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A Lemma on Highly Ramified ¢-Factors*

Hervé Jacquet and Joseph Shalika
Department of Mathematics, Columbia University, New York, NY 10027, USA

1. Introduction

(1.1) Let F be a non-archimedean local field and G, the group GL(r, F). Fix a non
trivial additive character y of F. For convenience, we will assume that the largest
ideal on which v is trivial is the ring of integers R; we will denote by P the maximal
idealin R and by g the cardinality of the residual field R/9. Let = be an irreducible
admissible representation of G, on a complex vector space V. To n we can attach
functions L(s, x) and &(s, , ) [G—J]. They have the form

Lis,m)=P(@*)"', PeC[x];
(s, m,p)=cq ’*.

(1
Asimple but useful property of these functions is the following one: suppose n; and
", are two such representations with the same central character w; then, if x is a
multiplicative character of conductor B° we have

L(s,m;®y)=L(s,n,®@x)=1,

2

8(S,7C1®X, 1P)=8(Sa 7!2®X, IP), ( )
provided a is large enough. As a matter of fact, we have used this property several
times. For the sake of completeness, we give the (standard) proof in Sect. 2.
More generally, if  is an irreducible admissible representation of G, and ¢ an
ducible admissible representation of G,, then one can define factors L(s, z x o)
and es, 7 x g, y) and they have the property analogous to (2). Again we used this
ff!Ct before. The purpose of this paper is to give a proof of it (Sect. 4). In Sect. 3 we
8Ie a property of the conductor of a representation x, that is of the ideal B/, with f
81n(1); it is used in an essential way in Sect. 4.

irre
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2. The Case of one Representation

(2.1) Let again 7 be an irreducible admissible representation of G,. If f is a matrix
coefficient of = and & a Bruhat-function on the vector space M, of r by r matrices

we set
Z(D,s, f)= Gf ®(x) f(x)|detx|d” x, o

where d” x is a Haar measure on G,. The factor L(s, ) is the “g.c.d.” of the integrals
Z(®,s+3(r—1), f). As for the e-factor it is defined by the functional equation of
the integrals (1); namely if we set

s, m, w)=e(s, m, p)L(1 —s, R)L(s, ) ! 0))
then
Z(®", 1—s+3(0r-1), f)
=7(s, 1, P)Z(D, s +30— 1), 1), )
where fV(g)=f(g~") and ®" is the Fourier-transform of ®:
@ (x)=] B(y)p(Tr(yx))dy, )

dy being the self-dual Haar measure on M,.

(2.2) Proposition. Suppose n is as above; let w be its central character and
X1> X2s ---» Xr Characters of F* whose product is w. There is integer A >0 with the
following property: if a= A and y is a character of F* with the conductor P, then:

Ls,n®yp=1, W)

e(s, 7@, )= I &5, 11, v) - @
(2.3) Proof of (2.2.1). Because of the functorial property of the L-factor with
respect to induction, it suffices to prove our assertion for an “atom” of the theory,
that is, for a supercuspidal 7. If r=1 any character = of F* is a supercuspidal
representation and L(s,m)=1, as soon as « is ramified at all. If r>1 and 7 i
supercuspidal then L(s,7)=1. [

(2.4) Proof of (2.2.2). Assume first r> 1 and = supercuspidal. The definition of the
e-factor can then be reformulated as follows: let f be a matrix coefficient of w and ¢
an element of C®(F ) (locally constant functions of compact support). Then the
function @ on M, defined by

®(g)=f(g” p(detg), if detg+0; =0, otherwise, 1

is a Bruhat-function; its Fourier transform is similarly given by

2 @)=f(@H, p(detg) if detg+0; =0, otherwise, @

where
H,:Co(F*)—»C2(F”) G
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is a linear map, depending on z. Then:
s, 7, ) [ p(a)lal** ¢~ Vd*a
=[H,p(a)|a]' **¥~Vd*q,

forany @ € C2(F ™). The proof is an easy exercise which uses Schur-orthogonality
relations and Lemma 5.3 p. 59 in [G-J]. Formal properties of the map H, are:

@

H,(x"'¢)=1H.5,0), ®
for any character y of F*, and
(H:H,0) (x)=w(—Do[(—1)'x], 6

where w is the central character of 7 and 7 the representation contragredient to .
We shall use (4) to prove our result.

