F), we can define a representation o of R(F) by

a(g) = ® mi(m;) (6)

for g € R(F) of the form (2). The representation of G,.(F) induced by o will
be denoted by

Ind(G,(F), Rr(F); Ty Wy ooy 7l',). (7)

If 7 is a representation of G.(F) on a complex vector space V we will
denote by m @ o the representation on the same space defined by
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(r @ a)(g) = |detg|sn(g). (8

We will denote by V the complex vector space conjugate to V and by 7 the
natural representation of G,(F) on V.

If = is admissible we denote by % the representation contragredient to
w. In case 7 is irreducible there is a character w (perhaps not of absolute
value one) of F* such that

w(a) = w(a)l, fora € Z(F) = F*. 9)

We call w the central character of .
If F is local (resp. global) we define a character 8, (or simply 6) of
N.(F) (resp. N,(F,)) by

600) =9( L niivr)- (10)

<I=<r
Finally when F is local we often write G, for G(F), P, for P.(F), etc.
We let K be the standard maximal compact subgroup of G,.(F): K =
07 R)iIf F=R,K = U(r)if F= C, K = GL(r, Rp) if F is non-archime-
dean. When F is an A-field we let K be the compact subgroup of G,(F,)
defined by
K =1IK,

where K, is the above subgroup of G,(F,).

1. Generic representations: non-archimedean case. In this section
F is a non-archimedean local field. We first review the notion of a “‘generic
representation” (Prop. (1.3)) adding appropriate remarks in the case of
unitary representations. We then discuss an analogue for r = 2 of the in-
tegral (2) appearing in the introduction (0.1).

(1.1) Let = be an irreducible admissible representation of G on a
complex vector space V. We say that = is generic if there exists a linear
form N # 0 on V such that

ANw(n)v) = 0(n)v, forn € N,veV, 1)

(c.f. (0.10)).
Up to multiplication by a scalar factor this form is unique ([J.S.],
[G-K]). We let “W(r; ¥) be the space of all functions W of the form
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W(g) = Nm(g)v) (2

where v is in V. The space W(m; ) is invariant under right translations
and the representation of G on that space is equivalent to . Clearly for
any W in W(x; y) we have

W(ng) = 0(n)W(g),neN,g€G. 3)

The map W ~ W|P is a bijection of W(m; ) on a space X =
X (m; ¢) of functions ¢ on P,. Thus we may identify V with . Then

m(po)o(p) = ¢(ppo), d € X, po€ P. 4)

Let X, be the space of functions ¢ on P which transform on the left
like # under N, are right invariant under some open compact subgroup of
P, and have compact support mod N. Let 7y be the representation of P on
X, by right translations. Then for all generic representations 7, X is con-
tained in X (m; ¥). In particular = |P contains, as a subrepresentation, the
representation 7 (c.f. also [F.R.]).

(1.2) Let 7 now be an irreducible unitary representation of G on a
Hilbert space 3C. Let 3C* be the subspace of smooth vectors, that is, the
space of vectors fixed by some open subgroup of G. Let 7 be the
representation of G on JC*.

Finally let 7 be the unitary representation of P induced—in Mackey’s
sense—by 6. Let £ be the Hilbert space of 7 and £ the space of smooth
vectors in £. Clearly £ D X,.

(1.3) ProrosITION. Notations being as above, the following condi-
tions are equivalent:

(i) the restriction of w to P contains 7;
(ii) the representation ©* is generic.

Assume these conditions satisfied and identify W (w; ) with 3C°. Then
there is a constant ¢ > 0 such that

S |W|%(pg)d,(p) < c||W]|? (1)
N\P

for W e W(r; ) and g € G.
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Proof. Let A be a non-zero operator in Homp(x| P, 7). Then A(3C*®)
is contained in £=. Thus for v € JC®, Av is a smooth function on P
transforming on the left like § under N. We set

Av) = A(v)(e), v € 3C=.
We then have

N(w(n)v) = A(w(n)v)(e)
= (r(n)A(v))e) = A(v)(n) = 6(n)Av(e)
= 6(n)\(v).

Since A # 0 and 3C* is dense in JC there is a v € JC*® such that A(v) # 0.
Choose p € P with A(v)}(p) # 0. Then A\(n(p)v) = A(v)(p) # 0. Hence
N # 0 and 7* is generic. Thus (i) implies (ii).

Now assume 7> is generic. Let (- , -) denote the Hermitian scalar
product on JC. We may identify 3JC* with the space X defined in (1.1).
Then the restriction of the scalar product to X is a positive Hermitian
form, invariant under the representation 7. It follows from [B-Z], Propo-
sition 3.7, that there is a positive constant ¢ such that

(61, 9,) =c j ¢1(p)d2(p)d,(p)

N\P

for ¢; € X,. Thus the injection Xy — X is continuous for the norm in-
duced on X by £ and the norm induced on X by 3C. Thus A extends to a
bounded operator A: £ — 3C commuting with P. Thus (ii) implies (i).

Finally assume the equivalent conditions of Proposition (1.3) are
satisfied. Again let A # 0 be in Homp(w|P, 7). If W € W(r; ), let v be
the corresponding vector in JC*:

W(g) = A(x(g)v)(e).

Fix g € G and let ¢ be A(w(g)v). We have

j 1612(p)d,(p) = ||6]]2 = || Ax(gh]|?
N\P

= 14112l =(gw]1? = ||A]1?[Iv]|>
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Now W(pg) = ¢(p). Thus
§ \WI2Ape)d,(p) < 1141121012 0
N\P

(1.4) Remark. In a future paper, we will show that under the
assumptions of (1.3), «| P is actually equivalent to 7.

(1.5) Suppose now that = and w' are irreducible unitary generic
representations of G,. For ® € $(F"), W € W(x; ¥), and W' € W(x'; ),
we set

Vs, W ,W, &) = S W' (g)W(g)d(eg)|det g|sdg §))
N\G

where ¢ is the following row vector:
e=1(0,0,...,1). 2)

ProposiTiON. (i) The integral (1) converges absolutely in the half
space Re(s) = 1, normally for Re(s) in a compact subset of [1, oo[.

(i) Given W' # 0 and s with Re(s) = 1, there exist W and ® such
that

Vs, W, W, o) #0. 3)

Proof. The integral can be written explicitly as

S dk X d,p|det p|s~ W' (pk)W(pk) b (eak)|a|"w' w(a)d *a,
K N\P FX

where w'(resp. w) is the central character of 7 (resp. 7'). There is a & =
0 in S(F") such that

| ®(xk)| = $olx)

for all x € F” and k € K. Then for s real,

S | ®(eak)||al®|w'w(a)|d>a S.S ®by(ea)|al™d*a.
FX FX
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This is certainly uniformly bounded for s in a compact subset of [1, oof.
Thus it suffices to show that the integral

S dk S d,(p)|detp|s~'|W'(pk)||W(pk)|
K N\P

converges uniformly for s in a compact subset of [1, oo[. From (1.3.1) and
the Schwartz inequality we already know that

j dkS d,(p)| W' (pk) || W(pk)| < +oo. @
K N\P

Let ¢,(resp. ¢,) be the characteristic function of the set of g € G,
such that |det g| =< 1 (resp. |det g| > 1). It will be enough to show that
the integrals

1,:5 dkg | W W(pk) | $ip)|det pl*~1d,(p), i =1,2,
K N\P

converge uniformly for s in a compact subset of [1, oo[. In the first case we
may take s = 1 and our assertion follows from (4). In the second case we
may take s large and replace ¢, by the constant function one.

Recall that W and W' are majorized by a “gauge” ([J-P-S] (2.3)): a
gauge £ is a function on G, invariant on the left under NZ, on the right
under K and given on the diagonal matrices by the formula

£(a) = olay(a), axa), ..., a,—1(@)|aj@aya) -+ a,—1(a)] "

where # = 0 and ¢ = Oisin S(F7~1). All we have to do then is show that if
£ and £’ are gauges then

j ££'(p)|detpls~d(p) < +oo for s large.
N\P

This is a straight-forward matter left to the reader.

Proof of (ii). Suppose W' # 0 and s with Re(s) = 1 are given. Then
W'(go) # 0 for some gy € G. On the other hand
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S W' (ggo)W(g)®(eg)|det g|*dg
N\G

= |det go| —* S W' (g)W(ggo™")®(eggo™ ") | det g|*dg.
N\G

Thus at the cost of replacing W' by a right translate we may assume
W'(e) # 0. Since W' is smooth there is a ¢ in the space ¥ such that

S W'(p)o(p)|det p|*~'d,(p) # 0.
N\P

Choosing W in “W(1r; ) such that W|P = ¢(c.f. (1.1)) we get the relation
g W'(p)W(p)|det p|*~'d,(p) # 0.
JN\P

For k € K set

Flk) = j W (pk) W(pk) | det p "~ d,( ).
N\P

Then F(e) # 0 and
F(pk) = F(k) forpe PN K,
F(ak) = w'w(a)F(k) foraeZ N K.

It follows that there is a function ® on F” such that &(x) = F(k) if x = ek
with k € K, ®(x) = 0 otherwise. Moreover it is clear from the identity
G, = PZK that if x € F" is non-zero, then xK is open for any open com-
pact subgroup K, of K. It follows readily that & € S(F"). Now, for ap-
propriate normalizations of the measures,

j b (eak)|a|"w'w(@)d*a = S ‘P(eak)w'&(a)d;a = F(k).
FX

m)(
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Thus

Vs, W', W, &) = | F(k)F(k)dk.
JK

Since this is clearly non-zero, the proof of Proposition (1.5) is now com-
plete.

(1.6) Remark. One can show that the integrals (1.5.1) possess a
“g.c.d” in the following sense. Given = and =', an arbitrary pair of
generic irreducible representations of G,, there is a polynomial P(x) such
that P(0) = 1 with the property that for each triple W, W', & as above,
there is a polynomial Q(X, Y) such that ¥(s, W', W, &) =
P(g~*)~'Q(g*, g —*); moreover the vector space C[X; Y] is spanned by the
Q’s. We write L(s, 7 X ©') = P(q~*)~!. The L-factor L(s, # X 7') may
be computed explicitly in terms of Langlands’ classification. The proposi-
tion implies that if = and =’ are also unitary, then L(s, # X 7') # 0, for
Re(s) = 1.

