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ABSTRACT. We propose a new approach to the Gross-Prasad conjecture for
unitary groups. It is based on a relative trace formula. As evidence for the
soundness of this approach, we prove the infinitesimal form of the relevant
fundamental lemma in the case of unitary groups in three variables.
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2 HERVE JACQUET AND STEPHEN RALLIS

1. Introduction

Consider a quadratic extension of number fields E/F. Let n be the corre-
sponding quadratic idele-class character of F. Denote by o the non trivial element
of Gal(E/F). We often write o(z) = Z and N,(z) = 2z. Let U, be a unitary
group in n variables and U,,_1 a unitary group in (n — 1) variables. Suppose that
t:Uyp_1 — U, is an embedding. In a precise way, let 8 be an Hermitian non-
degenerate form on an E vector space V,, and let e, € V,, be a vector such that
B(en,en) = 1. Let V;,_1 be the orthogonal complement of e,,. Then let U, be the
automorphism group of 3, and let U,_; be the automorphism group of 3
Then ¢ is defined by the conditions ¢(h)e, = e, and ¢(h)v = hv for v € V,,_1.

Let 7 be an automorphic cuspidal representation of U,, and o an automorphic
cuspidal representation of U, _;. For ¢, in the space of m and ¢, in the space of o
set

(1) Av (¢, d0) =

Vi-1*

/ B (1) (R}
Un—1(F)\Up_1(Fy)

Suppose that this bilinear form does not vanish identically. Let II be the standard
base change of 7 to Gl,,(E) and let X be the standard base change of ¢ to Gl,,—1(FE).
For simplicity, assume that II and ¥ are themselves cuspidal. The conjecture of
Gross-Prasad for orthogonal groups extends to the present set up of unitary groups
and predict that the central value of the L—function L(s,II x X) does not vanish.
Cases of this conjecture have been proved by Jiang, Ginzburg and Rallis, at least
in the context of orthogonal groups ([15] and [16]). The conjecture has to be
made much more precise. One must ask to which extent the converse is true. One
must specify which forms of the unitary group and which element of the packets
corresponding to IT and ¥ are to be used in the formulation of the converse. Finally,
the relation between Ay (or rather AUTU) and the L—value should be made more
precise.

We will not discuss the general case, where there is no restriction on the repre-
sentations. We remark however that the case where o is trivial or one dimensional
is already very interesting even in the case n = 2 (See [10]) and n = 3 (See [18],
[19], [20], also [3], [4]).

In this note we propose an approach based on a relative trace formula. The
results of this note are quite modest. We only prove the infinitesimal form of
the fundamental lemma for the case n = 3. We do not claim this implies the
fundamental lemma itself or the smooth matching of functions. We hope, however,
this will interest other mathematicians. In particular, we feel the fundamental
lemma itself is an interesting problem.

We now describe in rough form the relative trace formula at hand. Let f,, and
fn—1 be smooth functions of compact support on U,,(Fy) and U,,_1 (F ) respectively.
We introduce the distribution

(2) Amo(fn ® fo-1) = Z Au(m(fn)br; 0(fn-1)P0)Av(Pn, bo) ,

where the sum is over orthonormal bases for each representation.
Let ¢ : Gl,,—1 — GI,, be the obvious embedding. For ¢y in the space of II and
¢y in the space of X, we define

3) Ac(6m, ds) = / on(u(9))dx(9)dg

Gl —1(E)\Glp—1(Ey)
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Thus the bilinear form Ag is non-zero if and only if L(1,II x £) # 0. In fact we
understand completely the relation between the special value and the bilinear form
Ag.

Say that n is odd. Let us also set

(4) Py(¢n) = #11(g0)dgo

/Gln(F)\Gln(FA)

(5) Poo1(ds) = n(det go)Px(g0)dgo

/Gln_l(F)\Gln_l(FA)
Strictly speaking, the first integral should be over the quotient of

{9 € Gln(Fa) : |detg| =1}

by Gl,(F). Similarly for the other integral. The study of the poles of the Asai
L—function and its integral representation (see [2] and [3], also [9]) predict that P,
and P,_; are not identically 0. If n is even, then 1 must appear in the definition
of P, and not appear in the definition of P,_;. This will change somewhat the
following discussion but will lead to the same infinitesimal analog.

Let f; and f!_; be smooth functions of compact support on Gl,,(Es) and

n

Gl,,—1(E,) respectively. Consider the distribution
(6) Ans(fy, ® fr1) =

> Ac((f)éu, 0 (fr_1)éw) Pa(én) Pui(ds) ,

where the sum is over an orthonormal basis of the representations.
One should have an equality

(7) Aﬂ,a(fn®fnfl):AH,E(.ﬂL@f;fl),

for pairs (fn, fn_1) and (f}, f/,_,) satisfying an appropriate condition of matching
orbital integrals. In turn, the equality should be used to understand the precise
relation between the L value and the bilinear form Ag.

To continue, we associate to the function f, ® f,—1 in the usual way a kernel
Kf,f,-1(91: 92,h1 : h2) on

(Un(Fp) X Up—1(Fn)) X (Un(Fa) X Up—1(Fy)) -

The kernel is invariant on the left by the group of rational points. We consider the
(regularized) integral

(8)

/ K wr,_1((g2) t g2, t(h2) : ho)dgadhs .
(Un—1(F)\Un_1(Fyy)

Likewise, we associate to the function f), ® f;,_; a kernel K%, o ./ B (91 :g2,h1:
hs) on
(Gln(EA) X Gln_l(EA)) X (Gln(EA) X Gln_1(EA))

and we consider the (regularized) integral

(9) /K}T/L@f;b_l (L(gg) L g2, h1 : hg)dggdhlﬂ(det hg)dhg
where

g2 € Gl 1 (EN\Glo_1(Es) , h1 € Gly(F\GLy(Fy) , ha € Gly_1(F)\Gly_1(Fy).
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The conditions of matching orbital integrals should guarantee that (8) and (9) are
equal. In turn this should imply (7).
In more detail, (8) is equal to

/ Z fn t(g2) ’Yb(hz))) Z fn1 (gglfhz))dg2dh2
YEUR(F) E€U, 1 (F)
or

/ Z fn Wg)yu(ha)) Y fa-1(g2ths))dgadhs .
~YEUR( EeUn—1(F)
In the sum over v we may replace v by ¢(§)y. Then ¢(g2£) appears. Now we combine
the sum over £ and the integral over gy € U,,—1(F)\U,—1(Fa) into an integral for
g2 € Unfl(EA) to get

|3 g2 etha))) fus (g2he)dgache.
S
After a change of variables, this becomes
3 b (g2)et) ya(h2)) £ (92) g
S
At this point, we introduce a new function f, ,—1 on U, (Fa) defined by

(10) Frni(g) = / o 10200 s (02) o

Then we can rewrite the previous expression as
/ > a1 (lha) " v e(ha)) dhs
Un—1(F)\Un—1(Fa)
The group U, —1 operate on U, by conjugation:
v = ()~ u(h)

For regular elements of U, (F)) the stabilizer is trivial. Thus, ignoring terms which
are not regular, the above expression can be rewritten

(11) Z/ - Fu (e(h) " ye(h)) dh,

where the sum is now over a set of representatives for the regular orbits of U,,_1 (F)
in U, (F).
Likewise, we can write (9) in the form

/ Z ) S F (g3 €ha)n(det ho)dgsdhydhs

YEGL( €€Gl,_1(F)
The same kind of manipulation as before gives
> Fu(lg2)vha) -1 (92ha)dgadhan(det hy)dhs
YEGIL,(E)

where now go is in Gl,,—1(E,). If we change variables, this becomes

/ > Fiug2)uha) " vha) fr -1 (92)dgadhin(det hy)dhs .

YEGI,(E)
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We introduce a new function f;, , _; on Gl,,(E,) defined by

13

frnnl)= [ fulle)o)fi s (o2)doe.
Glnfl(EA\)
The above expression can be rewritten
[ X fnstelha) o) dhan(et ha)ane.

YEGIL(E)

where hy is in Gl (F)\GI,(Fy) and hs is in Gl,,—1 (F)\Gl,—1(Fy). We also write
this as

w o [ x ( / f;,M(L(hz)-Whl)dhl) n(det ho)dhy
YEGI,(E)/Gl,(F)

with h; € Gln(FA)
At this point we introduce the symmetric space S,, defined by the equation
ss” = 1. Thus

(13) Sp(F):={s€Gl,(F):ss=1.}
Let ®,, ,—1 be the function on S,,(Fy) defined by

(I>n,n71(g§71) = / fé,nfl(ghl)dhl .
Gl (Fy)

The expression (12) can be written as

/ Dy, -1 [t(h2) " €u(ho)] n(det ho)dhy .
Glnfl(FAx)/Glnfl(F) gesn(F)
The group Gl,,(F) operates on S, (F) by

s+ 1(g) " su(g) .

Again, for regular elements of S, (F') the stabilizer under Gl,,_; (F') is trivial. Thus,
at the cost of ignoring non regular elements, we get

-1
(14) 25: /G o D, 1 (L(h)~Leu(R)) n(det h)dh,

where the sum is over a set of representatives for the regular orbits of Gl,,_1(F) in
Sn(F).

To carry through our trace formula we need to find a way to match regular
orbits of U,_1(F) in U,(F) with regular orbits of Gl,_1(F) in S,(F). We will
use the notation £ — £’ for such a matching. The global condition of matching
orbital integrals is then

/ fn,n—l(L(h)ilfb(h))dh =
Up—1(Fn)

/ Dy 1 ()R 0 () (dlet h)dh
Glp—1(Fn)

if £ — & If ¢ does not correspond to any £ then

/@n,n,l(L(h)—lg'L(h)n(det h)dh = 0.
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A formula of this type is discussed in [6], [7], [8] for n = 2. Or rather, the results
of these papers could be modified to recover a trace formula of the above type.