Before we embark on the proof we remark the following: suppose we have
proved equality (2.2.2) up to a positive factor, depending only on r. Then the

equation efs, 7, )e(l — 5, 7, ) =o(— 1)

will tell us that the factor is actually one. Thus we may, and will, ignore such
positive factors. In particular, we do not bother normalizing Haar measures.
(25) Welet ¢ be the characteristic function of ™ in F* and compute H, g 0. We
denote by & a prime element of R and by R, the subring of M, of matrices with
integral entries. For i>0 we denote by K; the congruence subgroup
K;=1+&'R, 1

in G,. There is an i >0 and a matrix coefficient f of « such that f(e)+0 and f is
invariant on both sides under K;. On the other hand, we let k be an integer — to be
taken sufficiently large. We set

j=k2 if kiseven, j=(k+1)/2 if kisodd. )
We let x be a character of conductor B¥. Since in any case 2j >k, the map

a—h=1+a
defines a group-isomorphism:

Pi/PE~(1+ P+ BY.
In particular, there is a ¢ in & *R* such that
() =y(ca), for aeP. 3
On the other hand, if & is in
then it has the form

h=1+4a, aedR,
and

det(h)=1+Tr(a) mod&*R,
Tr(@)=0 modd'R.
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It follows that

x(deth)=y[Tr(ca)]. )
The functions f and ¢ being as above we set
B(g)=f (g~ Dx(detg) 'o(detg), if detg+0, )
=0 otherwise .
Then, for k large enough,
é(g) = ng SG™Dx(detx)"tdx | p(Tr(gxh)dh, ©)

where G, is the group of g € G, such that |detg|= 1. The inner integral can also be
written as
WTrlgx) | y(Tr(gxa))da;

it vanishes unless x belongs to the set
X,=g &7 *R,. ™
Thus
P(g)= X {K p(detx) f(x~ )x(detx) ™ 'p(Tr(gx))dx
gi Bk

= _EK o(detx) f(x ™ y(detx) 'dx
- I T Mdet(W)y(Tr(gxh)dh . ®
K /K

Again the map a—h=1+a defines a group isomorphism
&'R, /R, ~K /K,
and the inner integral in (8) can be written as .
W(Tr(gx)) § x~* (det(1 +a))p(Tr(gxa))da

=y(Tr(gx)) § w(Tr(gx—ca))da.

The last integral is over «’R, and vanishes unless gx—c is in & /R, or, what
amounts to the same,
gxecK,_;.

Thus we find that " vanishes outside the set ¢G, and for g in that set is given by

@~ (g)=J f(x™Hx(detx) 'y(Tr(gx))dx, )

the integration being over g~ 'cK,_ /K.
Now if k is so large that k—j =i this is simply

&~ (g)= f (g)x(detg) ldetg] "(x, , ) (10)

where we have set |
0w, )=0" A N, (n

nGer=_§ . Y(dethyw(Tr(ch))dh. (12)

K Ky



Highly Ramified e-Factors 323

Thus, we have proved that

(Hyp,9) (@) =0(c "a)t(x, w,r)lal ™", (13)
or, by (2.4.1):

s, m@yx, W) =4 "y, @,7). (14)
The right hand side is now independent of 7. It remains to compute it.
(2.6) Lemma. Given r, if k is large enough and y has conductor B*, then:
n(r)=n(x 1)
Proof of Lemma (2.6). We may write an element h of K, _; in the form:
h=(14+u)(1+8)(1+v),

where u and v are strictly upper and lower triangular matrices and ¢ is diagonal -
each belonging to & /R,. We have deth=det(1 +5) and

Trh=Tr(1+ )+ Tr(uv) + Tr(udv).
Hence, if 3(k—j) =k, then
X~ (det(W)p(Tr(ch))
=y~ Y(det(1 + 8)w(Tr(c(1 + 8)))yw(Tr(cuv)) .
Thus, if 2(k—j) = k, we obtain
()= x~"(det(1 + y[Tr(c(1 +6))]dd
S [ Tr(cuv)]dudv .