2. Euler factors in the unramified case. We compute our basic in-
tegral (1.5.1) when W', W and ® are “unramified.”

(2.1) Suppose = is an irreducible, admissible representation of G.
We will say that = is unramified if it contains the unit representation of K;
then the multiplicity of this representation is one. Unramified representa-
tions are parametrized by semi-simple conjugacy classes in GL(r, C). In
more detail if 7 is unramified, then, as is well known, = is the unique
unramified component of an induced representation of the form

Ind(G,, B,; p1, 2y -5 1)
where the p,’s are unramified quasi-characters. The r-tuple (1, us, ..., u,)
is uniquely determined up to permutation. The class A attached to = is by
definition
A = diag(pu(@), pr(@), ..., u(@)).

We set

L(s, ) = det(1 — g—5A) ™\ (1)
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If 7' is another unramified representation corresponding to A’ we set
Lis,m X w')=det(l —g A ®A")" . 2)

(The definition is consistent with the one given in (1.6), as we will prove in
a subsequent paper.)

It will be useful to remark that if 7 corresponds to A then the imagi-
nary conjugate T corresponds to A. Moreover if w is the central character
of m, then w(®) = det A.

(2.2) Now suppose 7 is generic. Suppose also that the largest ideal of
F on which y is trivial is ). Then the space “W(; y) contains a unique ele-
ment W invariant under K. Moreover W(e) # 0 and we may normalize W
by requiring that

W(e)=1. (1)

This element will be called the essential element in “W(m; ¢). There is also
an explicit formula for W ([C-S], [T.S.]).

Indeed for each r-tuple J of integers set @/ = diag(@'1, @72, ..., @/r),
it J = (J, J2, ---» J,). Then every g € G, can be written in the form g =
n&7k where J is uniquely determined, n € N and k € K. Thus W is com-
pletely determined by its values on the matrices &/. Moreover if 7(r) is the
set of r-tuples J = (j,, ja, - .., J,) With j; = j, = -+ = j,., then W(&’)
= 0 unless J € T(r). This being so, for J € T(r), let p, be the rational
representation of GL(r, C) whose dominant weight is the character A,
defined by

Aja) = alay? - - adr if a = diag(a,, ay, ..., a,).

Let 6 be the module of the group A,(F)N,.(F). The formula we have in
mind is

W(a7) = 6V2(&7)Tr(py(A)) ifJ € T(r). 2)

(2.3) ProposiTiON. Let 7 and 7' be admissible irreducible
representations of G,. Suppose they are generic and unramified. Let W
and W' be the essential elements of “W(m; ¢) and W(r'; ) respectively.
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Suppose ® is the characteristic function of R. Then, as meromorphic
functions in Re(s) > 1,

Vi, W', W, @) =L, 7 X7,

the measures being normalized by the conditions volN N K) = 1,
vol(K) = 1.

Proof. For the proof we may suppose Re(s) large. Because of the
Iwasawa decomposition the integral, which converges for Re(s) large, can
be written as an integral on A,/A, N K, or equivalently as a sum over all
r-tuples J = (jy, jo, -+, J,):

)J: W' W(&')6~Ha)®(0, 0, ..., &/)|det @|s. (1)
As we have noted W'(®’) = 0 unless J € T(r). Moreover (0, 0, ..., &,/)

= 1if j, = 0 and zero otherwise. Call T (r) the set of r-tuples J € T(r)
whose last entry j, is =0. Then (1) can also be written as

. WW@e)s (a)|deta’|s. )
JET +(r)

Set now tr(J) = j; + --- + j,and X = g 5. Then |det &’|* = X*) and
(2) is also

L TrpA’') Trp A) X,
JeT +(r)

After replacing A by A we can see that what we have to prove is the iden-
tity

, T):( (Tro(A') Trp(A) X = det(1 — A ® A'X) . 3)
€T +(r

Let us denote by $"7A the m'™® symmetric power of the matrix A. Then the
right side is

L Trs"4A ® A" )X™.

m=0
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Thus we are reduced to proving the identity

L Tr(p/(A") ® pf(A)) = TrS"(A @ A"). 4)
JET +().Te)=m

(2.4) We will prove a somewhat more general statement which will be
used elsewhere to compute similar integrals—but now associated to a pro-
duct GL, X GL, with r not necessarily equal to p. For that we introduce
more notation.

Let T, denote the set of all infinite vectors

J=(sJas o oes 0,0, ..0) 4

with only a finite number of non-zero entries and satisfying j, = j, =

- = j, = 0. We will identify the element (j,, j,, ..., j,) of T4(r) with
the corresponding element (4) of T4. Then if p < r, as subsets of T,
T.(p) C T,(r). If Je€ T,(r) we write p(r, J) for the representation of
GL,(C) with highest weight A;. Let p, denote the standard representation
of GL,(C).

PROPOSITION. Suppose p < r. For each m = 0, the representation
§"(p, ® p,) of the group G,(C) X G,(C) is the direct sum with multiplic-
ity one of the representations p(p, J) @ p(r, J) whereJ € T (p) and tr(J)
= m.

When p = r, this assertion is equivalent to (2.3.4).

Proof. We first recall some classical results ([H.W.]).

Let ©,, denote the symmetric group on m letters. By the classical
theory of ‘““Young symmetrizers” there is a one-one correspondence J — a;
between the elements J of Ty of trace m and the irreducible representa-
tions of ©,,,.

Let V., be the standard complex vector space of dimension r. &,
operates in a natural way on ®"V,. We denote the corresponding
representation by g,”:

o"ETNV @ ® @ vy = Vi) @ vy ® <o ® V(-

A given representation g of &,, occurs with positive multiplicity u, ; if and
only if J € T, (r). Let V,(m, J) be the corresponding isotypic component.
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Then:
®"V, = (}9 V.(m,J),

the sum being over all J € T, (r) such that tr(J/) = m. Next the representa-
tions p,®" of GL(r, C) and 0, of &,, on @™ V, commute. Moreover the
operators 0,”(§), £ € ©,,, generate the commuting algebra of p,®”. Thus
V,(m, J) is also a multiple m; of an irreducible representation of GL(r, C).
That representation is precisely the representation p(r, J) of highest weight
A;. Note that m; = deg o; and therefore u,; = deg o(r, J).

We now proceed to the proof of Proposition (2.4). Let

W="V,®V,)=(®"V,) ®(®"V,). (1)

Let p’ be the representation (p,)®" ® (p,)®" of GL(p, C) X GL(r, C) on
W. Its decomposition into isotypic components is:

W=@® V,mJ) & V.(m,K), (2

the sum extended over allJ € T, (p) of trace m and all K € T (r) of trace
m.

Now &,, acts on W via the representation o, ,”. The space W, of in-
variants of this action is just $”'(V,, ® V,) and affords the representation
§™(p, ® p,) of GL,(C) X GL,(C). On the other hand, via (1), the
representation of &,, on (®”V,) ® (®"V,) is 0,” ® 0,”. Since that
representation leaves each term on the right side of (2) invariant, we have

Woy=@® Wy N V,im,J) ® V.(im, K)

the sum over J, K as before. Now W, N V,(m,J) ® V,(m, K) # 0 im-
plies that the representation g; & ok contains the unit representation of
©,,. Since, as is well known, the irreducible representations of &,, are all
self-contragradient, this implies that J = K (in T). Moreover 0; ® oy
then contains the trivial representation of &, exactly once. Thus

Dim(W, N V,(m,J) ® V.(m,J)) = p,u ., = deg p(p, J) deg p(r, J).

Since the representation of GL,(C) X GL,(C) is isotypic of type p(p,J) ®
o(r, J) it must be p(p, J) ® p(r, J). Thus we have established that the
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representation of GL,(C) X GL,(C) on W, is the direct sum, the sum be-
ing over all J satisfyingJ € T+ (p), Tr(J) = m,

@ o(p,J) ® po(r,J),

JeT(p), Tr(J) = m

as required.
(2.5) We have the following corollary to Propositions (1.5) and (2.3).

Corollary. Let w be an admissible irreducible representation of G,.
Suppose ™ is unitary, generic and unramified. Let A be the class of .
Then the eigenvalues of A are in absolute value <q'/2.

Proof. We apply Proposition (2.3) with 7 = «', W = W' and &
the characteristic function of ®. Then

det(l1 — g—5A ® A)¥(s, W, W, &) = 1,

at first for Re(s) > 1. But then, by Proposition (1.5), ¥(s, W, W, &) has a
continuous extension to the half-plane Re(s) = 1. Thus det(l1 — ¢ 4 ®
A) cannot vanish in this closed half-plane. In particular, if X is an eigen-
value of A, we must have

1—gq 9 N2#0

for all 0 = 1. Our assertion follows at once.
The proof should be compared with a similar argument of Rankin
[R.R.].

(2.6) Remarks. (1) The proof of Proposition (3.14) below together
with (3.15) can be used to show that the representations

Ind(G,, B,; o, a5, 1, ..., 1)

of G, are irreducible, unitary, and generic provided 0 < s < 1/2. Thus
the conclusion of Corollary (2.5) is the best possible.

(2) We note that, if = is the trivial representation of G,, then the
maximum eigenvalue of A is g~ 12,

(3) We remark finally that the corollary applies to local components
of cusp forms.
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3. Generic representations: archimedean case. In this section F =
R or C. We extend the results of Section 1 to include the archimedean
case. After the analogue of (1.3) is established, this will be an easy matter.
However, in order to establish this analogue we will need considerable
preliminaries.

(3.1) Let G be a (real) Lie group. Denote by ¥(G), W(G), 3(G), the Lie
algebra of G, the enveloping algebra of G) ® C, and the center of U(G)
respectively. On U(G) we have a natural filtration. We let U"(G) be the n-th
term of this filtration.

Let 7 be a unitary representation of G on a Hilbert space JC. We will
denote by JC;* or, when this does not create confusion, by JC* the space
of smooth vectors in JC. Thus v is in JC* if and only if the map g — w(g)v
from G to 3C is C*. As is well known this is equivalent to saying that, for
all w € JC, the coefficients (w(g)v, w) are smooth functions on G.
Moreover JC* is dense in JC.