As a first step, we consider the infinitesimal analog of the above trave formula.
Now n needs not be odd. We set &,, = M(n x n,E). We often drop the index n
if this does not create confusion. We let 4,, C &,, be the Lie algebra of the group
U,. Then U,_; operates on i, by conjugation. Likewise, we consider the vector
space G, tangent to .S, at the origin. This is the vector space of matrices X € &,,
such that X + X = 0. Again the group Gl,_1(F) operates by conjugation on &,,.
The trace formula we have in mind is

(15) £ () €u(h)) di =

/Un_1(F)\Un—1(FA\) EeUL(F)

/ ® ((h)~'¢'t(h)) n(det h)dh,

Glor (F\Glo-1(F4) g5 (F)
where f is a smooth function of compact support on i, (Fy) and ® a smooth
function of compact support on &, (F). Once more, the integrals on both sides
are not convergent and need to be regularized. The equality takes place if the
functions satisfy a certain matching orbital integral condition. We will define a
notion of strongly regular elements and a condition of matching of strongly regular
elements noted

§—¢.

Then the global condition of matching between functions is as before: if & — &
then

/ £ (h)e(h)~r) dh
Up—1(Fn)

= / ® ((h)€'t(h) ™) n(det h)dh;
Glnfl(FA\)
if ¢ does not correspond to a & then
/ ® ((h)&u(h) ) n(det h)dh = 0.
Glnfl(FA)
We now investigate in detail the matching of orbits announced above.

2. Orbits of Gl,,_1(E)

Let F be an arbitrary field. We first introduce a convenient definition. Let
P,, P,_1 be two polynomials of degree n and n — 1 respectively in E[X]. We will
say that they are strongly relatively prime if the following condition is satisfied.
There exists a sequence of polynomials P; of degree ¢, n > ¢ > 0, where P, and
P, _ are the given polynomials, and the P; are defined inductively by the relation

Piio=QiPi1+ P

In particular, Py is a non-zero constant. In other words, we demand that the P, and
P,_1 be relatively prime and the Euclidean algorithm which gives the (constant)
G.C.D. of P, and P, _1 have exactly n—1 steps. Of course the sequence, if it exists,
is unique. Moreover, for each 4, the polynomials P; i, P; are strongly relatively
prime.
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Let V,, be a vector space of dimension n over the field E. We often write V,,(E)
for V,,. We set & = Hompg(V,,,V,,). Let e, € V,, and €} € V¥ (dual vector space).
Assume (e}, e,) # 0. Let V,,_1 be the kernel of e}. Thus

Vn = anl D E@n .
We define an embedding ¢ : GI(V,,—1(E)) — GI(V,,(E)) by
(g)vn—1 = gup_q forv,_1 € V,_q,
g)en = en.
We let GI(V,,(E)) acts on V;* on the right by
(v'g,v) = (v*, gv).

Then ¢(GI(V,—1(F))) is the subgroup of GI((V,,)(E)) which fixes e} and e,,.
Suppose A4, € . We can represent A, by a matrix

Apn_1 et
( €1 n ) ’

with A,_; € Hom(V,,—1,Vs—1), en—1 € V1, €1 € V.1, a, € E. This means
that, for all v,,_1 € V,,_1(E),

An(vn-1) = Ap—1(vn—1) + (€51, Vn—1)€n
and

An(en) = en—1 + ane, .

In particular

An(en—1) = An_1(en—1) +{e_1,en_1)en.

The group GI(V,,_1(FE)) acts on & by

A u(g)Au(g)™t
The operator ¢(g)Ai(g)~! is represented by the matrix

9An-19"" gen—

e2—19_1 an
Thus the scalar product (ef_;,e,—1) is an invariant of this action. We oft3en call
it the first invariant of this action. Moreover, if we replace e, and e} by scalar
multiples, the spaces V;,_1, Fe, and the scalar product (e} _;,e,—1) do not change.

We will say that A4, is strongly regular with respect to the pair (e,,e}) (or
with respect to the pair (V,,_1,e,)) if the polynomials

det(A, — ) and det(A,—1 — )

are strongly relatively prime.
Now assume that A, is strongly regular with respect to (e,, e’ ). We have

det(An — A) = (@ — A) det(An_y — ) + R(\)

with R of degree n — 2. The leading term of R is —(e}_1,e,)(=A)""2. Thus
(el _1,en) is non-zero. Thus we can write

anl = Vn72 3] E6n71

where V,,_q is the kernel of e _; and represent A,,_; by a matrix

An72 €n—2
€ng Gn-1 )’
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with A,—2 € Hom(V,—2, Vii—2), en—2 € Vyy_a, €1 € V¥ 5, an—1 € E. As before,
this means that

Apn—1(vn—2) = An—2(vn—2) + (€, 2, Vn—2)en—1

An—1(en—1) =en—o+apn—1€n_1.
Choose a basis €;, 1 <i <n —2 of V,,_5. Since (e}_,¢;) =0 we have
An(ei) = An—1(ei) + (€1, €i)en = An—1(€) = An—z(€) + (€, g, €i)en—1-

On the other hand,

Ap(en—1) =en—a+tan_1en_1+ (€ _1,en_1)€n.

Thus the matrix of A, with respect to the basis

(617 €2,...,€p_2,€6n_1, en)
has the form
Mat(An72) *n—2 077,72
(16) * 2 Ap—1 1
on—2 (e 1 en—1)en  an
where Mat(A,,_2) is the matrix of A, _o with respect to the basis (e1,€2,...,€,-2).
The index n— 2 indicates a column of size n — 2 and the exponent n—2 a row of size
n — 2. Likewise the matrix of A, _; with respect to the basis (€1, €2,...,€n-2,€n_1)
has the form
Mat(An,Q) *p—92
12 an—1 '

It follows that
det(A, — A) =det(An_1 — N)(an — A) — (e} _1,en—1)det(Ap_2 — N).
Thus the polynomials det(A,—1 — A) and det(A,_2 — \) are strongly relatively
prime and the operator A, _; is strongly regular with respect to (en—1,€e%_1). At
this point we proceed inductively. We construct a sequence of subspaces
VicVWecCc---CV,-.1CV,

with dim(V;) = i, vectors e; € V;, and linear forms ef € V;* such that V;_; is the
kernel of ef. The matrix of A,, with respect to the basis

(elveQa-"7€n—17en)
is the tridiagonal matrix
a; 1 0 o - 0 0 0 0
C1 as 1 0 0 0 0 0
0 Co as 1 0 0 0 0
(17) L
0 0 0 0 Ch—3 Qp_2 1 0
0 0 0 0 0 Cp—2 Ap—1 1
0 0 0 o - 0 0 Cn—1 Qn

where ¢; = (e}, e;) # 0. We note the relations

det(Az — )\) = det(Al-_l — )\) — Cij—1 det(Al-_g — )\) s ) 2 2.
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Now suppoe
! / /
(617 €9yt en—l)

is a basis of V,,_1 and the matrix of A,, with respect to the basis

(€], €5, ... e _1,€n)
has the form
@ 1 0 0 0o 0 0 0
g ady 1 0 0 0 0 0
0 ¢ a 1 O 0 0 0
0 0 0 0 - & 4 ad , 1 0
o 0 0 0 - 0 d, 5 a,q 1
0 0 0 0 0 c_, a,

Thus, for ¢ > 1
Ape; = €1 +aje; + ci_1ei41

(where €], = ey, e_1 = 0 and €], ; = 0) Call A} the sub square matrix obtained by
deleting the last n — ¢ rows and the last n — ¢ columns. Then we have

det(A; = \) =det(A;,_; —\) —c;_;det(A,_5 —N),i>2.
Also

det(A, — \) =det(Al, — \), det(A,—1 — \) =det(Al,_; — \).

It follows inductively that a; = a}, ¢; = ¢, €} =e,.

J
We have proved the following Proposition.

PROPOSITION 1. If A is strongly regular with respect to the pair (V,_1,en)
there is a unique basis
(61, €2,... en,1>
of Viu_1 such that the matrixz of A with respect to the basis
(elv €2,...6p—1, en)
has the form (17). In particular, the a;, 1 <i <n, and the ¢c;, 1 < j <mn—1, are
uniquely determined.

REMARK. If we demand that the matrix have the form

@, ¥ 0 0 -~ 0 0 0 0
¢y dy by 0 ... 0 0 0 0
0 ¢ ay by - 0 0 0 0
0 0 0 0 - ¢y dpy b,y 0
0 0 0 O A 0 C,/niz a;l71 b’lﬂfl
0O 0 0 0 o 0 d_, d

with respect to a basis of the form

(€],€h, ... _1,en)

b
/ / !/ 4 3 ! o AP
where (€, ¢€5,...€),_1) is a basis of Vj,_1, then aj = a;, 1 < i < n, bic; = ¢;,

1 <i<n—1 and the ¢} are scalar multiple of the e;.
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According to [21], an element A,, € & is regular if the vectors
Al len 1,0<i<n—2
are linearly independent and the linear forms

efAL_1,0<i<n-—2

n—1>
are linearly independent. This is equivalent to the condition that the stabilizer
of A, in GI(V,,(E)) be trivial and the orbit of A, under GI(V,(FE)) be Zariski
closed. A strongly regular element is regular. The above and forthcoming discus-
sion concerning strongly regular elements should apply to regular elements as well.

However, we have verified it is so only in the case n = 2, 3.

3. Orbits of Gl,,_1(F)

Now suppose that F is a quadratic extension of F'. Let o be the non trivial
element of the Galois group of E/F.

Suppose that V,, is given an F form. For clarity we often write V,,(E) for V,,
and V,(F) for the F—form. We denote by v +— v the corresponding action of o
on V,(E). Then V,(F) is the space of v € V,,(E) such that v7 = v. We assume
e? = e, and V,7_; =V, 1. We have an action of o0 on Hong(V,,, V},) noted A — A°
and defined by

A% (v) = A(v7).
We denote by & the space of A € Hong(V;,, V) such that
A% =-A.

The group GI(V,,—1(F')) can be identified with the group of g € GI(V,,_1(E)) fixed
by o. It operates on &.