The second integral is positive and may be ignored and the first is 5(x, 1)".
This concludes the proof of the lemma.
(27) Using the lemma we get

&5, 7@ x, v)=[a ™1~ (I, DTw™'(0).

This formula applies to the case r=1 as well (the proof we have just given being
then the classical one). Hence, for 1 <i<r, and k large enough:

&s, 2t w)=a""x~ (M D (), 1)
if y has conductor PB*. Then, as claimed:
s, n®yx, p)= H &(s, Xil> ¥) - @

Thus (2.2) is proved when = is supercuspidal.

The Pprevious proof shows that the right hand side of (2) depends only on r and
@, provided & is large enough (as is well known.) Again the functoriality of the &-
factor shows then that the formula is true in general. O

§2-8) Rfmark. Mutatis mutandis, the proof applies to the L and ¢ factors attached
0 an irreducible representation of the multiplicative group of a simple algebra.
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3. A Review of the Conductor

(3.1) Let = be an admissible irreducible representation of G, on a complex vector
space V. Assume = is generic. If N, is the group of upper triangular matrices with
unit diagonal we define a character 6 or 6, of N, by

)=y +ny3+...+n,_y,); 0]
to say that = is generic means there is a non zero linear form 4 on V such that
A[a(n)v]=0(n)v, for neN,. 0)

This linear form is then unique, up to a scalar factor, and we denote by #'(n; y) the
space of functions W on G, of the form

W(g)=AM=n(g)v), veV. 0)

We will need a few auxiliary notations. We let P, be the group of matrices pin G, of
the form
&l

g X
- 0 1)’ gEGr—l

and Z,~F* the center of G,. We also introduce the r by r matrix

0 -1
0o
w=| ‘1" @
1 0
and the row-matrix of length r
n,=(0,0,...,0,1). )]
We set
K,=GL(r,R)

and denote, for j>0, by K,(j) the subgroup of matrices k € K, of the form:

k=<z Z), acK,_,, deR*, c=0modP’. ©
If j =0 we set K,(0)=K,. Then if w is a character of F* (or R*), trivial on 1 +%,
we define a one-dimensional character w; of K,(j) by setting

o k)=wd), kasin(6), if j>O0; )
wik)=1, forallk, if j=0.

If f is the integer in formula (1.1.1) then the ideal P/ is called the conductor Ofﬂ
([J-P-S]II). If there exists a non-zero vector in V transforming under K,()
according to w; then w coincides with the central character of = on R an

necessarily j = f. Moreover, if  is the central character of 7 then the conductor ©
 is contained in P and the dimension of the space of vectors in V¥ transforminé
under K,(f) according to w, is one (loc.cit.; note, however, the notations are
slightly different). This property characterizes f.
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(32) In what follows we will need another characterization of the conductor. It
will be based on the following simple lemma. We let H be a smooth complex-
valued function on G, satisfying

H(ng)=0(m)H(9), neN,, geG,, (1)
and compactly supported modulo N,.
Lemma. With H as above, suppose that the integral

[ H(g)W(g)dyg
N\Gr

vanishes, for all admissible irreducible generic representations n of G, and all
WeW (n;y). Then H=0.
Proof. With trivial modifications the proof is word for word the same as that of
Lemma (3.5) in [J-P-S]II. O
(3.3) Next, for g€ G, of the form g=nak with ne N,, ke K, and

a=diag(a1’ [PTRE ar) ]

set

e(g)=lal. 1
We then have the following corollary:

Corollary. Fix a character w of F* and an integer j 2 0. Suppose that H satisfies the
conditions of the previous lemma and transforms on the right under K,(j) according to
;. Suppose further that H has support in the set of g€ G, satisfying

0g)2C, @
where C is a positive constant. Then the following conditions (A) and (B) are
equivalent :
(4) H(g)=08(n)w; *(k), if g=nk, neN,, keK,(),
=0 =0 if g¢N,K\().