As is customary, if X € ¥(G), v € 3C=, we set

7(X)v = (d/dt)m(exp tX)v|,=o,

the limit taken in the topology of 3C. Then w(X)v is again in JC®. The
semi-norms

v~ ||x(D)v]|, D € U(G),

|| || being the given norm on 3C, define on 3C* the topology of a complete
locally convex space. The space JC* is invariant under G and the
representation 7 of G on 3C* is smooth.

Let JC' be the dual of JC and 7' the representation contragradient to
w. We may define similarly the dual 3C; ™= of JC;® and the representa-
tion m~ contragradient to 7=. Since JC;* is dense in JC, we may and will
regard JC' as a subspace of JC;~=. Then for v € JC', we have 7'(g)v =
7~ >(g)v. Every vector v in JC;~ * is a finite sum of the form

v = Ex (X)), X; € W(G), v, € 3C".

(3.2) 3¢ —» 3= is a functor: if 7, and 7, are unitary representations
on the Hilbert spaces 3C; and JC, respectively and A belongs to Hom g(my,
m,) then A(JC;*) C JC,* and A defines a continuous operator from J3C;*
to 3C,*. In particular:
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LEMMA. Suppose that 7 is a unitary representation of G on 3C. Sup-
pose IC is the direct sum of two orthogonal closed invariant subspaces 3C,
and 3Cy. Then 3C;* = 3= N IC; and IC™ is the topological direct sum of
3C,* and 3C,*. U

(3.3) We will repeatedly use the following lemma ([P] Theorem
(1.3)):

LEMMA. Suppose V is a G-invariant subspace of JC dense for the
norm topology. Then if V is contained in IC;™ it is dense in 5.

(3.4) Let R be a closed subgroup of G. Then we may consider the
restriction of = to R and the corresponding subspace JCp* of JC. Clearly
JCs™ C JCr=. Since JC;* is dense in JC, it follows from Lemma (3.3) (ap-
plied to R) that 3C;* is dense in JCx®. Thus we may regard JC,~ > as a
subspace of JC;™*.

Now suppose there is a subgroup V of G such that

KG) = ¥UR) @ V).
Call 3C " the space of vectors v € JC;~* of the form
v = Za(D)wp; D e U"(V), wp € JCr™>.

Then:

LEMMA. With the above notations, each 3C~" is an U(R) sub-
module of 3~*, 3" C I~ "D, and

U Jern = Jcc—oo. O

n=0

(3.5) In the following paragraphs we will apply the above to the study
of the representations of P, which contain the unitary representation

7, = Ind(P,, N,, 6,) (1

induced by the character 0,.
We recall first an elementary lemma from direct integral theory. Let
G be a separable locally compact group and V a closed normal subgroup:
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LEMMA. Let w be a unitary representation of G. Suppose w|V does
not contain the trivial representation of V. Then w is a direct integral of ir-
reducible representations

™ = E.\'d”' (x)
O X

where, for almost all x € X, £.|V is not the trivial representation.

(3.6) We describe what Mackey’s semi-direct product theory tells us
about the representations of P,. Let n, be the restriction of 8, to U,. Since
U, is normal in P,, the group P, operates on U, as well as its dual group
U,. There are two orbits for P, acting on U,. One is the orbit of the trivial
character and the other is the orbit of 5,. The fixer of 7, is the semi-direct
product of U, and the subgroup P,_; C G,_, identified with a subgroup

of P, via the map
p 0
p- .
0 1

Let £ be an irreducible unitary representation of P,. It now follows
from Mackey’s theory ([G.W.M.], Theorems 14.1 and 14.2) that, either £
has a U, fixed vector in which case £ is really a representation of P,/U, =
G,_, or else £ has the form

£ = Ind(P,, P,_,U,; 0 ® 1,)

where ¢ is an irreducible unitary representation of P,_;. We may now ap-
ply Lemma (3.5) to G = P,, V = U,, noting that inducing commutes with
direct integrals, to obtain the following lemma:

LEMMA. Suppose w is a unitary representation of P, on a Hilbert
space 3C. Suppose 3C does not contain a non-zero vector fixed by «|U,.
Then

w = Ind(P,, P, U,; 0 ® 1,)

for some unitary representation p of P,_,. O
Note that Mackey’s theory implies that 7, is irreducible.
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(3.7) Proposition. Let m be a unitary representation of P, on a
Hilbert space 3C. The following conditions are equivalent:

(i) the representation  contains 1,;

(ii) there isa N # 0in ICp~ = such that

Aw(n)v) = 0()NV) (1

for all vin ICp*® and all n € N,..

Proof. We prove first that (ii) implies (i).

Suppose first that 7 = 7,.. Then every f € JCp*™ is actually a
C*-function on P transforming on the left like § under N. Moreover there
are D; € U(P) such that for every f € 3Cp™

|fle)| = Z’: (DS

Thus

AS) = fle)

defines a continuous linear form on JCp® which clearly satisfies (1). Of
course A # 0 and so (ii) is true.

More generally suppose 7 is a unitary representation of P, on JC.
Suppose JC, is an invariant subspace affording the representation 7,. Let
A: 3¢ — 3C, be the orthogonal projection. Then by functoriality

A=) = 3C.>.
Thus
Ay) = A(v)(e), v € 3>,
defines a non-zero linear form satisfying (1).
Suppose now = is given and N # 0 belongs to JCp~ = and satisfies (1).

Let 3CY be the space of U(= U,) fixed vectors for 7, and let 3C;, be the or-
thogonal complement of JCV in 3C. Thus

3 = 3V @ 3y,
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and by Lemma (3.2)
3= = (V) @ (3y)™.

Clearly \ vanishes on (3CV)*. Thus we may as well replace JC by 3C,,. By
Lemma (3.6) this amounts to saying that 7 has the form

x = Ind(P,, P,_\U,; 0 @ 1,) 2)
for some unitary representation o of P._,. If r = 2, then P,_; = {1},

U, = N,, 9, = 0, and 7 is actually a multiple of 7,.. Suppose then r > 2
and the theorem true for r — 1. Let X be the space of o. The inclusion of

G,_, in G, given by
g 0
g —
0 1

induces an isomorphism P,_\G,_; = P,_U,\P,. It follows that r|G,_,
is the representation

Ind(G,._l s Pr*l 5 U).
Its space JC is the space of all J-valued functions F on G,_ satisfying
F(pg) = &, (p)o(p)F(g)

and such that

[1F()||?dg < oo.
JPr—\ G-y

Moreover, foru € U,,
(r(u)F)g) = n,(gug ~")F(g).

Next forf € C.*(G,_; X*),g € G,|, set

Fi(g) = 8, 2(p)a(p)~f (pg)d,(p).
JPr—y
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Then the space of functions F is a dense subspace of JC* (Lemma (3.3)).
Moreover f — F; is continuous. Thus X is completely determined by the
J=-distribution T defined by

() = f(@dT(g) = NF)).
JGo

Let us denote by ¥, the function on G,_; defined by x,(g) = n,(gug ™),
u € U,. We have by (1)

Nx, F) = n,)NF), FeI=.

Moreover F,, , = x,F;. Hence T(x,f) = T(f), f € C.2(G,—; X*). It
follows that T has support in the fixer P,_ of the character 7,.
A formal manipulation shows that

dT(pmn=") = o(p =8y (p)O()dT(p), 3)

form € G,—;,p € P,_,, n € N._,. We now apply the results of (5.2.3) of
[G.W.] to our present case. Following their notation we set M = G,_,
G = P,_; X N,_, with G acting on M via

gom=pmn~', g=(p,n).
We let Q be the closed orbit P,_;. The isotropy group H at 1 € Q is the

diagonal in N,_; X N,_,. In particular the module of H is 1. Let U be the
differentiable representation of G on X * defined by

Ulp,n) = 6p(p)o(p)8(n), pe€P,_,, neN, .

By (3), T is quasi-invariant relative to U. Thus (loc. cit.) we obtain a

finite-dimensional vector space V, a continuous bilinear form z # 0 on

K> X V and an algebraic representation p of N._; on V such that
z(U(n. n)a, p(n)b) = z(a, b),

a€X>,beV,neN,_,,
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or explicitly
z(o(n)a, u()b) = 6(n)z(a, b).

There is a vector by # 0 in V fixed by u. At the cost of replacing V by a
quotient we may assume that the linear form

a — z(a, by)

on X* is non-zero. Clearly it satisfies (1). Thus, by the induction
hypothesis, ¢ contains 7,_;.
Since 7 has the form (2), we see that 7 contains

Ind(P,., Pr—lUr; Tr—1 ® nr) =7,
This concludes the proof of Proposition (3.7). O

(3.8) We now prove the analogue of Proposition (1.3) for archime-
dean fields.

ProrosITION. Let m be a unitary representation of G, on a Hilbert
space JC. The following conditions are equivalent:

(i) the restriction of = to P, contains 1,;

(ii) there is a linear form N # 0 on IC5* such that

ANr(n)v) = 6(n)v

forallv € 3G® and n € N.

Proof. Suppose (i) is satisfied. By Proposition (3.7) there is a linear
form N\ # 0 on JCp*™ satisfying (3.7.1). Since JC;* is dense in JCp*™ with
continuous injection, the restriction of A to JCz* has the required prop-
erties.

Now suppose that (ii) is satisfied. Then A is an element of 3C; ™= and
for any X € U(N)

72 (X)\N = 6(X)\ (1)

where 6 denotes the homomorphism U(N) — C induced by the character 6.
If we could show that this implies that A is actually in 3Cp~* then (i)
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would follow from Proposition (3.7). To see what this entails let us use the
notation of (3.4) with G = G,, R = P,Z,, V= U, = 'U,. Then since Z
operates by scalars on JC;> the operators 7=(X) for X € U(Z) are also
scalar. Thus

Hr™® = p,z,~ > = 3p, "=

as (topological) vector spaces.

Now N\ € 3C~" for some n by Lemma (3.4). Thus it would suffice to
show that N is in 3¢~ implies \ is in 3JC"*!. Call & the subalgebra of
U(G,) generated by U(P,) and 3(G,). Then each 3C " is an &-module and
our assertion would follow from the following statement:

(2) Let V be a W(G)-module and \ an element of V such that

XN =6XX)\ for X € N).

Suppose there is a subspace W of V stable under & such that \ is in
QU)W + W. Then \is in “W.