We say that an element of G,, is strongly regular if it is strongly regular as an
element of Hong(V;,,V,,). We study the orbits of GI(V,,(F)) in the set of strongly
regular elements of &.

We fix /7 such that F = F (/7). If A is strongly regular, there is a unique
basis (e1, e, ..., en—1) of V,,(F) such that the matrix of A with respect to the basis

(e1,€2,- - €n_1,€n)
has the form
ay /T O 0 0 0 0 0
% as T O 0 0 0 0
0 % az T 0 0 0 0
(18) S
o o 0 0 -- “"fj' n_2 7T 0
0 0 0 0 - 0 2 oa VT
0 0 0 0 0 0 il g,

\/,T_

Then the a; and the c¢; are the invariants of A. Furthermore, a; € F /T and
¢; € F*. Two strongly regular elements A and A’ of &,, are conjugate under
Gl(V,—1(F)) if and only they are conjugate under GI(V;,_1(FE)), or, equivalently,
if and only if they have the same invariants. Finally, given a; € F\/7, 1 <1 < n,
and ¢; € F*, 1 < j <n—1, there is a strongly regular element of &,, with those
invariants.
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4. Orbits of U,,_1

Let V,, be a E—vector space of dimension n and  a non-degenerate Hermitian
form on V,,. Let e, be an anisotropic vector, that is,

Blen,en) #0.

Usually, we will scale 8 by demanding that 3(en,e,) = 1.
Let V,,_1 be the subspace orthogonal to e,,. Thus

Viw=V,_1® Fe,,.

Let U(f3) be the unitary group of 5. Let 6 be the restriction of 8 to V,,—1. and U(0)
the unitary group of §. Thus we have an injection ¢ : U(0) — U (). We have the ad-
joint action of U(3) on Lie(U(8)) and thus an action of U(#) on Lie(U(3)). We have
an embedding of Lie(U(f3)) into Hom(V,,, V,,). We say that an element of Lie(U(3))
is strongly regular if it is strongly regular as an element of Homg(V,,,V,,). As
before to A,, € Homg(V,,,V,,) we associate a matrix

Ap_1 en_1
en_1 Qn .
The condition that A,, be in Lie(U(8)) is
Ap—1 €Lie(U)),an+a, =0

and
* ﬁ(vv enfl)
€n_1,0) = ———
< ! > B(ena en)
for all v € V,,_1. Thus the first invariant of the matrix is
* ﬁ(en—h €n—1)
€, €p) = ————— .
< > B(en,en)

Assume that A, is strongly regular. Then S(e,—1,en—1) # 0 and V1 is an
orthogonal direct sum

Vi1 = Vo ® Fep_q .
We can then repeat the process and obtain in this way an orthogonal basis
(e1,€2,. . y€n_1,€n-1)
such that 3(e;, e;) # 0 and the matrix of A,, with respect to the basis
(e1,€2,. .. €n_1,€n)

has the form (17). Moreover, it is the only orthogonal basis with this property. In
addition, for 1 <i<n-—1,

Blei, ei)
Bleit1, €it1)
Finally, a; € F\/Tfor1 <i <mnandc¢; € F* for1 < j <n—1. Two strongly regular
elements of Lie(U(3)) are conjugate under U(6) if and only if they are conjugate
under GI(V;,_1), or, what amounts to the same, have the same invariants.

From now on let us scale 8 by demanding that 3(e,,e,) = 1. Then 6 determine
0 and we write § = 6°.

C; = —
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Given a; € F\/7,1<i<mn,c¢j € F*,1<j<n—1 there is a non degenerate
Hermitian form 6 on V,,_1, a strongly regular element A of Lie(U(6°)) whose in-
variants are the a; and the c¢;. The isomorphism class of ¢ is uniquely determined
and for any choice of 6 the conjugacy class of A under U(6) is uniquely determined.

The determinant of 0 is equal to

(n—1)n _

(-1)" 2z cica-clTy.

— =

5. Comparison of the orbits, the fundamental lemma

We now consider a E—vector space V;, and a vector e,, # 0, a linear complement
V,._1 of e,. We are also given a F'—form of V,, or what amounts to the same an
action of ¢ on V,,. We assume that e = e, and V.7 ; = V,,_;. For an Hermitian
form 6 on V,,_; we denote by #¢ the Hermitian form on V,, such that V,,_; and
E,, are orthogonal, 6¢|V,_; = 0, 6°(e,,e,) = 1. Then U(0) C GI(V,—1(E)) and
Gl(Vp—1(F)) C GU(V,—1(E)). Let & be a strongly regular element of Lie(U(6¢))
and & a strongly regular element of & we say that £’ matches £ and we write

§—=¢

if £ and £’ have the same invariants, or, what amounts to the same, are conjugate
under GI(V,,(E)). Every £ matches a . The converse is not true. However, given
&’ there is a 6 and a strongly regular element £ of Lie(U(6¢)) such that & — ¢’.
The form @ is unique, within equivalence, and the element £ is unique, within
conjugation by U(0).

For instance, suppose that F is a quadratic extension of F, a local, non-
Archimedean fields. Up to equivalence, there are only two choices for 6. Let 6
be a form whose determinant is a norm and #; a form whose determinant is not
a norm. Let ¢’ be a strongly regular element of &(F) and ¢;, 1 < i < n — 1 the
corresponding invariants. If

(n—1)n 9

_1 2 cic ...C’n’71
(=1 >

n—1
is a norm then £’ matches an element Lie(U(0§)). Otherwise it matches an element
of Lie(U (6%)).

We have a conjecture of smooth matching. If ® is a smooth function of
compact support on &(F) and &’ is strongly regular, we define the orbital integral

0(e®) = [ @ (g)€'u(g)"") n(det g)dg.
GlU(Vyp—1(F))

Likewise, if f;, i = 0,1, is a smooth function of compact support on Lie(U(6¢)(F),

& a strongly regular element, we define the orbital integral

(6 fi) = / fi(u(9)E(g)H)dg

U63)(F)

CONJECTURE 1 (Smooth matching). There is a factor 7(£'), defined for &
strongly reqular with the following property. Given ® there is a pair (fo, f1) and
conversely such that

Qg (&, @) = 7(8)Q, (&, fi)
if & — ¢
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We have a conjectural fundamental lemma. Assume that E/F is an unram-
ified quadratic extension and the residual characteristic is odd. Thus —1 is a norm
in E. To be specific let us take V,, = E", V,,(F) = F™,

0

en =

_ o % O

Vn_1(E) ~ E"! the space of column vectors whose last entry is 0. Finally let 6,
be the form whose matrix is the identity matrix. Thus Lie(U(6§)) is the space of
matrices A € M(n x n, E) such that A+ *A = 0. On the other hand &(F) is the
space of matrices A such that A+ A = 0.

Let fo (resp. ®¢) be the characteristic function of the matrices with integral
entries in Lie(U(65)) (resp. &(F')). Choose the Haar measures so that the standard
maximal compact subgroups have mass 1.

CONJECTURE 2 (fundamental lemma). Let & be a strongly reqular element of
S(F) and a;, cj the corresponding invariants. If
cq C% e CZ:

==

has even valuation, then
Qa (€, @0) = 7(£) s, (&, fo) »
where & € Lie(U(0§)) matches & and 7(&') = £1. Otherwise
Qc(€,®) =0.
Before we proceed we remark that in the general setting the linear forms
A, — Tr(4,), — Tr(An-1)

are invariant under GI(V,,—1(E)). Thus in the above discussion and conjectures we
may replace & := Hom(V,,, V},) by the space

g:={A, :Tr(4,) =0, Tr(A,—1) = 0}.
Then Lie(U(6y)€) is replaced by
ug, := Lie(U(65)) Ng
and G by
s:=6Ng.
6. Smooth matching and the fundamental Lemma for n = 2

Let E/F be an arbitrary quadratic extension. We choose 7 such that £ = F'\/T.
For n = 2 we take Vo = E? and V; = E. Then

o~ {(1) pecr}

The only invariant is the determinant. There is no difference between between
regular and strongly regular. The above element is regular if and only if bc # 0.

Similarly,
0 v /77 r T
5= J 0 4+ =0,c+c=0;.
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(6 1)

with § € F>*. The isomorphism class of 3 depends on the class of §# modulo the
subgroup N,.(E*) of norms. The corresponding vector space ug(F') is the space of

matrices of the form
0 b
-9 0 )

Such an element is regular if b # 0. The group U;(F) = {¢ : tt = 1} operates by
conjugation. The action of t is given by:

0 b . 0 bt
—-b0 0 bt 0 )

The only invariant of this action is the determinant. Two regular elements

0 b1 0 b
—b10 0 )7\ —b8 O

are in the same orbit if and only if b1by = boby. The only non-regular element is
the 0 matrix.
On the other hand s(F') is the space of matrices of the form
( g b\oﬁ) ,b,ce F.
\/;
Such an element is regular if and only if bc # 0. The group F'* operates by
conjugation. The action of t € F'* is given by

0 byT 0 btyT
_c_ 0 = t le 0 .
NG VT

The orbits of non-regular elements are the 0 matrix and the orbit of the following

elements
( 0 V7 > ( 0 0 )
sl .
0 O NG 0

The only invariant of this action is the determinant. Two regular elements
0 b7 0  bo/T
<1 0 ’ L2 0
VT VT

are conjugate if and only if byc; = baco.
The correspondence between regular elements is as follows:

( 0 b> ( 0 b’ﬁ)
— — o
~0 0 < 0

if bb) = —b'c’. Thus we have a bijection between the disjoint union of the regular
orbits of the spaces ug(F'), @ € E* /N, F*), and the regular orbits in s(F).

Now suppose that F/F is a local extension. Modulo the group of norms we
have two choices 6§y and 6; for 6. For f; smooth of compact support on u; := uy,
the orbital integral evaluated on

0 b
€i<—9ib 0>

The matrix of § has the form
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0 bu
Qu(fi, &) —/U1 fi( 950 0 )du-
The integral depends only on bb and can be written as
Qu(fi, —0:bb) .