{B) For any generic irreducible representation  of G, with central character w and
conductor pUA f <j, one has
| H(@W(g)|detgltdg= [ o;'(k)W(k)dk 3)
NAGy K.(j)

Jor all W e W (m; ).
The integral on the left is to be interpreted as a formal Laurent series
zX "'NI\ H(g)W(9)un(g)dg 4)

Vhere X =g-s, G is the set of geG, such that |detg|=q ™ and pu, the
characteristic function of Gr'. Because of the assumption on the support of H the
Products Hy,, have compact support modulo N,, so that the integrals in (4) are well
defined (cf. [J-P-S]1 and II).
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Proof. Clearly (A) implies (B). Assume (B). If = is any irreducible generic
representation of G, with conductor P, j< f, then the integral

| o7l (W(gk)dk
K(f)

vanishes for all W e # (n; y) and all g € G,. Thus both sides of equality (3) are thep
zero. Similarly, if 7 is any irreducible generic representation of G,, both sides of (3)
vanish, unless the central character w, of n agrees with w on R*. Thus condition
(B) is equivalent to another condition where equality (3) stands for all irreducible
generic representations 7 of G, and all W e#7(r; ). In view of the interpretation of
the left hand side of (3) this means that

{Hyp,dg=0 for m=0,
§ Hypodg = Kfm o; (k)W (k)dk .

Applying the previous lemma to each function Hy,, we get assertion 4. O

4. The Main Result

(4.1) Let n be an irreducible generic representation of G, and o an irreducible
generic representation of G,. In [J-P-S]1I we have defined functions L(s, 7 x ¢) and
(s, x a,y); we have also set

(s, x a,p)=¢(s, n X 0,P)L(1 —s, & X 6)/L(s,n X 0). 1)
We let w, (resp. w,) be the central character of = (resp. 9).
Proposition. Suppose n;, i=1, 2, (resp. ) is anirreducible generic representation of

G, (resp. G,) and w,, = w,,. There is an integer A with the following property. If yis
a character of F* with conductor PB°, a= A, then

15, (@)X 3, Y)=1(s, (1,®7) X 7 ). )

(4.2) We first remark that, by definition, the factors attached to the pair (7,7, 0)
where o is a character of F* are the same as the factors attached to 7,® yo (Sect. 1)
Thus we already know the proposition in case ¢t =1.

We also remark that we may apply this result to an arbitrary irreducible
generic representation 7; of G, and the irreducible generic component 7, of 3
“principal series representation”. More precisely, let x4, x5, ..., X, be characters of
F* whose product is ,,; let B be the group of upper triangular matrices in G, and
n, the generic component of the induced representation

§=Ind(G,,B; X1> X25 ""Xr) .
By Theorem (3.1) of [J-P-S] I, the right hand side of (4.1.2) is nothing but

l:I Ys, o X, W) -

At this point we may apply the result for t =1 and we see that if y, x5... X, =?= and

...n,=w, then 1

- s, (n®1) X 0, y) = Ii'I WS, X2 %) U
sJ
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provided a is large enough and y has conductor P°. In particular, we see that
’}’(S, (n®X)xo’w)=C0Xan, X’_"q—s’

where x has conductor B?, a is large enough, and C, depends only on y, w,,, and

Oy

(4.3) Reduction to the Case t=r—1. It is easy to see that we can reduce ourselves to
the case when t=r—1. If t<r—1, we can consider an induced representation

’7=Ind(Gr— 1s Q; OsN1sH2s oo Mp—1 —t)
where the #; are characters of F* and Q is a parabolic subgroup of type (¢, 1, ..., 1)
in G,_,. Then, if ¢’ is the unique irreducible generic component of », we have
(Theorem (13.1) of [J-S-P]I):
'y(S, (nl®X) X0, W)

ey
=1(s, (@) X ¢, ) / IJT (S, A ) -

Suppose Prop. (4.1) true for t =r— 1. Recall it is true for t =1. Then the right hand
side of (2) has the same value for i=1 and 2, provided the conductor of y is deep
enough and we get our assertion in the case (r, t), t <r— 1. Similarly, in the case t > r
we can consider an induced representation

¢=Ind(G,, Q; =, yy, Hasees Kot 1 >

to reduce ourselves to the case t=r—1.
(4.4) Next choose a character ¢ of conductor B2 such that, for i=1,2,
L(s, ;@& =L(s, 7,®¢ 1) =1,
os, @&, p)=Cig~"™;

this is possible by the case t = 1. At the cost of restricting a to be larger than B in the
proposition, we may replace x; by ;¢ and, therefore assume, for i=1,2: L(s, ©;)
=L(s,7;) =1, &(s, m;, ) = C;,q ~’*. In particular n, and n, have the same conductor
/. Moreover, the space #'(m;, ) contains exactly one vector W, , transforming
under - and taking the value 1 on e: this is the “essential vector” of [J-P-S]IL. Itis
clear from their construction (loc. cit.) that the functions W, , agree on P,Z,K,(f).