It is easy enough to establish this assertion for » = 2. Indeed suppose
F =R and let E* and E~ be the following elements of ¥(G):

0 1 00
Et = , E- = .
0 1 0
By considering the Casimir element of 3(G) we see that
EYE~ = E"E* = 0(mod ).
Suppose

A = E~ p(mod W)

where p is in “W. Then, applying E* to both sides of this congruence, we
get

6(ET)N = ETE~p = 0 (mod W).

Since 6(E*) # 0 we indeed have A € . The proof forr = 2, F = C is
similar.
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Unfortunately we have not been able to prove (2) for all r. What we
will do instead is prove (2) for r = 4, F = R. At this point we will have
proved that (ii) implies (i) in the following cases:

r=2,F=RorCandr =4, F=R.

We will then prove that (ii) implies (i) in full generality by using a certain
reduction technique (c.f. (3.12)).

(3.9) Proof of Proposition (3.8) when r = 4, F = R.
Let E;; denote the 4 X 4 matrix with one in the ith row and jth col-
umn and zero elsewhere. Let also
H, = diag(1, 0, 0, 0), H, = diag(0, 1, 0, 0),
H; = diag(0, 0, 1, 0), H, = diag(0, 0, 0, 1).
The E;, 1 < i, j < 4, H;, 1 <i < 4, form a basis for (G). In what
follows we will normalize 6 by requiring 6(E, ;) = 1 for 1 =i < 3.
Our assumption is that

N = Eqyu; + Egppy + Egzpz (mod W) (1)

with u; € W. Apply E34 € U(P) to this congruence to get

EyN = N = ExEqyp + ExEppy + ExEgps.

But mod § we have

[E3q Ey] = E3 =0, [Eyy, EQ) = E5x =0,
[Ey, Eg] = 0, [E4, E4y] = 0,
and
EuEgy + ExEy + EyEy =0, (2

the last relation from consideration of the Casimir operator. Thus

N=Egv) + Egpry
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where
vi = Eypy — Eqgps, vy = Eapy — Epps.
Thus changing notations, we may assume, instead of (1),

N = Eqp + Egpy (mod W) (3)

with py, u, in W,

To proceed we need to consider elements of 3(G) other than the
Casimir operator. Now 3(G) is the image under the symmetrization map
of the invariant elements of the symmetric algebra S((G)) of ¥G) in
U(G). We may use the invariant bilinear form

(X, Y) » tr(XY)

on ¥G) to identify S(R(G)) with the polynomial algebra on ¥(G), the coor-
dinate function g; corresponding to the monomial E;;. Let w, denote the
invariant polynomial function on (G) defined by

w,(g) = tr(A"(g)).

The image in S(®(G)) is obtained by formally replacing g by the matrix of
E;’s. We denote by , the corresponding element of 3(G). Thus for exam-
ple if r = 3 we have to compute the sum of the four principal 3 X 3 minors
of

H, E; Ej; Eu

Ey, H, Ejp Eyp

Ey; Ey Hy; Eg

Ey Ey E3 H,

and then symmetrize. We then find the following expression for Q; mod
U(P):

93 = Al 'E4| + A21E42 + A3'E43 (mOd U(P))
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whereA3' = E24E32 + 2E34 + E14E3| - (H] + HQ)E34 andA,',Az’ are
obtained from A3’ by obvious symmetries. Using (2) again, we arrive at
the relation

A\Ey + AryEy + AzE; = 0(3), 4)
where
Ay =EuE ;3 + 2E\y + ExE\, + HiE\y — H3E
Ay = EyEry + 2Ey + EyEy + HyEyy — H3Ey, ©)]
Ay = EyEyn + 2E3 + EyE;.

Using (2), we have the following commutation relations mod S:

[A],E4|] = O(modg)

[A2, E4]=0

[4;,E;] =0 (6)
[A3, Eg] = E3E34

[A3,Epl =0

[A43, E4] = 0.

From (5), we get immediately that A; € U(PZ) and in addition, noting that
A3 = EpEyy + EyEvy, Ay = Ex3E3y + EyEyy + (Hy — H3)Ey,,

AN =N, AN=A3N=0. (7
Next multiply (4) by E'34 on the right to get
A\EgEy + AyEpE3 + A3EGE 3 = 0(). (8)
Using (2) and the fact that A; € U(PZ), this can be written as
(A E3q — A3E\))E 4 + (A2E3 — A3E)E = 0(3); 9
or, using (6) for A| and A3, as

E U+ VE4, = 0(mod §), (10)
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where
U=AE3 — AzE,, V=A,E; — Az;E. (11)
From (7) we get
VN =\ (12)
Note that U and V belong to U(PZ). Thus (3) now implies
N = VE4u, + VEgpu; (mod W),
or from (10)
N = VEqu — EqUps.
Since by (6) V commutes with £4, mod §, this may be written as
N=Ey(Vp, — Upy).
But Vu, — Up, € ‘W and thus we may replace (3) by
N = E4p(mod W), with p € “W. (13)

Before introducing one more element of 3(G), using (6), we rewrite
(9) in the form

(A\E3y — A3EEy + Ep(ArEy — A3Ey) = 0(mod J),
or, as
UEy+ EpV' =0(mod ), (14)
where
U' =A\E3 — AzEy, V' = AyE3 — A3Ey.
Once more, by (7),

U'N=0, V' A=A\ (15)
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Finally we make use of Q4. Expanding the determinant and sym-
metrizing, we get

94 = B|E41 + BzE42 + B3E43 (mod u(PZ)) (16)
with B; € U(PZ). Moreover
B\ =cAwithe # 0. 17)

It will not be necessary to know the explicit form of the B,.
Next multiply (16) by E34 on the right to get

B\EyE3y + BrEpE 3 + B3EE3 = 0(3), (18)

or, using (2) once more,
(B\E3y — B3E\)E4y + (ByE3q — B3Ey)Ey = 0(5).
Multiplying on the right by V' (which is in ) and using (14) we get
(B\E3y — B3E\)Ey V' — (ByE3 — B3E)U' Eqy = 0(5).
It follows from (6) that V' commutes, mod §, with E4;. Thus we get at last
AFE4 = 0 (mod §)
where A is the following element of
A = (B\E3yy — B3E )V’ — (ByE3 — B3E))U'.
From (15) and (17) we now have
AN = (B1Ey — B3E )N = B/A = c\.

But then applying A to both sides of (13) we get

chA = AN = AE 4 u = 0 (mod W),



EULER PRODUCTS AND CLASSIFICATION 529

So A is in ‘W. This concludes the proof of the statement that (ii) implies (i)
in the case r = 4, F = R.

(3.10) To complete the proof of Proposition (3.8) in general we will
first show that every unitary representation of G, satisfying (ii) is induced,
in the unitary sense, by similar representations of G, and G,. We will then
show that (i) is inductive. The conjunction of these two results will show
that (ii) implies (i) for all r and F.

We first prove the following proposition:

PROPOSITION. Suppose R is the standard parabolic of type
(ny, ny, ..., n,) so that R/Ug = 1I; G,,. For each i, let o; be a unitary
representation of G,.. Let m be the representation induced—in the unitary
sense—by the o;:

n = Ind(G, R; 0y, 0, ..., 0,).

Then if = satisfies condition (ii) of (3.8) then so does each o,.

Proof. The proof of the corresponding assertion for the p-adic case
is due to Rodier ([F.R]). The proof in the archimedean case is essentially
the same, except for technical difficulties due to the existence of transver-
sal derivatives.

Let X, be the Hilbert space on which o; operates and X = ® X, the
space of the representation 0 = ® o,0of M = R/Uy = IIG,,. Asin (3.7),
given f € C.*(G,; X*), set for g in G,,

Fi(g) = | 6rVAr)o(r")f(rg)dr
JR

where dr is a right-invariant measure on R. Given N # 0 satisfying
(3.8)(ii), define a X -distribution 7 on G, by setting

T(f) = NF)).
Then
dT(rgn™") = o(r=")6"2(r)0(n)dT(g).
We let the group R X N act on the manifold G by

(r,n)eog =rgn .
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Then G is a finite union of orbits. For any orbit
Q = RgN,

let Q(Q) be the union of Q with the orbits of strictly larger dimension.
Then Q is a closed submanifold of the open set Q(Q). Starting with (open)
orbits of maximal dimension and proceeding inductively, we find a Q such
that § = T| Q) is non-zero and has support in Q.

We now proceed exactly as in (3.7). We write @ = RwN for some per-
mutation matrix w. The isotropy group H at w is the subgroup of R X N
of elements (r, n) satisfying rwn —! = w. This group is isomorphic to N N
w~'Rw via the map n — (wnw™!, n). In particular it is unimodular. We
now apply (5.2.3) of [G.W.], this time with M = Q(Q) and the differen-
tiable representation U of R X N on X* being given by

U(r, n) = 8 ~"2(r)o(r)b(n), r€R,n€N.
As before we get a finite-dimensional vector space V, a continuous

bilinear form z # 0 on X* X V and an algebraic representation u of H on
V such that

z(U(h)a, u(h)b) = z(a, b),
fora € X=, b € V, h € H, or explicitly
z(o(wnw ™ Da, u(n)b) = 6(n)z(a, b), (1)

for alln € N N w™!'Rw. Suppose « is a simple root and let N, be the cor-
responding subgroup of N. If now wN w™! is contained in Ug, then since
g is trivial on Ug, we get

z(a, w(n)b) = 6(n)z(a, b), n € N,,.

But () is unipotent. Thus 6(n) = 1 for all n € N, a contradiction. Thus
there are no simple roots « for which wN,w ™! C Uy and this implies that
Q is open. In fact Q = RwyN where wy is the order reversing permutation
matrix. Now write R = MUpg. Then woNwo~! N M = N’ is a maximal
unipotent subgroup of M. Exactly as before we may, at the cost of replac-
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ing V by a quotient, assume there is by in V fixed by N N w™!'Rw and
such that the linear form

N'(a) = z(a, by), a€ X,
is non-zero. From (1), we get
N (a(n)a) = 6wy~ 'n'wo)\'(a) 2)

forn' € N' anda € X*.