For ® smooth of compact support on [ the orbital integral evaluated on

e-(L )

=
0 ay/Tt
(1 \OF )n(t)dxt-
Vit

has the form

takes the form

Q(@.0):= 2(1.¢) = [
FX
We appeal to the following Lemma
LEMMA 1. Let E/F be a quadratic extension of local fields and n the corre-
sponding quadratic character. Given a smooth function of compact support ¢ on
F?, there are two smooth functions of compact support on F ¢1, ¢ such that

[ ot atmtat = (@) + n(aénta)
and
01(0) = [ ole.0ma)d* e, 62(0) = [ o0.2)n(@)a".
Conversely, given ¢1, @2 there is ¢ such that the above conditions are satisfied.

Here we recall that the local Tate integral

/ o(@)n(@)leld*x

converges absolutely for #s > 0 and extends to a meromorphic function of s which
is holomorphic at s = 0. The improper integral

[ o@myiza

is the value at s = 0.
The lemma implies that

Qc(®,a) = ¢1(a) + n(a)¢z(a)
where ¢1, @2 are smooth functions of compact support on F. Then the condition
that the pair (fy, f1) matches ® becomes

Qu(fi, —bbO;) = p1(—bbb;) + n(—0;)da(—bb;) .
It is then clear that given ® there is a matching pair (fo, f1) and conversely.
We pass to the fundamental lemma. We assume the field are non Archimedean,
the residual characteristic is odd, and the extension is unramified. We take 7 to
be a unit. We also take §y = 1. On the other hand 6 is any element with odd

valuation. Let fy be the characteristic function of the integral elements of 1y. Then,
with the previous notations,

-t - % )
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This is zero unless |bb| < 1 in which case it is 1. On the other hand, let ®; be the
characteristic function of thee integrals elements of s. Then

Qc(Po,a) :/ n(t)d*t.
1<[¢t|<a| 7t

This is zero unless |a] < 1. Then it is zero unless a is a norm in which case it is
one. ~
Thus if £ — &', that is, a = —bb, we get

Q(fo,6) = UPo, &) .

Otherwise, we get
Q(Pg,¢) =0.

The fundamental lemma is established.

7. The trace formula for n = 2

In general, it will be convenient to consider all pairs (U, U,—1) simultaneously.
We illustrate this idea for the case n = 2. Let E/F a quadratic extension of number
fields.

The trace formula we want to consider has the following shape:

(19) > /U( > fe )~eu(h)) dh =

9cEX /N, EX) F)\U1(Fy) cesly(F

® ((h)~'¢'t(h)) n(det h)dh.
§'es(F)

The left hand side converges and is equal to

> | Fo(O)Vol(Uy (F)\U: (Fn)) + /U(F)ff’( _%9 toﬂ )dt

) eEX/N EX)

/Glz(F)\Glz(FA\)

The right hand side msut be interpreted as an improper integral. It is equal to

/Fxé(g t\(f)n(t)dxw/ﬂx@(i 8>n(t)d><t

+Z/ ( 0 at\f)n(t)m.

acFXx
For the two first terms, we recall that if ¢ is a Schwartz-Bruhat function on Fj
then the global Tate integral
[ onenare

converges for Rs > 1 and has analytic continuation to an entire function of s. The

improper integral
[ ottmwae

is the value of this function at s = 0. The remaining terms are absolutely conver-
gent.
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The matching condition is between a family (fp) and a function ®. The global
matching condition has the following form:

O 10 g = 0 atﬁ) )
Lo S )= fo( 5 Y

if =330 = a.. At aplace of F inert in F, the corresponding local matching condition
is described in the previous section. At a place which splits in F, it is elementary.
The local matching conditions imply

S fo(0)Vol(Uy (F)\U: (Fn)) =
0

/qu><8 t\oﬁ )n(t)dXtJr/lmgq)( % g)n(t)dxt.
8].

We will not give the proof. It can be derived from |

8. Orbits of Gl3(FE)
We take V3(E) = E3 (column vectors). We set

0
€3 = 0
1

We identify V5 to the space of row vectors with 3 entries. We take e5 = (0,0,1).
Then V,(E) = E? is the space of row vectors whose last component is 0. We denote
by & the space Hompg(Vs, V3) and by g the subspace of A such that Tr(A) = 0 and
Tr(A|V,) = 0. Thus g(E) is the space of 3 X 3 matrices X with entries in E of the
form:
a b
X = c —a 2
yr Y2 0
The group Gls(E) operates on g(E). We introduce several invariants of this action:

(20) A(X) = det(i b )

—a

(y1,y2)< 2 ) :

(22) Bi(X) = detX.

(21) As(X)

We denote by R(X) the resultant of the following polynomials in A:

detK‘; _ba > )\} , —det[X — A].

It is also an invariant. More explicitly,

(23) A (X) = —a®—bc

(24) A(X) = xy + 22y

(25) Bi(X) = (r1y1 —z2y2)a + x1y2c + 22y1b
(26) R(X) = A;(X)Ax(X)*+ Bi(X)?



18 HERVE JACQUET AND STEPHEN RALLIS

Clearly, X is strongly regular if and only if A2(X) # 0 and R(X) # 0. If
X is strongly regular the invariants ci,co and a1, as, a3 introduced earlier can be
computed in terms of the new invariants as follows:

(27) co = A(X)

(28) —acs = R(X)

(29) ar = —Bi(X)A;'(X)
(30) as = —a

(31) ag = 0

We also introduce

(32) Bo(X) = (-m m )( o« b ) ( n )
(33) BiX) = (m w) ( ; _ba ) ( —y )

Y1
Explicitly,
By(X) = —2xix00+ mfc — x%b
B3(X) = —2yiyea+yib—yic
We remark that if we replace ( zl ) by h ( zl ) with h € SI(2, F') then (—z2,x1)
2 2

is replaced by (—za,z1)h~!. It follows that B is Slp(E) invariant. Likewise for
Bs.

We let g(E) be the set of X such that A3(X) # 0 and g(E)® the set of
X € g(E)' such that R(X) # 0. Thus g(FE)® is the set of strongly regular elements.

LEMMA 2. Every Sly(E) orbit in g(E) contains a unique element of the form

a b 0
X = c —a 1
0 ¢t O

and then A1(X) = —a® —be, Az(X) =t # 0, B1(X) = —at, Bo(X) = —b,
B3(X) = —t%c, R(X) = —t%bc. In particular, As, By, By, Bz form a complete set
of invariants for the orbits of Sla(E) in g(E) .
PROOF: If Ay(X) # 0 then a fortiori ( il ) #£ 0. Since Sly(F) is transitive
2

on the space of non-zero vectors in F2, we may as well assume

a b 0
X = ¢ —a 1
vy oy2 O

Then yo2 = A2(X) # 0. We now conjugate X by

1 0
L _yil 1
Y2
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and obtain a matrix like the one in the lemma. In Gl3(E) the stabilizer of the

column ( (1) ) and the row ( 0 ¢ ) (where ¢ # 0) is the group

{5 1) ey

Thus the stabilizer in Sls(E) of a matrix like the one in the lemma is indeed trivial.
The remaining assertions of the lemma are easy. O

LEMMA 3. If X is in g(E) then X is strongly reqular if and only if it is regular.

Proor: We may assume that

a b 0
X = c —a 1 ,
0O t O

with ¢ # 0. Then X is strongly regular if and only R(X) = —t?bc # 0. On the
other hand, it is regular if and only if the column vectors

0 b
1 )’\ —a
are linearly independent and the row vectors

(0,%), (ct, —ta)

are linearly independent. It is so if and only if b # 0 and ¢ # 0. Our assertion
follows. O

LEMMA 4. Fuvery orbit of Gla(E) in g(E)® contains a unique element of the
form

a b 0
X=l1 —-a 1 ],
0 ¢t O
where b# 0 and t # 0. Then
A(X) = —ad*-b
A (X) = ¢t
Bl(X) = —at
R(X) = —bt?

If the invariants Ay, As, By take the same values on two matrices in g(E)®, then
they are in the same orbit of Glo(E). Finally, given ai,as,by in E with ag # 0
and aja3 + b3 # 0 there is X € g(E)* such that A;(X) = a1, Aa(X) = as and
Bi(X) =b;.

PROOF: The first assertion follows from the general case, or more simply, from
the previous Lemma. Indeed, by the previous lemma, every orbit contains an
element of the form



20 HERVE JACQUET AND STEPHEN RALLIS

and then —bct? = R(X). Thus be # 0. Conjugating by

(i V)

we obtain an element of the required form. The stabilizer of this element in Gla(E)
is trivial. The remaining assertions are obvious. O

9. Orbits of Giy(F)

Now we consider the orbits of Gla(F) in s. Of course, s = /7g(F). We define
s’ =s5Ng(E) and s° =sNg(E)*. For Y € g(F), we have
A(VTY) = TA(Y)
As(VTY) = TA(Y)
Bi(VTY) = 7V/TBi(Y).
Also
R(VTY) =7°R(Y).

Thus, on %, the functions A;, As (with values in F') together with the function By
(with values in Fy/7) form a complete set of invariants for the action of Gla(F).
Conversely, given a1 € F, ay € F* and b; € F+/7 such that am% + b% # 0 there is
X € s° with those numbers for invariants.

10. Orbits of the unitary group

We formulate the fundamental lemma in terms of the Hermitian matrix

0 1
90<1 O)a

rather in terms of the Hermitian unit matrix. Then

01 0
1 00

0 0 1

We let U ; be the unitary group for the Hermitian matrix 6§. Thus the Lie algebra
of Us 1 is the space U(F') of matrices Z of the form

a b =
== c d 29
% 7 e

witha+d=0,b€ F\/7,c€ F\/T,e € F\/T. We let Uy ; be the unitary group for
the Hermitian matrix 3. The corresponding Hermitian form is

Q(#1,22) = 2172 + 2271

We embeds U, ; into Uz ; by
0
E

L(u)(g
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We obtain an action of Uy 1 (F') by conjugation. As before, we set u = 4N g. Thus
u is the space of matrices = of the form

(34) E= Ucb —ba 2 ,a€Fbe F\/T,ce F\T.
—z2 —z1 0
Then
A(B) = —a®—bc
A2(E) = -Q(z1,22)
Bi(E) = a(Zize —Z2z1) —bzazy —c2iZ1

We set ' =ung and u® = ung®. We study directly the orbits of Uy ; on u®.