We now prove the identity (4.1.2), provided the conductor of x is PB* where
a1s large enough. We set w=w,,. A simple formal manipulation shows that
Fhe functional equation which defines y ([J-P-S] I, Theorem (2.7)) can be written

1 the form:
o (— 1)~ y(s, 1 X (6@ =;, )
with

L={W, [(g ‘1’) w,] W(g) detgt~*?dg @

s=iw| (3 O)| wiam-oaetar=da, ©
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and where W, is in #(n;;y) and W’ in # (c®y; w). We will take W, to be of the
form

1 u v
W(g)=IVV.-,o{g (0 1 0 ):l @)@, (v)dudy, @
00 1,,

where ¢ and ¢, are Bruhat functions on F and F"~2 to be chosen below. We are
going to show that ¢, ¢, and W’ may be so chosen that J, =J, +0 and then check
that I, =1I,. This will establish our assertion.

To proceed, in the expression for J; we set

(1 o)1 o
9= n)\x 1,_,

with te F*, hin N,_,\G,_, and then we get

t™1 0 0 1 0 0
J=iW,llo 1 0 (0 1 0
o 0 n \0 x 1,_,
(1 0\(1 0
W[(o h)(x 1)“’]

0"t ot [t (D) ]og ™ ,1)
[t~ D612 | deth|** 2dxd * tdh . ()

Of course ¢ is the Fourier transform of ¢.
Next we choose ¢ and ¢, in such a way that

M=,y " '(t), if |t|=1; =0 otherwise. (6)
¢1(tx)=w()Py(x), if |t]=1. (7)
$,(x)*+0 implies that ®)
1 0
(t 1 )EKr—l(f)'
X r—2
Then (5) becomes
1 00
Ji= [ Woll0 1 0|[Fh)dethls*"2dhn, 0
Nr-2\Gr-2
0 0 h

where we have set, for he G,_,,

10 0
F(h)=jW'[(0 h)(i lr_z)w,_l]q‘)l[—'x]dx. (10)

Furthermore the value of the right hand side of (9) does not change if we replace F
by the function F, defined by

Fo(9)= Im F(gk)ow (k)dk . (11

K,
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The next step is to choose W’ and ¢, in such a way that
Fo(h)=8,_;(mw;'(k), if g=nk (12)

withneN,_, and ke K, _,(f); )
=0 otherwise.

Of course @, is still constricted to satisfy (7) and (8). Then we will get from (9) the
simple relation Ji=cWo0), i=1,2,

where cis a positive constant independent of i. Since W, o(e) =1 (loc. cit.) we will get
J,=J,%0, as required.

To proceed we remark that F, satisfies the hypotheses of Corollary (3.3), for it
is a sum of functions of the form

hl—>W<0 h) with W,e #(a;9).

By this corollary, in order to obtain condition (1.2), we need only choose ¢, and W’
insuch a way that for any irreducible generic representation 7 of G, _ ,, with central
character w and conductor P/, j < f, the identity

[ Folq)W"(g)|detgl'dg

Nr-2\Gr-2

= - o; (kYW (k)dk, (13)

r=2

stands for any W” € % (z; ). Without loss of generality, we may even consider only
those W” which, under right-shifts, transforms according to the character w s of
K,_,(f). Then we may replace back F, by F without changing the left-hand side of
13).