We may write Mp = II; M; with M; = G,,, N = II N; where N, is the
group of lower unipotent matrices in G, . By Lemma (3.3) the space
spanned by the vectors of the form ® v; with v; € J,® is dense in X*.
Thus given an index j there are vectors v; € X,*, fori # j, such that the
linear form

NG =N ® ®ixjvi)
on X;* is non-zero. It clearly satisfies
N (0j(n;)v) = 0(wo ™ 'n;wo)\;(v), n; € N;.

Finally let w; be the order-reversing permutation matrix in G, . Set, for
ve X,

Aw) = N (g;(w;)v).

Then the (non-zero) linear form \; on X;* clearly satisfies condition (ii) of
(3.8) for the representation o, of G,,, . U

(3.11) We will need an elementary result on induced representations.
If (¢, V) is an admissible irreducible representation of the pair (U(G), K)
we will often allow ourselves to speak of ¢ as a representation of G.

We say that an admissible representation (&, V) is pre-unitary if it is
the underlying representation of some unitary representation = of G on a
Hilbert space JC. Since any admissible (U(G), K') module has finite length,
it is easy to see that (w, 3C) is unique (up to unitary equivalence).

Now let R be a parabolic subgroup of G and n an admissible
representation of R/Up = M. Then one can define the representation in-
duced by ¢

¢ = Ind(G, R; ) 1)
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even though 7 is not a representation of the group M. If n underlies the
unitary representation ¢ of M, then £ underlies the unitary representation
« of G induced by o. Conversely:

LEMMA. Notations being as above, suppose 1 = . Suppose that &
is irreducible and underlies the unitary representation w. Then v is the
underlying admissible representation of a unitary representation ¢ of M.
Moreover w is equivalent to the unitary representation of G induced by o.

Proof. Denote by (-, -) a non-zero invariant Hermitian form on the
space JCy of n. The assumption on 7 is precisely that there is such a form.
A (K-finite) vector in the space of £ may be regarded as a K-finite function
on K with values in 3Cy. Thus the formula

(i f2) = j (F1), o))k
K

defines a non-zero Hermitian form on the space for £. It is invariant and
therefore must be proportional to a positive form. Changing the original
product on JCy, we may assume it is positive. Thus we see that

(f(k), f(k)dk = 0 (1)

SMHK\K

for all (right) K-finite functions on K with values in JC, satisfying
Slkok) = olko) f(k)

for all kg € M N K. In (1) we are free to replace f by f¢, where ¢ is any
right K-finite scalar function on K N M\K. Such functions are precisely
of the form

o(k) = X Y(mk)dm 2

MNK

where ¢ is right K-finite. If ¢ is a continuous function on M N K\K, it
may also be expressed in the form (2) for some continuous function y on
K. By Stone-Weierstrass there is a sequence v, of right K-finite functions
on K converging uniformly to y. If ¢, is the corresponding sequence of
functions then clearly ¢,, tends to ¢ uniformly.
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Suppose now « is any positive continuous function on K N M\K.
Choose ¢, as above converging uniformly to «!/2. Replacing f by f¢, in
(1) and taking limits we get

alk)(f(k), f(k)dk = 0.

JMNK\K

This implies (f(e), f(e)) = 0. Since f(e) can be any vector in JCy, we see
that (-, -) is positive (semi-definite) on JCq. Since 7 is irreducible it is ac-
tually positive definite. Thus 7 is the underlying admissible representation
of a unitary representation o of M and therefore 7 is infinitesimally
equivalent to the unitarily induced representation

Ind(G, R; o).

Since = is unitary, it is actually equivalent in the unitary sense to this in-
duced representation. O

(3.12) To continue we recall Langlands’ classification of representa-
tions (c.f. [N.W.] for example). Let again R be a standard parabolic
subgroup of type (ny, ny, ..., n,). Asusual set R’Ug = IIM;, M; = G,,.
For each i let m; be a (unitary) tempered representation and s; some real
number. Suppose s; > s, > .-+ > s,. Then the induced representation

E=IndlG,R;m ® o, ..., 7, ® o) (1

contains a unique maximal invariant subspace V. The representation n of
G on 3C/V is denoted by

n=JG,R;m ® a5, ..., T, Q a). )

Every irreducible representation = of G is equivalent to a representation of
the form (2) where R, the class of the m;, and the s; are uniquely deter-
mined. We shall call £ the induced representation associated to 7.

We also need to recall certain results from [B.K.] and [D.V.],
specialized to G = GL,,. We refer to [D.V.], Section 6, for the concept of
a “large” representation. As above we shall refer to a representation of
R/Up of the form

(Mm@ ® -+ @ (7, ® a)
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where the m; are tempered and the s; arbitrary real numbers as quasi-
tempered. Then we have the following theorem which is a simple restate-
ment of Theorem 6.2 of [D.V.]:

THEOREM A. Suppose n is an irreducible admissible representation
of G = GL.(F), F = Ror C. Then n is large if and only if 1 has the form

n = Ind(G, R; 0)

where R is a parabolic in G and o is a quasi-tempered representation of
R/UR .

We shall also need the following Theorem—a special case of
Theorem D of [B.K.]:

THEOREM B. Suppose (y, V) is an irreducible admissible represen-
tation of G = GL.(F). Suppose there is a non-zero linear form \ on V
such that

A@(X)v) = 6(X)N()
for all X € XN). Then n is large.

Combining the two theorems in a trivial way we obtain the proposi-
tion we need.

PropPOSITION. Let (n, V) be an irreducible admissible representa-
tion of GL,(F). Suppose there is a non-zero linear form X on V such that

An(X)v) = 6(XON(V)

for all X € YN). Then the induced representation § associated to v is ir-
reducible (and thus equivalent to 7).

Proof. By the results of Kostant and Vogan we have
n = Ind(G, R; 9)

where R is a parabolic in G and ¢ a quasi-tempered representation of
R/Upg. Say

o=(mMm @) ® - ® (7, ® o).
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Let R’ be a parabolic obtained from R by permuting the blocks. Then
R'/Ug = R/Ug. Let o' be the representation of R' obtained by
transport of structure. Then the representation

7' = Ind(G,R'; 0')

has the same character as 5. Since 7 is irreducible it must be equivalent to
n'. Thus we may assume from the outset thats; = s, = --- = 5,

Suppose R is of type (ny, 1y, ..., n,). Suppose say t; = s; = -+- =
Sy > S,+1- Letm; =n; + ny + -+ + n,and R, be the parabolic of type
(ny, ny, ..., n,) in G,,. Let 0| be the tempered representation of G,,
defined by

g — Ind(G,,,l, Rl; Ty Ty o vy 7r,,).

Repeating this procedure for each string of equal exponents s; we obtain a
new partition (m,, ..., m) of r, for each j, | < j < ¢, an exponent tis
and a tempered representation g, of GL,, . By construction #; >, > - .-
> t;. Let Q be the (standard) parabolic in G, associated to this partition.
Then, by the lemma on inducing in stages, we have

7 = Ind(G, Q; 0, ® a'', ..., 0 ® a'),

and our proof is complete. 0

(3.13) Combining Lemma (3.11) and Proposition (3.12) we will ob-
tain the following result:

LEMMA. Suppose w is an irreducible unitary representation of G,
satisfying condition (ii) of Proposition (3.8). Then there is a partition (n,
iy, oon)ofrwithn, = 1,2or4if F=R,n; = 1,2if F = Cand for
each i an irreducible unitary representation w; of G, so that

= Ind(G, R; 7y, 7, ..., T,),

where R is the parabolic subgroup of type (ny, ny, ..., n,).

Proof. Let 7 be an irreducible unitary representation of G. By the
results stated in (3.12) we can choose R, w; and the s; so that = is (in-
finitesimally equivalent) to the representation 7 of (3.12.2). Clearly

7=JG.RiT @7, @ a2 ..., T, ® a').
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If (ny, ny, ..., n,) is the type of R, call Q the parabolic of type (n,, ...,
nj, nl). Then

7=JG, Q;7, @ a %, ..., T, ® a2, T ® a 51).
Since 7 is unitary we must have n = 7. This can happen only if R = Q and
(m @ a1, 1 Q@ a2, ..., m, @ a’w)
=(mr, Qa Su, ..., Q a2, T @ a ).
Assume furthermore that = satisfies (3.8)(ii). Then it satisfies the condi-

tions of Proposition (3.12) and so = is actually (infinitesimally) equivalent
to the representation

E=Ind(G,R; 7, ® &1, 13 @ a2, ..., T, @ asu).

In particular £ is irreducible.
Let m = [u/2] and, for 1 < i < m, let R, be the parabolic subgroup
of G,,, of type (n;, n;). Set also

n = Ind(Gz,,'., Ri; ™ ® o, L ® C!_"").

If now u is even, u = 2m and £ has the same character as the induced
representation

El = Ind(G' S; Mis M2y oo nm)v

where S is the parabolic subgroup of type (2n,, 2n,, ..., 2n,,). Since £ is
irreducible it is equivalent to £, and each », must be irreducible also. But

ﬁi = Ind(Gu,# Rr; 7_l',' ® o, ;l',‘ ® a_s')
ﬁi = Ind(G”,, Ri; ?ri ® a7, ?l',' ® a—S:).

Thus 73; and ; have the same character. Since they are irreducible 7; = 7;.
We can now appeal to Lemma (3.11): each #; is the underlying admissible
representation of an irreducible unitary representation »;,’ and = is
equivalent to the unitary representation
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Ind(G, §571" m' - ).

If  isodd, v = 2m + 1 and we obtain a similar conclusion. Each y;, 1 <
i < m, (resp. m,+,) underlies an irreducible unitary representation 7,’
(resp. 7,,4+,") and, denoting by § the parabolic subgroup of G, of type
2ny, 213, ..., 2n,,, n,,+1), 7 is equivalent to the unitary representation

Ind(G~ S; nl,v 772” ey "l/;;" 7l',,,+)’).

Now 7,4,  is a tempered representation, thus certainly satisfies the
conclusion of (3.13) (c.f. [H.].] for example). If we could prove similarly
that each #,’ satisfies the conclusion of (3.13) it would follow from the
transitivity of Mackey’s construction that  itself satisfies it.