LEMMA 5. For t € F* choose (z1,0,%2,0) such that Q(z1,0,220) = —t. Any
orbit of SU1 1 in W' on which Ay takes the value t contains a unique element of the
form

a b 21,0
& —a 22,0
—Z0 —zio 0

Proor: Since SU;; acting on E? is transitive on the sphere S ; = {v €
E?|Q(v) = —t} and each point of the sphere has a trivial stabilizer in SUj 1, our
assertion is trivial. O

LEMMA 6. Fort € F* choose (z1,,22,0) such that Q(z1,0,220) = —t. Any
orbit of Uy 1 in u® on which A; takes the value t contains an element of the form
a b 21,0
== c —a 230

—Z209 —z10 O

The stabilizer in Uy 1 of such an element is trivial. Moreover A1(E) € F, A3(E) €
F, B1(E) € F\/T and —R(E) is a non-zero norm. A1(E), A2(2), B1(E) completely
determine the orbit of 2. Finally, if a1 € F, ay € F and by € F+\/T are such that
as #0, aja3 + b? #0 and —(a1a3 + b?) is a norm, then there is = in u® such that
Al(E) = ai, AQ(E) = az and Bl(E) = bl.

PROOF: As before, the orbit in question contains a least one element of this
type, say =p. To prove the remaining assertions we introduce the matrix

1
M= ( frot T Z10 ) € Sly(E).

1
Z2 0ot 22,0

)

(0 1 (0
vy )= 5)

It follows that «(M)~14 (M) is the Lie algebra of the unitary group for the Her-
mitian matrix

Then
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Then +(M )~ u(M) becomes the space of matrices of the form

« 68z
ft™2 —a zm | ,acFT.
—ZtY ZHt 0

and 2 = 1(M)~'Z4(M) is a matrix of the form

o P 0
Ei= Bit? —oq 1
0 t 0
We have
A1(Bg) = A1(Br) = —af —Bifit?
As(Zg) = A2(E1) = ¢
Bi(Zp) = B1(E1) = —aqt
R(E0)=R(E1) = -Hib
The stabilizer H of the column (0, 1) and the row (0, ¢) in the group «(M)~1U; 10(M)

is the group

u 0
(0 1>,UEU1.

Since Z; is in g(F)® we have 1 # 0. Thus the stabilizer of Z; of =1 in H or in
t(M)7 Uy 10(M) is trivial. If the invariants Ay, Ag, By take the same value on two
such elements Z; and Zp of (M)~ 1w (M), then we have t; = t2, a1 = a and
11 = B2f2. Then B = fou with w € U;. Then Z; and Z, are conjugate by an
element of H. O

11. Comparison of orbits

In accordance with our general discussion, we match the orbit of Z € u® with
the orbit of X € s* and we write = — X if the matrices are conjugate by Gla(FE),
or, what amounts to the same, if they have the same invariants Ay, As, B;. In
particular, we have the following Proposition.

PROPOSITION 2. Given X € s°, there is a matriz E in u® which matches X if
and only if —R(X) is a (non-zero) norm.
12. The fundamental lemma for n =3

We now let E/F be an unramified quadratic extensions of non-Archimedean
fields. We assume the residual characteristic is not 2. We let f, be the charac-
teristic function of the matrices with integral entries in u and ®, be similarly the
characteristic function of the set of matrices with integral entries in s. For = € u®
we set

(35) Qu(E) = fu(uBu)du
Likewise, for X € s° we set

(36) Q6(X) = /G oy BoloX g 0t g)dg
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The fundamental lemma asserts that if = matches X then

(37) Q () = 7(X)Qa(X)
where 7(X) = %1 is the transfer factor. If, on the contrary, X matches no = then
Qe(X)=0.

To prove the fundamental lemma we exploit the isomorphism between U;; and
Si(2, F). Now Uy ; is the product of the normal subgroup SU; ; and the torus

z 0 %
T_—{t——<0 Zl>,z€E }
TNSUL, ={t=( ¢ 0 cF*
1,1 = = 0 a° ! Y .

Let Ty be the subgroup of ¢t € T with |z| = 1. Then Uy 1 = SU;11Tp.
The function f, is invariant under Ty. Thus, in fact,

Qu(E) = /SU fu(uZu)du.

with intersection

To establish the fundamental lemma we will use the isomorphism 6 : SU; ; —
Sla(F) defined by

(59) o= (7 V)a(7 )

and a compatible F'—linear bijective map © : u — g(F') defined as follows. If

« 8 =
== v —a z | ,a€FBeVTF,yEVTF
-zz —z1 0
then
a b
(39) 0E)=X,X= c —a T
y1 Y2 0
where
a=a b:ﬂ\ﬁi c:\%
sz% 92277\5(;1721)

The inverse formulas for z1, zo read

Y2
Z1:$1—F722=y1+$2ﬁ-

(2 2) =00 DG L )

The linear bijection © has the following property of compatibility with the isomor-
phism 6:

Note that

[y

O(u(9)Zu(9) ") = (0(9))O(Z)e(8(9))
for g € SU(1,1).
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We can use O to define an action p of T on g. It is defined by
O (L(t)=e(t)™!) = ult) (B(E)) -
Explicitly if ¢t = diag(z,271), 2 = p + /7, then

a b a1
wu(t) ¢ —a =

vioy2 0
a bzz PT1 — QY2
c(zz)7! —a 71; ﬁzj;éy;
PUTIR pys — qTan 0
Fort € TNSU;1x = T N Slp(F) p(t)t is the conjugation by «(t). Again T =
To(T N SZQ(F))
We compare the invariants of = and X = ©(E). From
—Zpz1 — 7122 = —2(21y1 + T2y2)
and
a(zZ122 — Z221) — BeoZa — y2171 =
1
V(a4 b = cad) + —=Cayry — by + o)
we get
(40) A1(B) = A1(6(F))
(41) A3 = —24,(0(3)
= = 1 =
(42) Bi(E) = —VTB:(6(2)) — —=Bs5(6(2))
\/F
Also

1
R(E) = 441(X)A2(X)? + 7B2(X)* + ;Bg(X)Q +2B5(X)Bs3(X).
We let g(F) be the image of u® under ©. Thus g(F') is contained in g(F)’. The

functions A, Ay and —/7Bsy — #33 form a complete set of invariants for the

action of Sly(F) and T on g.
We will let ® be the characteristic function of the set of integers in g(F'). For
X € g we set

(43) Qg1 (X) = /S oy 2000 Xe0) .

Thus QU(E) = QSlg (@(E))
We match the orbits of Us 1 in u® with the orbits of Gia(F) in ° by matching

the invariants: for Z in u® and Y € g(F)%, 2 — /7Y if

Ai(E) = A(VTY)

A(E) = A (V7TY)

Bi(E) = Bi(VTY)
This leads to the following relation in terms of X = ©(E) and Y-

Al(X) = TAl(Y)
72A2 (X) = TA2 (Y)
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~VTBAX) — 2= By(X) = 1TB(Y)

The last relation can be simplified:
—7Bo(X) — B3(X) = 2By (Y)

To make this relation explicit, we may replace X € g(F) by a conjugate under
Sla(F) and thus assume:

a1 b1 0
(44) X = C1 —Qaq 1
0 ti 0
The condition that X be in g(F) reads
tic3
t1 #0, 7% + % — 201112 — 4d22 # 0.

The second condition can also be written as
t261
(VTb1 — %)2 — 4aft # 0.
As a matter of fact, assuming ¢; # 0, the second condition fails only if a; = 0 and
Tb1 = t%cl.
Likewise, we may assume:

b 0
(45) Y= ¢ —a 1
0 t O
Then
A (YY) = —a®—be
A(Y) =t
Bl (Y) = —ta

Moreover R(vVY) = 73R(Y) = —bert?. This matrix is in g(F)*® if and only if ¢ # 0
and bc # 0. It matches some X if and only if —R(vY) is a norm. Since —7 is a
norm this is equivalent to —bc being a norm.

The condition of matching of orbits becomes: X — Y if

(46) a? +biey = 7(a® +be)
(47) —2t1 = Tt
(48) Thy +t3c; = —T’ta

In a precise way, this system of equations for (a1, b1, c1,t1) has a solution if and
only if —bc is a norm. If we write

(49) —72bc = y* — 1a}

then we can take a; for the first entry of X, and then take t; = f%t,
t 2

(50) 51:*§(y+70),clzg(y*m)~

Note that a; = 0 and 7b; = t%cl would imply y = 0 and thus bc = 0. Thus X is
indeed in g(F).
The fundamental lemma takes then the following form.
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THEOREM 1 (The fundamental lemma for n = 3). For Y € g(F)° of the
form (45) define

(51) O, (Y) = /G oy PolaY g et ).

If —bc is not a norm then Qg (Y) = 0. If —bc is a norm, let (a1,b1,c1,t1) satisfying
the conditions (46) and let X be the element of §(F) defined by (44). Then

Qci, (V) = n(c)Qs1, (X)
We now prove the fundamental lemma.
13. Orbital integrals for Siz(F)

In this section we compute the orbital integral Qg;, (X) where

a b 0
(52) X=| ¢ —a 1
0 t 0

Suppose Qg;,(X) # 0. This implies that the orbit of X intersects the support of
®y we get that the invariants of X are integral. In particular a® + bc, ¢, at, b, t%c are
all integers.