To check that this choice of W’ and ¢, is possible, we start with the functional
equation which defines the factor y for the pair (¢®y, 7). We take it in the form [cf.
1 -
W =1y 205, 0@ x 7, ¥)

, 0 i
-J W'[(g ?)(W'Oz l)wr—l] W(g)|detgl*~ */%dg

=iw((y )| W@ etgrrag

"l(“iaklng into account the definition of F ((10)), we easily deduce the following
i
MU [ F@W(g) Ketgldg = o(~ 1) *3(s+,(6®) X ,v) (14)

0 _
) W’[(é 1) (W’O 2 ?)] @1[n,-291W"(g) |detgl’dg;

and we have to prove this is equal to the right-hand side of (13), for an appropriate
choice of W’ and ©,. Now by the induction hypothesis [cf. (4.2.2)]: '

S, (6®y) X T, ) =Co X~ D=2 X=q~5, 15)

Where C, depends solely on ¥, ®, and w,=w.
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To proceed, we choose W’ in such a way that the function

wo=w|(9 ) (" )] 0

has support in the set @ *“~VN,_,K,_,(f) and is such that
H/ (b—a(r—l)k)=C1C6lq—a(r—i)(r—Z)/z (17)

with
Cl =C!)('— l)r—2w((§a(r— 1))

and C, as in (15). Finally, we specify ¢, by requiring that, for xe F" 73, yeF,

¢01(x,y)=0"1d), if
x=0mod P~V y=p""U4, |d=1, (13)

and that ¢, be zero otherwise. Then (7) is satisfied in any case. Moreover ¢, has
support in the set of y=0mod P**~ Y~/ so that condition (8) is also satisfied,
provided a is large compared to f.

With these choices then we see finally that the right-hand side of (14) reduces to
the right-hand side of (13). Hence we have established that J, =J, 0.

It remains to see that I, =1, [cf. (2)]. It suffices to show that the functions

e[ (§ )]

agree. Since W, o and W, , agree on the subset P,.Z, K,(f) and W, is related to W, ,
by (4), it will be enough to show that

owe,(x,y)*+0, ueF, xeF ™3, yeF, (19
implies that the matrix
1 u x y
01 0 0
' 20
Ylo o 1,., 0 @)
00 o0 1

belongs to P,Z,K,(f). But this matrix can also be written as the following product:

1 0 o /1 0 y!
0 w_, 0] [0 1,_, 0
o o 1/ lo o 1

-yt 0 0 1 0 0
0 1,0 |0 1,0
0 y yt 0 1

(=20
o O O
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The first three matrices are in P,Z,. The product of the last two can also be written
as

1 u x O 1 0 0 0
01 0 O 0 1 0 0
001,,0/1l0 o0 1., 0f 20
00 0 1 y Uyt oyix 1

The first of these two matrices is in P,. Finally we may assume a is so large that Pp°
is contained in the conductor of w,. Then [formula (6)] ¢ is constant on the cosets
of B*in F. Thus ¢ is supported on B ~* and in the second matrix ue P~* By (18)
y le@** YR*. Thus y~'ue P*r~»CP* since r>2. Assuming a2 f we have
y~'ue P’ and y~ ! e P’ Finally by (18) again, x isin P~ V*/ so y~'xis in P/.
Thus the second matrix in (21) is in K,(f) and with that the proofis complete. [

5. Complements

(5.1) Proposition. Let n and ¢ be two irreducible generic representations of G, and G,
respectively. If a is large enough and y has conductor B* then

L(s,(n®y) x a)=1.

Proof. Suppose first that = and o are supercuspidal. One may as well assume they
are preunitary and  is a character of module one. Then, by [J-P-S]II Proposition
(8.3), the factors

L(s,(x®y) x0), L(s,(A®x™ ") %)
have no pole in the region Re(s)>0. In particular the fraction
L(1 —s,(A®x ") x §)/L(s, (n®@y) X 0)

is in irreducible form. Since it is equal to the y-factor, up to a monomial factor, we
see that it is itself a monomial, if the conductor of y is deep enough. Then

L(s,(n®y)xo)=1.
In general 7 and ¢ are components of induced representations
¢=Ind(G,,Q; Ty, pys .ovs M) »
n=Ind(G, S;0,,0,,...,0,),
where the #; and the o; are supercuspidal. Then:
L(s,(n®x) x 6)=P,(q™") ﬂ L(s, (m,®@7) X 6))

where P, is a polynomial ([J-P-S]1, Theorem (3.1)) and our assertion follows.

(52) Remark. Even if = and ¢ are not generic it is possible to define the factors L
and ¢ ([J-P-S]1). Propositions (5.1) and (4.1) are then true for all pairs.
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