Thus we are reduced to proving the following fact. Let m be a
tempered representation of G,, s > 0, R the parabolic subgroup of type
(n, n) in G,,. Suppose that the induced representation

§=Ind(G,,,R; 7 ® o, T ® a™%)
is irreducible and equivalent to a unitary representation 5. Then 5 satisfies

the conclusion of (3.13).
Indeed 7 has the form

T = Ind(G,,, S; Ty Ty o v ey 7l',,),
where S is the parabolic subgroup of type (7, 15, ..., n,)inG,,,n; =1, 2
if F=Randn; = 1if F = C, and = is an irreducible square-integrable
(unitary) representation of G,,. Let then T be the parabolic subgroup of
type (2ny, 2n,, ..., 2n,) in G,,. Since ¢ is irreducible it is equivalent to
the representation
Ind(G,,,, T; 9y, 03, ..., 0,),

where

o; = Ind(G,,,, R;; m; @ of, m; @ a™9),

R; again being the parabolic subgroup of type (1, n;) in G5,,. Since £ is ir-
reducible so are the o;. Once more §; = g; and again by Lemma (3.11) the
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representation o; underlies a unitary representation o;' and 7 is equivalent
to the unitary representation

Ind(Gy,, T; 0", 02", ..., 0,').

This completes the proof of Lemma (3.13). U

(3.14) End of the proof of Proposition (3.8).

Suppose that = satisfies condition (3.8)(ii). Then Lemma (3.13) ap-
plies to 7. The representations 7, of that lemma must then satisfy (3.8)(ii)
by Proposition (3.10). (Perhaps it would be useful to observe that condi-
tions (i) and (ii) of Proposition (3.8) are empty for » = 1.) By what we have
seen in (3.8) and (3.9) they must also satisfy condition (i) of Proposition
(3.8). Thus Proposition (3.8) will at last be a consequence of the following
proposition.

PROPOSITION. Suppose R is a parabolic subgroup of type (ry, r,,
., r,) and for each i, 1 < i < u, m;is a unitary representation of G,. Let
7 be the unitary representation of G induced by the w/’s:

x = Ind(G, R; m, ™3, --., T,)-

If each =; satisfies condition (3.8)(i) so does .

Proof. By induction on u and the transitivity of inducing represen-
tations it suffices to prove the theorem when ¥ = 2. It will be more conve-
nient to take for R the lower standard parabolic of type (r{, r,). Suppose
first »» = 1. Then R is the transpose of P.Z,. In any case the complement
of RU(U = U,) has measure zero in G,. Thus all functions in the space of
7 are determined by their restriction to U. More precisely, let us identify
U with the group F"~! of column vectors of size r — 1. Then we may
regard 7 as acting on

LA(Fr~!, W),

where ‘W is the space of 7, the action of «|P, being given by:

1 Up
w[ J f) = f(u + ug),
0 1
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m 0
T fu) = m(m)|det m| ~V2f(m~'u).
0 1

Let us use the Fourier transform on F7~! to obtain a new representation 7
of P,—on the same space—equivalent to «|P,. More precisely, 7(g) f =
(ﬁ(g)f)A for g € P,. We have

1 u
it L J SO = f)y(uv)
0 1
and
m 0
77' [0 J f) = m(m)|det m |2 f('mv).
1

Letn =10,0, ..., 1) = ‘e. We have
Fr—!'=G,_(F)n U {0},

the stabilizer of 5 being just P,_,(F). Hence every f is determined by the
function ¢ from G,_ (F) to W defined by

é(m) = m(m)|det m|'2f('mn).
Such ¢ satisfy

¢(pm) = m(p)|det p|2p(m),  p € P, (F),

|| p(m) || 2dm.

\||f<v>||2dv -

JPr— 1 (FNGr—1(F)

Moreover on the ¢’s the representation, say ', corresponding to 7 has
the form:

m' 0 1 u
T [ J o(m) = ¢(mm’), T [ J o(m) = d(m)yY(emu).
0 1 0 1
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This shows that = | P, is equivalent to the induced representation
¢ = IndP,, P._U,; 0 ® 1,),

where P,_, is identified with a subgroup of M via the map

p O
p- )
0 1
and ¢, = m,|P,—,. The assumption is that o contains the representation
7, of P,_,. It follows that £ contains the induced representation

Il’]d(P,., Pr—lUr; Tr—1 ® nr)’

a representation equivalent to 7,. Since w|P, is equivalent to £, we are
done in this case.

Suppose now r, > 1. Consider the subgroup R N P, and the
representation o of that group defined by

m 0
gl u = m(m) ® m(p);
0 p

herem,; € G, ,p € P,,anduisa matrix with », — 1 rows and r; columns.
Again functions in the space of 7 are determined by their restrictions to
P,. Thus 7| P, is just the representation

Ind(P,, R N P,; o).

Since the restriction of m, to P,, contains 7,, we see that 7r|P,.2 con-
tains the induced representation

£ =IndP,,RNP,;0'),

where ¢’ is now the representation of R N P, defined by
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mg 0
o' | u = m(m;) @ 7,(p).
0 p

All we have to show is that £’ contains 7,. This is an assertion in-
dependent of ,, provided ,|P,, contains 7,,. Thus it is enough to prove
it for one particular choice of m,. For instance, we may take w, in the
unitary principal series; as is very well known 7r2|P,2 is then equivalent to
7,, (c.f. for example [H.I.].

Thus it suffices to prove that w|P, contains 7, whenever w is a
representation of G, of the form

™ = Ind(G, R; T, 7l'2);
where ;| P, contains 7, ,
™ = Ind(Grz’ Brz; Kis K25 oo ey “’2)'

B,, is the parabolic subgroup of type (1, I, ..., 1), and p; a character of
F*. We have proved this assertion when , = 1. The transitivity of induc-
ing unitary representations allows us to prove it in full generality by induc-
tion on r,. This completes the proof of Proposition (3.8). O

(3.15) Remarks. (1) Suppose = is an irreducible unitary represen-
tation which satisfies the equivalent conditions of Proposition (3.8). Then
in fact:

(iii) 7| P, is equivalent to 7,.

Indeed the uniqueness of \ can be used first of all to show that = |P,
contains 7, with multiplicity one. If » = 2 we see that «|P, is the sum of 7
and a representation trivial on U; but a representation of G, cannot con-
tain the trivial representation of U without being one-dimensional. Thus
w|Py = 7,. If r = 4 and F = R, a similar but much more complicated
argument can be used to show that w|P; = 74. In general, by Lemma
(3.13) we see that 7 has the form indicated in Proposition (3.14) where the
; satisfy the stronger condition that ;| P, = 7,,. Then the proof of Pro-
position (3.14) shows in fact that = | P, is equivalent to 7,.

(2) In general if 7 is any irreducible unitary representation of G then,
by extending the results of (3.6), one can show that «|P, is a finite sum of
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irreducible representations. Kirillov has sketched a proof of the fact that
m | P, is irreducible but we have not been able to fill in the details.

(3.16) From now on an irreducible unitary representation 7 of G will
be said to be generic if it satisfies the equivalent conditions of Proposition
(3.8). Let JC be the (Hilbert) space of = and X\ any element of 3C~* satisfy-
ing (3.8)(ii). We will denote by “W(w; ) the space the functions on G of
the form

W(g) = Nx(g)v),

where v is in JC=; we will also denote by “W(; y) the subspace of those W
for which v is in 3Cy, the space of K-finite vectors in JC. Clearly v » W
defines an isomorphism 3Cy = “Wy(7; ¥) in the admissible category. We
may then identify these two spaces. Then exactly as in Proposition (1.5) we
have the following Proposition which we will use repeatedly in the next
section.

ProrosiTiON. Notations being as above, there is a positive constant
¢ such that

S | W|2(pg)d,(p) < c||W]|?
N\P

forallw € Wy(m; ¥)and allg € G. O

(3.17) Let now 7 and 7' be two irreducible unitary generic represen-
tations of G,. We again introduce, as in (1.5), the integrals

Y(s, W', W, &)

for W' € Wy(r'; ¢), W e Wy(mr; ¢), and ® in S(F").

ProposITION. (i) The integral ¥ (s, W', W, ®) converges abso-
lutely in the half space Re(s) = 1, normally for Re(s) in a compact subset
of [1, oof.

(ii) Given W' # 0in Wo(r'; ¥), and s with Re(s) = 1, there exist W
in Wo(m; ¢) and ® in S(F") such that

Y, W', W, ) #0.

Proof. The proof of (i) is similar to the proof of (i) in Proposition
(1.5). As for (i) we may assume at the cost of replacing W' by a
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K-translate, that W' | P is not identically zero. Then by Proposition (3.16)
W' | P is a non-zero element of the space X of 7,. Moreover it follows from
the same proposition that the function

¢'(p) = W'(p)|detp|*~!

is also in J, whenever Re(s) = 1. In more detail suppose ¢t = 0 and write
the integral

j | W(p)|?|det p'd,(p)
N\P

as a sum of two integrals, the first over |det p| < 1 and the second over
|det p| = 1. In the first integral we may decrease ¢ to 0 in which case the
convergence follows from Proposition (3.16). In the second we may
replace W by a gauge and take ¢ large, in which case the convergence
readily follows.

On the other hand, let 3C be the space of . 3C is dense in 3C. Set for
W e Wy(m; ) = 3y, A(W) = W|P. Then by Proposition (3.16), A is
non-zero element of Homp(w|P, 7,). Thus A(3Cy) is dense in X. Other-
wise said, the functions p — W(p) with W in ‘W(7; ) are dense in X.
Thus there is a W such that

j W' (p)W(p)| det p|*~'d,(p) * 0.
N\P

Thus the function F on K defined by

Flk) = S W' (pk)W(pk) | det p |*=1d,(p)
N\P

is non-zero and K-finite. As in (1.5),

Y(s, W' ,W,®)=

dk§ d,(p)|det p | == "W (pk)W( pk)
K N\P

X g b(eak)|a|"w w(a)d*a
FX
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=S S F(k)®(eak)|a|"w'w(a)d > adk
K JFx®

=§ S FUO)®(etk) |t |0 5(t)d " tdk.
K JR+ %

Now choose ¢ € C.*(R *) such that SFX o(t)|t]|™w'w(t)d*t # 0. Then
take ® to be the following function:

d(x) = ¢(t)Fk) if x = teK, t > 0, k € K; ®(x) = 0 otherwise.