We set

0 1
gzk(%1 m1)<0 Lf),keGlg(OF),

dg = dk|m|*d*mdk

The integration over k is superfluous. Thus we get

Qs1, (X) =
a+cu m?(b—2au—u’c) mu
//CI)O em™2 —a—cu m~1 du|m|*d*m .
0 tm 0

LEMMA 7. The integral converges absolutely, provided t # 0.

PROOF: Indeed the range of v and m are limited by
uf < Jm|™h 1< m| < |t

Thus the integral is less than the integral
// dulm|*d*m
[u[<Im|=1,1<|m|<]¢| !

:/ |m|d*m
1<|m|<[t] 1
which is finite. O

Explicitly, the integral is equal to

/ /du|m|2dxm

o+l <1 0] < m|
] < |m[? 1< |m| < (7
|b— 2au — u?c| < |m|~2

over
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We first compute the integral for ¢ # 0. We may change u to uc™! to get

|c|_1//du|m|2dxm

la+ul <1 Jul < Jem™]

le| < |m[* 1< |m| < [t~

la® + be — (a +u)?| < |em™2|
Since |a? + be| < 1 and |em™2] < 1 we see that the condition |a + u| < 1 is
superfluous. We may then change u to u — a to obtain

(53) 9312(X):|c|_1//du|m|2dxm

lu—al <|em™Y |a® + be —u?| < |em ™2
{ le| < |m]? 1< |m| <t

Before embarking on the computation, we prove a lemma which will show that the

orbital integral 0, converges absolutely.

LEMMA 8. Let w be a compact set of F*. Then, with the previous notations,
the relations A3(X) € w, R(X) € w and Qg1,(X) # 0 imply that ¢ is in a compact
set of F*.

ProOF: Indeed, both ¢ and be are then in compact sets of F*. If Qg;,(X) # 0
then there are m and u satisfying the above conditions. We have then |c| < [t72] so
that |¢| is bounded above. If |be| < |em™2| then, since [m~!| < 1 we have |c| > |bc|
and |c| is bounded below. If [em™2| < |bc| then |a? — u?| = |bc|. Now |a? + be| < 1
so |a| is bounded above. Thus |u| is also bounded above. Hence |a + | is bounded
above by A say. Then |bc| < Ala — u| < |em™ 1A < |c|A. Hence |c| > |bc|A7L.
Thus |c| is bounded below, away from zero, in all cases. O

We have now to distinguish various cases depending on the square class of
—A1(X) = a® + be.

13.1. Some notations. To formulate the result of our computations in a
convenient way, we will introduce some notations.
For A € F'* we set

(54) w(A) = /1<| o |m|d*m

Thus p(A) = 0if |A] < 1. Otherwise u(A4) = I‘f‘:qq:ll. In particular, if |A] = 1,

then pu(A) = 1. Note that the above integral can be written as a sum

m|
1<|m|<|4]

where the sum is over powers of a uniformizer satisfying the required inequalities.
If A,B,C,..., are given then we set

(55) w(A, B,C,...):= u(D)where|D| = inf (|4],|B],|C|,...)

We also define
(A B) ;:/ imld*m.
|B|<|Im|<[A]

Thus p(A: 1) = u(A). We also define
wlA,B,C,---: PQ,R,...)=u(D:S)
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where |D| = inf (|4, |B|,|C|,...) while |S| =sup (|P|,|Q|,|R|,...). Then
w(A,B,C---: D)= |Dlu(AD~", BD~*,CD™*...).
Clearly, if 1 <|C| < inf(]A|,|B]), then
(56) WA, B: Cw™ ) + u(C) = u(A, B).
We will use frequently the following elementary lemma.
LEMMA 9. The difference
w(A, B,C) — u(Aw, B, C)
is 0 unless 1 < |A| < inf(|B|,|C|), in which case, the difference is |A|.

For A € F'* we set

(57) V(A) = /1<| A

Thus v(A) = 0 if |A| < 1. Otherwise v(A) = 1 — v(A). In particular, if |A] = 1,
then v(A) =1. If A, B,C,..., are given then we set

(58) I/(A,B,C,):V(D), |D|:1Hf(|A|,|B|,|C|,)

We also define
v(A:B) = / d*m
|B|<|m|<|A]|

Thus v(A : 1) = v(A). We define also
v(A,B,C,---: PQ,R,...) =v(D:S)

where

|D| = inf (JA[, |B|,|C|,...) , |S| = sup (|P|,|Q|,|R|,--.) -
Clearly,
(59) v(A,B,C---: D) =v(AD"', BD™',CD™'...).

We will use frequently the following elementary lemma:
LEMMA 10. The difference
v(A,B,C) —v(Aw, B,C)
is zero unless 1 < |A| < inf(|B],|C|) in which case it is 1.

If z € F* is an element of even valuation, then we denote by /= any element
of F* whose valuation is one-half the valuation of . If  has odd valuation then
V/xw is defined but not /z. With this convention, the condition

la| < J2?| <[]

is equivalent to

w el )

If |a| < |b] then

v ab vV ab
< < < .
(61) < |{ Voo M= |{ Vo <
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13.2. Case where a?+bc is odd. Suppose first a?+ be has odd valuation, or,
as we shall say, is odd. Then there is a uniformizer w such that a® + bc = §%w. In
the range (53) for the integral the quadratic condition becomes [§%w —u?| < |em 2|
and, in turn, this is equivalent to |[§%w| < |em~2| and |u?| < |em™2|. Thus the
integral is equal to

(62) |c|*1//du|m|2dxm

over
) < |8 Ve Yim=1) ju—af < fem|
Cto
1< fml < i o] < [m?| < |c5—20]|

If |c| <1 then the condition |c| < |m?| is superfluous. Moreover

= )

Thus the two conditions on u can be rewritten

_ v C _
=l <lon Jal < |{ Vo2 o

The integral over u is then equal to |em™!| and so we are left with

(63) / imld”m

over the domain

1< |m]
_ ve _ e _
il < 10l < | Yl < {9 i,

With the notation (55) we have, for |¢| <1,

QSZQ(X)—M<151751{ \:/iw*l },al{ {J/iw }) :

We pass to the case |c| > 1. Then the condition |c| < |m?| implies the condition
1 < |m|. On the other hand, since

()=

v/ C _ _
Iuls‘ f%]m 1, lal < em

the conditions on u become

1L
The integral over u is then equal to

v C _
\%\lm L

/|m|dxm

< |ml

and so we are left with

1
<64> E

over
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-1 ~1 Ve
il < el <107l < | Y

of

6]

We change m to

and we get
/|m|dxm
over
1< |m|
1
vc _ e _ —
i< | Y Nl < | ¥ |, bl <167
Vew T

Thus, for |c| > 1, we find

1
(o T e {3 )

PROPOSITION 3. In summary, if a®> +bc = 6w, (or more generally if a +bc =
d%we where € is a unit and w a uniformizer), then

u(t—l,é—l{ \‘v’/iw—l },a—l{ ‘/Ew }) if ¢ <1

(65) Qg,(X) = 1 )
,u(t_l{ Ve, }75_1,a_1{ \/E }) if |¢] > 1
Vew-1 cw

We note that if a = 0 the identity is to be interpreted as
—1 —1 \1/6 : <

Qs1,(X) = 1
] (t_l { ‘ } , 6‘1> if |¢] > 1

13.3. Case where a® + bc is even but not a square. We now assume that
a? + be has even valuation but is not a square. T hus a? + be = §%7 where T is a
unit and a non-square. In the range for the integral (53) the quadratic condition
on u becomes |627 — u?| < |em™2|. In turn this is equivalent to [§%| < |em™2| and

|u?| < |em™2|. Thus the integral is equal to
(66) \c|*1/du|m|2dxm
over
< (§ Y Him™ Ju—al < o
cw
1< |m| < [t lef < [m?| < |e6 |

If |¢] < 1 then the condition |c¢| < |m?| is superfluous. The conditions on u can

be rewritten
lu—a| < lem™'|, |a| < H{ \ﬁ }H Im ™!
cw
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After integrating over u we find

(67)

/|m|dxm
over
|m§t-1,|m|s\{ ve } |a-1|,|m|s]{ ve }]w—w
CTo CTo
Thus, for |¢| <1,

QSIQ(X)/‘<t1751{ \:/iw }’al{ i }>

v CTo
If |¢| > 1, then the condition 1 < |m| is superfluous. On the other hand, the
conditions on u become

v C _ _
< |{ Ve bt bl < e

After integrating over u we find

1
v / jm]d*m
Vew—1

over

We change m to
of )
cw
to get

/|m|dxm
over

1< |m|
1
| < Ja~"| { ve } ml < 1571 {1 H,|m|su-1| v
cwo w —
CTo
Thus, for |¢| > 1 we get

e=n(e{ B Yo (L (42 ))

We have proved the following Proposition.

PROPOSITION 4. If a® +bc = 621 where T is a non square unit and § # 0, then
(68)

u<t5{ ve }{ ve }) if [e] <1
Cto CTto
Qg1,(X) = 1

1y Ve

1 },51{1 },al{ \:ﬁ }) if |e] > 1
— w cw

31



32 HERVE JACQUET AND STEPHEN RALLIS

The meaning of the notations is that if ¢ is even, then the formula is true with

the top element of each column { : } On the contrary, if ¢ is odd, then the
formula is true with the bottom element of each column { : }

13.4. Case where a? + bc is a square and ¢ # 0. We now assume that
a? +bc = 0% with § € FX and ¢ # 0. Then a =6 # 0. In (53), the quadratic
condition on u becomes |62 — u?| < |em~2|. This condition is satisfied if and only
if one of the three following conditions is satisfied:
I < lem™? [u?] < em™?|
(69) IT |em™2 < [6%] |u—§] <|em™2571
IIT Jem™2 < |8%| |u+4d] < |em™2571

Accordingly, we write the integral as a sum of three terms Qf,_, Q& | QLL.