Then ® € S(F") and we get finally

Vs, W', W, &) = j o) () || 5d >t j FkF(k)dk = 0. O
K

FX

4. Global Theory. In this section F is an A-field. Although the
main results are stated in full generality, we have found it convenient to
give the proofs only in the case of number fields. The case of function
fields is easier and left to the reader (see also Remark (4.8)). Accordingly
until subsection (4.4) the ground field F is assumed to be a number field.

(4.1) We first recall the properties of certain special Eisenstein
series. Let n be a character of F*\F,* of absolute value one. For €
S(F4") set

Flaysim) = |detg|s§ B(acg)|a| Pn(a)d ¥a, W

FAX
where, as before, € is the row matrix with » entries given by
e =1(0,0,...,0,1).

This integral converges for Re(s) > 1/r. Set also
E(g, ®,s,m) = Lf(vg, s, 1) @

the sum over v in Z,(F)P(F)\G,(F). This is the Eisenstein series we have
in mind. A useful expression can be found if we write
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f(g,s,n) = |detg|* g L ®(aaeg)|a|™n(a)d*a
FAX/FX a€F

and replace f by this expression in (2):

E(g, ®, s, 7) = L |det g S gx d(aceyg)|a|n(a)d*a.
¥

FAX/FX a

Now every vector £ # 0 in F’ can be written uniquely as £ = aey. Thus
after exchanging the sum over v and the integral we get

E(g, ®,s,7m) = |detg|* S L d(atg)|a|™n(a)d %a, 3)
FAX/FX E

the sum extended over all £ in F* — {0}.

It now follows from Lemmas (11.5) and (11.6) of [G-J] that the right
side of (3) converges absolutely for Re(s) > 1; the same is therefore true
for the right side of (2) and they are equal.

It will be convenient to consider a certain set of conditions for func-
tions on G(F)\G(A) depending on a complex parameter. Let I be the open
interval ]0, oo[, Q the set of s € C such that Re(s) € I. Fort > 0 let A, be
the set of a € A, such that

deta = 1 and |ala)| = ¢ for all o € A.

If ¢ is a function on G(F)\G(A) X © the conditions we have in mind are
the following: 4)
(i) ¢ is continuous;
(ii) for each g, the function s — ¢(g, s) is holomorphic on Q;
(iii) (if F is a number field), given a compact subset C of G(A), a
compact subset J of @, and ¢ > 0, there exists a constant ¢ > 0 and a
positive integer m such that

|p(ax, s)| < c sup |a(a)|”
a€A

foralla € A,,x € C, and s € J.

(4.2) LEMMA. The functions E(g, ®, s, n) extend to meromorphic
functions on Q.
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(i) If n is non-trivial on the ideles of F of absolute value one, they are
holomorphic and the function (g, s) — E(g, ®, s, n) satisfies condition
(4.1.4).

(ii) There is a constant ¢ # 0 such that if n = a'° then

E(g, ®,5,7) = c-®(0)|det g| ~or-(s + io/r — 1)~ + R(g, ),

where R is a function on G(F)\G(A) X Q satisfying (4.1.4).
Proof. We break (4.1.3) into the sum of two integrals:

|detg|sj T ®atg)|al n(@)d*a, M
£#0

lal =1

and

|detg]|s j L ®(atg)|a|™n(a)d*a. ¥))
£#0

lal =1

Now by the Poisson summation formula

L ®atg) = L da¢'g=)|a|"|detg| !
£E#0 £E#0
+ &(0)|a| 7| detg| ~' — $(0),

where as usual

$() = j B()¥(y'x)dy.
A

Thus, after changing a to a~! where needed, we can write the first integral
(1) as a sum of three terms:

|det g+~ S L, Batg™hla| 1@ "a 3)

lal =1

|detg|s_"~f>(0)g |a|"s~Dy(a)d %a 4)

la] =1
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— | detg|*®(0) |a|™n(a)d *a. (5)

Jal =1

This computation is valid for Re(s) > 1.

Now by Lemma (11.5) of [G-J] expressions (2) and (3) are defined for
all s and, as functions of (g, s) satisfy the conditions (4.1.4). If now 7% is
non-trivial on the ideles of absolute value one (4) and (5) vanish. This
proves the first assertion of the lemma. On the other hand if n = «
where o is real (4) and (5) are respectively

c|detg|sT1®O)s + io/r — 1)1, (6)
—c|detg|*®(0)s + io/r)~ !, (7

where ¢ is a certain positive constant. Clearly (7), as a function of (g, s),
satisfies (4.1.4). On the other hand we may write

a =1+ ¢, s)s (a > 0)

where ¢ is a continuous function on I X C, holomorphic in s. Then (6) is
the sum of two terms:

c|detg| ~ior®(O0)s + io/r — 1)~} (8)
and
c|detg| ~o/"®(0)p(|detg|,s + ia/r — 1). 9)

Again (9) satisfies (4.1.4), and we have proved (ii), R being the sum of (2),
(3), (7) and (9).

(4.3) In this paragraph we introduce what is basically an integral
representation for the L-functions L(s, = X ') attached to a pair of cusp
forms on G,(A). While these functions appear somewhat implicitly here
they are behind the scene and will make their full appearance in subse-
quent publications. As we have already said their treatment in the case
r = 2 is due to Rankin and Selberg..

Suppose then that = and 7' are irreducible unitary representations of
G(A). Let w and w' be their central characters. We assume that = and =’
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are “cuspidal” (c.f. [B-J]). Let @ (resp. @') be the corresponding space of
cusp forms. Each ¢ in @ (resp. ¢’ in @') is K-finite on the right,
transforms like the character w (resp. w') under Z(A), and is invariant on
the left under G(F). Moreover each ¢ is “rapidly decreasing.” Namely in
the notation of (4.1.4) for any compact set C in G(A), any ¢ > 0, and any
positive integer m there is a positive constant ¢ such that

|¢(ax)| < c(sup|ala)|)™™
a€A

for all a € A, and x in C. Finally note that w and w’ are trivial on F*.
Now set » = w'w and consider the integral

Is. 8, 6, ¢) = X E(g &5, 10 (2)dg)dg. (1)

Z(A)G(F)\G(A)

For a € Z(A) = F,* we have
E(ag, ®, s, 1) = n(a)E(g, ®, s, 1).

Indeed this is clear for Re(s) large, and by analytic continuation it is true
for all s. Thus the integrand is indeed invariant on the left under
Z(A)G(F).

Suppose 7 = w'w has a non-trivial restriction to the ideles of F of ab-
solute value one. Then by (4.2)(i) the integrand is a continuous function
on G(A) X Q, holomorphic in s, and uniformly bounded for s in a com-
pact subset of Q. Since the volume of G(F)Z(A)\G(A) is finite the integral
converges for all s in Q and defines a holomorphic function of s on Q.

Suppose now that n = «® with o real. Then

Is, ®, ¢, ¢') = c-®0)s + ia/r — 1)

|det g| ~ior ¢’ p(g)dg + j R(g, 5)¢' d(g)dg.

S Z(A)G(F)\G(A) Z(A)G(F)\G(A) 2)

Note that since the function g — |det g| ~/%/ transforms like 7 under Z(A)
this is true also for g = R(g, s). The second integral is again holomorphic
on Q.
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(4.4) We will use the above remarks to establish the following
lemma.

LEMMA. (i) Suppose ®(0) # 0, 7 = 7', and ¢ = ¢' # 0. Then
I(s, ®, ¢, &') has a (simple) pole at s = 1.
(ii) Suppose there exist ®, ¢, and ¢' such that I(s, ¥, ¢, ¢') has a

poleats = 1. Then * = ='.

Proof. Under the assumptions of (i) we have n = 1, ¢ = 0, and

S |o(g)|2dg # 0,
Z(A)G(F)\G(A)

and so by (4.3.2) I(s, ®, ¢, ¢') has a (simple) pole at s = 1.

Suppose I(s, ¢, ¢, ¢') has a pole at s = 1. Then 5 must be trivial on
the ideles of absolute value one, or n = ic for some real ¢. Then by (4.3)
we must have ¢ = 0 and so w = w'. We have then

j ¢ d(g)dg # 0
G(F)Z(A\\G(A)

and this implies 7 = ='. O

(4.5) We transform the integrals of (4.2) into the global analogues of
the integrals of (1.3). Recall that if

then each m, is generic. Fix once for all a non-trivial character y of Fj
trivial on F and write

v =Ty,

Then the space W(x,; ,) is defined as well as the space Wy(x,; ¥,)
if v is archimedean. Denote by “Wq(m; y) the space of functions on G(A)
spanned by the products

W(g) = H W.(g)), (1)
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where W, is in W(r,; ¥,) if v is non-archimedean, in Wy(m,; ¥,) if v is ar-
chimedean, and, for almost all places v, W, is the essential element of
W(n,; ¢,) ([J-P-S] Sections 11, 12).

For each W in ‘W(; y) the function ¢ defined by

d(g) =L W(kg), EeNFO\PF), 2

is in @. The function W can be recovered from ¢:
W(g) = S b(ng)f(n)dn. 3
N(A)

Moreover each W is majorized by a gauge (loc. cit.). Recall that a gauge £
on G(A) is a function £ on G(A) invariant under N(A)Z(A) on the left,
under K on the right, and given on A(A) by

£a) = ®(a;(a), ay(@), ..., a,— @)@ -+ a,—y(a)| 7!

where ® > Oisin S(A’"1)and ¢ = 0.
Consider now the integral

V(s, W ,W, &) = S W' (g)W(g)®(eg) | det g |*dg, 4)
N(AN\G(A)

where W € W(m; ¢), W' € W(r'; ¢) and ® € S(A"). From the estimates
we have just recalled it is easy to see that the integral converges for Re(s)
large. Moreover we have for Re(s) large

I(s,®,¢",¢) = ¥(s, W, W, ), ®

where ¢’ € @' is defined in terms of W' as ¢ is in terms of W. Indeed if
we replace in the left side of (4.3.1), E(g, ®, s, n) by its expression 4.1.2)
as a series, we get

S f(g, s, Mo’ (g)d(g)|det g|*dg.
Z(A)P.(F)\G,(A)

Then from the definition (4.1.1) of f we get
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Is, ®, ¢', ¢) = j B(eg)d' (g)(g) | det g |*dg.
P.(F)\G,(A)

Now replace ¢ (or rather ¢) by its expression as the series (2). We get

S B(eg)p' (g)W(g)| det g|*dg.
N(F\G(A)

Since the functions g — ®(eg) and g — |det g|* are invariant under N(A)
while W transforms like 6 this is also

d(eg)W(g) | det g |*dg S ¢’ (ng)8(n)dn

j NANG(A) N(F)\N(A)

and the inner integral is W'. Thus (5) is established—provided we justify
our formal manipulations.