The term Y, is given by the same expression as before namely (68).
It clear that the term Qgg is obtained from the term Qé@ by exchanging § and
—¢. Thus we have only to compute ng:

(70) Qf, =l [ e

over
lu—al <lem™Y |u—d] <|em™2571
02| < m?| e < [m?|
1 < |m| Im| < [t71]

We remark that |a? + be| < 1 implies [§| < 1 and so the condition |cd 2| < |m?|
implies |c| < |m?|. We further divide the domain of integration into two sub
domains defined by |m| < |§71] and |67} < |m| respectively. The last condition
implies 1 < |m|. Correspondingly, we write Qg@ as the sum of two terms Qg@l and
ng defined respectively by

() QUt = [l [ lmPam

over
lu—al <lem™Y |u—46] <|em™ 2571
|c0™2] < |m?| 1< [m|
Im| < |07 Im| < [t

and

(72) Q2 = [l [ lmPam

over
lu—al <lem™Y |u—d] <|em™2571
=2 <[m?| |67 < |m]
m| < [t

In Qgﬁl the conditions on u are equivalent to
lu—a| <|em™, |a—6| < |em 267!

The second condition can be written

ARl ==a ]
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After integrating over u, we find:

(73) Q! :/|m|dxm

over
m| < |67 m| < [t7!]
1< |m| 072 < |m]?
im| < H 5 1y/ed(a—6)~t H
1l 7t /cd(a— ) tw

If |e572| < 1 then the condition |c§~2| < |m?| is implied by 1 < |m|. Thus we
find, for [c672| < 1,

11 _ 1 go1 so1 ) Veola—9d)7t
Dsiy _u<t 07,0 {”cé(a—é)—lw

If [¢672] > 1 then the condition |c6—2| < |m?| implies the condition 1 < |m].
On the other hand, the conditions |ed 2| < |m?| is equivalent to

i lwlye
(E172

Thus we find, for |ed=2| > 1,

QUL (471 51, 51 Ved(a—0)~t f o tw e
st ’ ’ Ves(a—6)"lw [T 07 Wew!

We pass to the computation of 2§, The conditions on u read:

lu — 6| < |em™2572|,|a — 6] < |em™!].

Thus, after integrating over u, we find

(74) Q42 = |5*1|/dxm

over
071 < Jm| |6 72| < |m?|
im| < [t |ml < |e(a = 0) 7

If || <1 then the condition |cd—2| < |m?| is already implied by |61 < |m].
Thus we find the domain of integration is

67w < |ml, [m| < [£71], Im] < le(a - 6)7.

Thus after a change of variables, we get

|61 /dxm

1< |m|, |m| < Swlt™t, Im| < |0coc(a — 6)_1|

over

or
|67 v (cdw(a—6)~, dwt 1) .
If |c| > 1 then the relation |67 < |m| is implied by |c6=2| < |m?|. This

relation is equivalent to
Vs ol
Yeww 16! '
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After a change of variables, we find, for |¢| > 1,

Swt ™!
112 _ (s Ved(a—d)tw Ve
(75) QSlQQ = |(5 1|V ({ \“/@5((1 o 5)—1 ) 5?\{71 .

In summary, we have proved:

PROPOSITION 5. If a? 4+ bc = §% with § # 0 and ¢ # 0 then Qg;,(X) is the sum

of
(76)
wlt™t, o7t Ve a=! Ve lc] <1
QL (X) ’ Vew | Vcw -
Sls = L v
,u(tl{ Ve, },51{;},a1{ \”/iw}> le| > 1
(77) Qi =
1ol s Vedla— o)1 _
u(t Lo=1s 1{ “c6ga—5§—1w }) 672 <1
1 el o Ved(a— o)t Sty _
u(t 1761761{ ”cé(a—5)1w}:{5“cw—1 67 > 1
|67 v (cdw(a — 6)~1, bt ™) le| <1

Jewd(a — )"

plus the terms Qgﬁl and 9{952{2 obtained by changing 0 into —9§.

(78) Qéllf: 161 |v <{ Ved(a— o) tw }7{ éwvi\tﬁ:l }) lef > 1

We also note that if § = 0 but ¢ # 0 then the conditions (69) become |u?| <
lem™2| so that Qg;, = ng with [67!| = co. We record this as a Proposition.

PROPOSITION 6. If a® + bc = 0 but ¢ # 0 then

L <t1, a=t Ve if |e] <1

oto

(79) Qs (X) = } <t1{ ij } ,al{ S/iw }) if Jef > 1

In particular if a =0, b=0 but ¢ # 0 then

() if || <1
(80) Qs1,(X) = i (tl{ ;/% }) if [c] > 1

13.5. Case where ¢ = 0. We will need the corresponding result when ¢ = 0
(and a = 9).

ProprosSITION 7. If ¢ = 0 then

1
1 (tl,al7 { Vo, }) + o Yv(at ™ w, a’wb™t)
Vbw—1
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PROOF:
QSlQ(X)://du|m|2de
over
-1 b -2 —1
|U|,§ hﬂ ‘ ) ‘47‘71” S hn a
2a
1<|m| , |m|<[t7"]

Since A;(X) is a integer we have |a| < 1.
We first consider the contribution of the terms for which |m| < |a~!|. Then
the condition on u become

b
[ul < fm7H, [ < fm~2a” 1.
a

/|m|dxm

1< |m] [m| < [t71], [m?] < b7

1
1% (t_lva_lv{ 1\J/El :}) .
Vo1

Next, we consider the contributions of the terms for which |[a=lw ™t < |m|.
Then the conditions on u become:

After integrating over u we find

over

that is,

I -
[ul <m0, |5 < m .

la™!| /dxm

1< |m|, o™ o™t < |ml,
m| < [t m| < |ab™!].

However, |a| =< 1. Thus the condition 1 < |m| is superfluous. Thus this is

After integrating over u we find

over

vt ™hab ™t oo = v(at T w, a?wb ).

The Proposition follows. O

14. Proof of the fundamental lemma for n =3

We let
a b 0
(81) Y = 1 —a 1
0 ¢t O
with ¢t # 0 and b # 0. Then:
a bs! 0

QGl2(Y):/ Qsi, | s —a 1 |n(s)d*s
FX
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Since the integrand depends only on the absolute value of s, this integral can be
computed as a sum:

a bs7t 0
Z Qs | s —a 1 |n(s),
s 0 t 0

where s is summed over the powers of a uniformizer w. It follows from lemma (8)
that the sum is finite, that is, the integral converges absolutely, provided Y is in
g(F)®. In the two next sections, we compute this integral and check Theorem (1).
That is, if —b is not a norm we show that Qg,(Y) = 0. Otherwise we solve the
equations (46), define X by (44) and check that

(82) Qs1,(X) = Qa1 (Y) -

Before we proceed we remark that Qg (Y) # 0 implies |41 (Y)| < 1 and |[A2(Y)] <
1. Likewise, if X is defined, Qg;,(X) # 0 implies |41(X)| < 1 and |A3(X)] < 1.
Finally, if X is defined then |A;(X)| = |41(Y)] and |A3(X)| = |A2(Y)|. Thus if
|A1(Y)] > 1 or |A2(Y)| > 1 our assertions are trivially true. Thus we may assume
|A1(Y)| <1 and |A2(Y)| < 1, that is, |a® + b < 1 and [¢| < 1.

As before, the discussion depends on the square class of a? +b = —A;(Y).

15. Proof of the fundamental Lemma: a? + b is not a square

15.1. Case where a® + b is odd. We consider the case where a? + b =
—A;(Y) is odd (that is has odd valuation) and we write a® + b = 6% where @
is a uniformizer. The integral Q¢q, is then the sum of two terms Qélz and lez
corresponding to the contributions of |s| <1 and |s| > 1 respectively. If |s| <1 we
write s = r2 or s = 2w with |r| < 1. Then

(83) Qél2 = Z (w67 e ) — p(t 6 e rw)]

Ir|<1

By Lemma 9, expression Qél2 is equal to
Z la™1r|

Ir] < 1,1 < |a 7| <inf(t™1, |6 ).
This is zero unless |§] < |a|. If |§] < |a|, after changing r to ra, we find

> 7]

1<|r|<inf(Ja= ][t~ 1])

over

In other words, we find:
A _f et if [o] < a
(84) P, = { 0 it 5] > |al
We pass to the contribution of |s| > 1. We write s = r? or s = r?w with |r| > 1.
Then

(85) Qg, = Z (n@ =t a ) —pt e 6 e r)]
1<|r|

Applying lemma (9) we get

Z la™ |
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over
1<]r|,1< |a_1r| < inf(\(5_1|7 |t_17“_1|)

This is zero unless |0 < |a|. If |§] < |al, after changing r to ra, we find this is

> Il

over
sup(ja™'w M, 1) < |rf, | < 67, ¥ < e
Thus we find
Ve
—1 . T
(86) 0B, — ] <5 ,{ S TaTs [ l,a ‘w if |9] < |al

0 if 18] > |a
We can combine both results to obtain

PROPOSITION 8. If a® + b = §%w then
”t—la—l
—1 ¢—1 . <
1 (t ,0 ,{ s o v }) if |0] < |al
0 if 8] > |al

£]Gb(yj =

PRrOOF: Clearly, our integral is 0 if 0] > |a|. If [0] = |a| then the integral
reduces to u(t~t,671). However,

=
Vi1~
belongs to the interval determined by [¢t~!| and |6~} and so the integral can be
written in the stated form.

Assume now |§| < |a|. If |a| > 1 then p(a=!,t71) =0 and |[a '@t < 1. Thus
Qélz =0 and lez reduces to

(o { =)

Since [t| < 1 we have |at| > [t?| or
1> | Vs )
Vil T
so that the result can again being written in the required form.
Finally, assume |6 < |a| < 1. Then |a~!'w™!| > 1 and

_ -1 Vi~la=! o1 1 1 -1

QGlg—N((S a{ ViTa e }-a w )+N(a A7)

Suppose first |t| < |a|. Then p(a=t,t7 1) = u(a™t). Then |[a~tew™t < |§71| and
Vi~la=lw

The sum for Q¢q, is then by (56) equal to

(7 e )

la='| <




38 HERVE JACQUET AND STEPHEN RALLIS

Since
'u/tflafl < |t—1|
VT f| S
this can be written in the required form.
Suppose now [t| > |a|]. Then p(a=*,t71) = pu(t~!). On the other hand,

Vi-la—1 R

. <la 7w
Vit~la=lw

so that g,  vanishes. On the other hand, since [§|~! > [t7!| and

‘{ ’”/t_la_l }‘ - |t*1|
Ve s §|7
the expression given in the Proposition is indeed equal to u(t~1). O.