Since ¢' is bounded and N(F)\N(A) has finite volume it suffices to
show that the integral

S P(eg)W(g)|det g|*dg
N(ANG(A)

converges absolutely for Re(s) large. Since W is majorized by a gauge the
proof is essentially the same as the convergence of the integral in (4) (for
Re(s) large). O

(4.6) From (4.5.5) and (4.4), we obtain the following lemma:

LEMMA. The function ¥(s, W', W, ®) extends to a meromorphic
Sfunction of s on Q, holomorphic for Re(s) > 1.

(i) If@(O) #0, 7 = 7' and W = W' # 0 that function has a (sim-
ple) pole at s = 1.

(ii) Conversely, if there exist W, W' and ® such that Y(s, W', W, &)
hasapoleats = 1thenw = «'. O

(4.7) We now write ¥(s, W', W, ®) as a finite sum of products of the
local integrals of Section 1 and Section 3. Suppose W and W' are of the
form (4.5.1) and that

d(x) =I1®,(x,), (1)
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where &, is in S(F,”) for all v and is, for almost all v, the character-
istic function of R,” in F,”. Now for Re(s) = 1 all the local integrals
Y(s, W,", W,, &,) converge [(1.5) and (3.17)] and so, for Re(s) large,

Vi, W W, e)=IIV¥s, W, W,, &), 2

the right side being an absolutely convergent product. Our first theorem is
as follows:

(4.8) THEOREM. Suppose w and w' are irreducible unitary cuspidal
representations of G(A). Suppose S is a finite set of places containing the
infinite places and all the finite places where either =, or m,' is ramified.
Suppose that for v ¢ S (notation of (2.1.2):

Ls, m," X7w,) =L, n, X7,).

’

Then # = «'.
Proof. (for a number field). At the cost of enlarging S we may
assume that for v ¢ § the largest ideal on which v, is trivial is ®,. We take
W and W’ of the form (4.5.1), ® and &' in S(A") of the form (4.7.1)
where
$,0) =0, V¥v(1l, W, ", W,,®d,) #0 forves
(c.f. (1.5) and (3.17));

®,’ = &, = the characteristic function of ®,” for v ¢ S;

W," and W, are the essential elements of ‘W (xr,’; ¥,) and W(m,; ¥,) resp.
for v ¢ S. Then for v ¢ S, by Proposition (2.3),

Vs, W, ,W,”,®,’)=L(s, n,’ X7,),
Y, W', W,, &)=L, m,” XT,),
and so by hypothesis

Vs, W, W, &, )=¥(s W, W, &) forvgs. (1)
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Set

A(s) = l_g Vs, W, , W,, e,),
vE

B(s) = Hs Vs, W,', W,/, ).
vVE

Then A(s) and B(s) are holomorphic in Re(s) > 0, continuous in Re(s) =
1 (cf. (1.5) and (3.17)) and A(1) # 0.
From (1) we get the identity

B(s)¥(s, W', W, ®) = A@s)¥(s, W', W', &')

at first for Re(s) large but then, by analytic continuation, for all s with
Re(s) > 1.

Now by (4.6)(i), ¥(s, W', W', ®') has a pole at s = 1, since by
choice W' # 0and $'(0) = I1, ,'(0) = I, $,'(0) # 0. Since A(1) # 0
we have

lim|A@s)¥(s, W', W', ®')| = +o
s—1

the limit taken for s > 1. Since B(1) is finite we must have similarly

lim | ¥ (s, W', W, )| = +oo.
s

Thus ¥(s, W', W, &) has a pole ats = 1. By (4.6)(ii), 7 = «'. O

(4.9) Remark. For the function field case, the proof is substantially
the same, the changes being mostly notational. Since a cusp form has
compact support mod Z(A)G(F) no estimate is needed for E(g, ®, s, 7).

(4.10) CoroLLARY. Suppose w and =' are irreducible unitary
representations of G,(A). Suppose S is a finite set of places such that ©, =
w, forveS. Thent = 7'. O

(4.11) Remark. Let S be as in (4.8). Set

Lgis, 7" X 7)) = gL(s, T, X7,).
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As we noted the product is absolutely convergent for Re(s) large. One can
actually prove that Lg(s, #' X 7) is meromorphic—by methods quite
distinct from those of the present paper. If one takes this for granted the
proof of Theorem (4.8) shows that Lg(s, 7' X ) has at most a simple pole
at s = 1 with non-zero residue if and only if #' = 7. In the next section we
show that the Euler product for Lg(s, #' X 7) is absolutely convergent for
Re(s) > 1 and any pair (w, w').

5. Convergence of Euler Products. The results of this section com-
plement the earlier non-vanishing theorem for L-functions obtained by the
present authors ([J-S]). See also [F.S.]

(5.1) Suppose that w(resp. 7') is an irreducible unitary cuspidal
representation of G,(A) (resp. G,(A)). Let S be a finite set of places con-
taining the infinite places and all the finite places where either 7, or 7’ is
ramified. As in Section 4, we fix once and for all a non-trivial character y
on Fy trivial on F. We assume throughout this section that § is large
enough so that for v ¢ S the largest ideal on which , is trivial is %%,. As in
Section 2 let A, (resp. A,') be the (semi-simple) conjugacy class in G,(C)
(resp. G,(C)) associated to =, (resp. ,"). We set as before

L, m, X 7,y =det(l —q, A, ® A,") "L (1)
It follows from (2.5) that, if

A‘, = diag(mv(@v), ﬂZV(a’v)v sy ”rv(a’v))’ (2)
then

| k(@] = g, 3
forallv ¢ §, 1 < j < r. Thus it is clear that the Euler product
Lg(s, 7 X 7') = I;ISL(s, m, X 7,") 4

converges absolutely to an analytic function in some right half-plane.
Before turning to our second theorem we prove an intermediate lemma.

(5.2) LEMMA. Let w be an irreducible unitary cuspidal representa-
tion of G,(A). Then the function Lg(s, ® X ) has an analytic continua-
tion to the half plane Re(s) > 1.
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Proof. We proceed as in (4.8). Fix sy with Re(sq) = 1. We take W
and W' of the form (4.5.1), ® in S(A") of the form (4.7.1) where

Y(so, W,", W,,®,) #0 forvesS
(c.f. (1.5) and (3.17));
&, = the characteristic function of %,” for v ¢ §;

W, = W, is the essential element of W(mr,; ¢,) for v ¢ S. Set A(s) =
s ¥(s, W,’, W,, ®,). Then as in (4.8) (c.f. also (2.3)) we have

Y(s, W', W, ®) = A(s)Ls(s, 7 X )

for Re(s) large. By (4.6) the left side is holomorphic for Re(s) > 1. Since
A(sg) # 0 and A(s) is also holomorphic for Re(s) > 1, it follows that
Lg(s, # X 7) is holomorphic in a neighborhood of s,. This being true now
for any s¢ with Re(sg) > 1 our assertion follows.

(5.3) TueoreM. Let = (resp. ') be an automorphic cuspidal
representation of G,(A) (resp. G,,(A)). Suppose in addition that © and 7'
are unitary. Then the infinite product

LS(sv T X 7l',) = I;-EL(S' ™y X 7rv,)

is absolutely convergent in the half-plane Re(s) > 1. In particular the
Sfunction Lg(s, m X 7') does not vanish for Re(s) > 1.

Proof. We suppose A, given by (5.1.2) and
A, = diag(r,(@), 12,(®), - ., 1, (@)).
Then
L(s, 7, X ") = (1 — pi(@)v(@)g, )7,
the product over 1 =i < r, 1 < j < p. The individual terms in this finite

product are of the form (1 — z)~! with |z| < 1. Thus if we set 7(v") =
tr(A,"), ©' (v*) = tr(4,'"), we have
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L(s, 7, X 7,") = exp El x(v")w'(v')/ng " (1)

n=

the series being absolutely convergent for Re(s) > 2. Taking the product
over v ¢ S, and using (5.1.3), we get for Re(s) large

Lg(s, w, X m,') = exp ZEV ZI a(v) ' (v')/ng ", 2
vES n=

the sum over v ¢ S being taken in any order.

To proceed further we assume first that #' = 7. Then
f) =L L [7(")[*/ng," 3)

is a Dirichlet series with non-negative coefficients, converging for Re(s)
large. Let a be the real point of the line of convergence of this series. By a
well-known theorem on Dirichlet series [E.C.T.] a is a singularity of f(s).
Suppose a > 1. Then from (1) we get by analytic continuation

Lg(s, # X ) = exp f(s) ©)

for Re(s) > a. For s real, s > a, f(s) = O is increasing as s — a. On
the other hand by Lemma (S.2) the left side of (4) approaches a finite limit
ass — a. It follows that Lg(a, # X 7) = 1 and in particular is non-zero.
Thus in the intersection of a small disc about a with the half-plane
Re(s) > a, we get

log Lg(s, # X 7) = f(s).

This contradicts the fact that a is a singularity of f. Thusa =< 1 and the
series (3) converges for Re(s) > 1.
Next an application of Cauchy-Schwartz shows that the double series

L X n(v)n' (v)/ng," (5)
vES n=1

also is absolutely convergent for Re(s) > 1. It follows immediately from
(2) that the product for Lg(s, # X «') is commutatively and therefore ab-
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solutely convergent for Re(s) > 1 ([N.B. Chap. 8]). This completes the
proof of Theorem (S.3).

(5.4) Remark. The theorem applies in particular to the case p = 1,
«' = 1. Then:

Lg(s, # X w') = II det(1 — A,q,~)" ..
vES
Since a local L-factor is never zero we conclude from the results of [J-S]

that
L(s, ©) = 1 L(s, =)

does not vanish in the half-plane Re s = 1.
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