We now check the fundamental lemma in the case at hand. If —b = a? — §?w is
not a norm, then the valuation of b is odd and |§] > |a|. Then Q¢ (Y) = 0. Now
suppose that —b is a norm, that is, |a| > |§|. Then —b is in fact a square. Thus we
may solve the equations of matching (46) in the following way. If |u| < 1 we denote

by v/1 + u the square root of 1+ u which is congruent to one modulo wOp. Recall
T is a non-square unit. Then we write

b =9%, y=—1a\/1—62a2w;
Then we take

t 2 Tt
a1:O,b1:f§(y+7a),clzﬁ(yfﬂz),tlzfg.

We have then a? + byc; = 7(a? + b) = §%ww7. Thus a? + byc; is odd. We have also
le1] = |at™1| and |¢t;] = |t|. Let X be as in (44). We then have by Proposition 3,

1o Vat~1 .
u(t ) 1{ e — }) if |a| <[]

9512 (X) = 1
o <t_1 { Vat=! },5‘1> if |a| > |t]
Vat—lw—1

Suppose first |a| < |t|. Since || < |a| we easily get

< ] Vel
< VT T
and so the expression for Qg;,(X) reduces to u(t~1). But the same is true of the

expression for Qg (V).
Now suppose |a| > [t|. Then the expression for Qgr,(X) becomes

o({ G b))

|t_1|> W
1\ Vita T

this is also the expression for Q¢,(Y) and we are done. O

Since
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15.2. Case where a?> + b is even and not a square. Suppose now that
a® + b = 627 where T is, as before, a non-square unit.
PROPOSITION 9. Suppose a® +b = §°7. Then Q¢1,(Y) is the sum of
|6~ v (5t_17w52t_1a_1)
and
w6t 4 VT ) it fal > sup(lol. 1)
Vit—la—lwm -

M) if |a| < sup(|4], t])

PROOF: We proceed as before and write Q¢,(Y) as the sum of Qélg and ng,
these being respectively the contributions of the terms corresponding to |s| < 1
and |s| > 1. For |s| < 1, we set aside the term |s| = 1 and we write s = r?w? or
s = r?w with |r| < 1. We find

Qélz
= (™67 e
+ Z (w6 rw, e rw) — p(t, 6 rw, o rw)]
Ir|<1
= (™6 e
For |s| > 1 we write s = 72 or s = r?w with |r| > 1. We find
(87) Q& = Z (p@ =t a ) —pt e 6w a )
|r|>1
If we add to this Qélz we find
Qai,
(88) = put ™6 'wa )
(89) + Z [ttt o atr) —p(t e 6w e rw)]
|

[>1
Applying lemma (9), the second sum can be computed as

(90) Zinf (|571|, |a71r|)
the sum over
Ir|>1,1<inf (|67, Ja" r]) < |t

We first consider the contribution of the terms with |a~1r| < |671:

(91) Z la™ |
over
1< |r|, |al < |r|
[l < lad™"], || < |at ™|

If we change 7 to ra this becomes

=1 ,—1
(92) plo b3 o [7a 1,07t

Vi~la 1w

Next, we consider the contribution of the terms with |67 < |a=1r|:

> 167
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over
1< r[, |6 al < |r|
Ir| <[5t

After a change of variables, this can be written as
LDy

L <|r| <inf (|67, |ws*tta™))

over

so that this is
67y (6t @t ra™t)
In summary we have found that ¢y, is the sum of
(93) pt™t 0 w0 w)
e
(04) I i S
Vit—la 1w
(95) |67y (6t ws*tra™T)
If |a] < |0| then the second term is zero and the first can be written as
pt=t 6 1w).
If |a| < |¢| then
~1
>
R R
so that the second term is 0 and the first can be written again as p(t=1, 0 1w).
Now assume |a| > sup(|§],|¢]). Then pu(t=1, 6 tw, e 'w) = pla tw). If [a| > 1
then p(a~'w) = 0 while the second term reduces to

(o { s )

and we obtain the Proposition. If |a| < 1 then the second term is in fact

51 Vi—la=! gl
a N\ Vit tw [ '
Adding p(a='w) to this and using (56) we obtain the Proposition. O

We now check the fundamental lemma for the case at hand. Of course —b =
a® — §%7 is a norm. Thus we may solve the conditions of matching (46) as follows:

{ Vo= |

(4
a1:67,01:0,b1:—7ta,t1:—%.
Then a? + bic; = a3 = 6% where §; = 7. Thus by section 6.3,
Qs1,(X) =

e
M (t1,51, { \U/i_lai_l }) + 07 (6t tem, 6%t o w) .
a~lw
If |a| > sup(|d], |t]) then
s | VT
|\ Vtlalw

|62t o o] < |0t | < |6t

)
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Hence 2y, is equal to
o1 [ VT
U vt
which is Q¢y, in this case.
Now assume |a| < sup(|d], |t|). Suppose first [t| < |a| < |[§]. Then |da~t| > 1,
|6t > 1 and |6%| > |ta|. Thus

sl S )|

}) + 07wt 6%t e w)

Vil T
Recall |6] < 1. Hence

Qs1, = ,u(é_l) + |6_1|u(6t_1w)
e -1 -1
= B vt
while
Qai, = w0 w) + [0~ (ot
If |6] < 1 then we find
s g=1 — g1
Qo = P T 5 o)
If |6] = 1 then we find
Qar, = 1—1)((515_1)

In any case the two expressions are indeed equal.
Now assume |d] < |a| < |t|. Then

= v |
N v
and both orbital integrals are equal to
pt™H + [0 (6%t e )
Finally assume |a| < |0] and |a| < |t|. Then again
= v ||
N v
and Qg;, is equal to
pt™ 67 + [0 v (6t )
while Q¢q, is equal to
ptt o w) + |6 (et ).
If 1> |9| > |¢| then

571 _ 1
Ot = (6™ + 157 u(dt ) = LT oot
while
1 1 1 07 g ™ —q! 1 1
Qgr, = (6 @) + [0 p(dt) = = + 107 [(1 —w(0t™))

and those two expressions are indeed equal.
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If 1 = |6] > |¢t| then
Qst, = p(0 ) + |67 p(dt ) =1 —v(t™1)
while
Qar, = |6 Hr@dt™) =1 —wv(t™)

and the two expressions are indeed equal.
Now suppose |§| = |t|. Recall |§| < 1. Then

1 6]~ — ¢!
Qs1, = p(677) = =
while
-1 1 0] 'q ™t —q~ 1
Qai, = p(6™ @) + 6] v(l) = —1 = + 10|~

and the two expressions are indeed equal.
If |§] < |¢| then both orbital integrals are equal to p(t~1). So the fundamental
lemma has been completely checked in this case. O

16. Proof of the fundamental Lemma: a2 + b is a square

Finally we consider the case where a? +b = 62, § # 0. Recall we compute
Qai, (Y) as the sum

a bs7t 0
Z Qsi, | s —a 1 |n(s)
s 0 ¢t 0

and a? + bs™1s = a® + b = §%. Recall we have written the orbital integral Qg as
a sum of terms labeled Qél , QUL QL2 QLILL QL I 2 respectively. Correspond-
2 2 2

ingly, we write Q¢q,(Y) as the sum of terms labeled Qélz, le'; and so on. For
instance,

a bs™t 0
012 ZQSlz s —a 1 |n(s).
0o t 0

16.1. Computation of Qéb' The term Qé‘b can be computed as gy, in the
previous case (where a? + b is even and not a square). We write it as a sum

(96) QGZQ QGlQ QGlg
where

(4 e
plo,

Vi }) il = sup(al )
u(t1,67 1) if la] < sup(lg. )

(97) Q6i, =

(98) Glz |(5 1| ((St_l (Szt_l _1W)
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I1.1

16.2. Computation of (g ". After changing s into 562 we see that

a bs1672 0
QIGIZ'ZI = Zﬂfgﬁ 562 —a 1 | n(s)
s 0 t 0
and so, by Proposition 5, we get le'; = le‘zl'l + le‘zl‘Q where
1 e V/s0(a—d)~1
99 Q11 _ 151 8
( ) Gls Z 77(5)/-1‘ ) ) v 56(a — 5)_1w
|s|<1
and
1o Vsé(a—0)~1 w1y/s
1 Q12 _ 1 51 8 :
(100) Gl %:177(5)# N a0 Tm W p—
Suppose first that §(a — §)~! is even. For le';'l we write s = r’w? or s = r’w
with |r| < 1. We find, for |r| < 1, each term
(it 67 wry/d(a —6)-1)
once with a + sign and once with a — sign. So we get zero. For le;“l'Q we write
s=r%or s =r?w~! with |r| > 1. We find, for |r| > 1, each term
w67 r/6(a — o)1) w i)

one with a 4 sign and once with a — sign. So we get 0. Thus le'; =0if§(a—0)7?!
is even.

Now we assume §(a — )~ ! is odd. For QF 1! we write s = 7% or s =r
[r| < 1. We have then added a term corresponding to s = r? with |r| = 1 that we
must subtract. We find

—u (fl,é*l, /5(a — 6)*1w) n

Z i (t_l,é_l,r{’/m> — Z u(t_l,é_l,r“ (5(a—6)—1w)

Ir|<1 lr|<1

2w with

or
QU =~ (7,07, /0= 0) 1) |
In particular, this is 0 unless |[§(a — §)"'w| > 1. For QF 12

s =r’w~! with |r| > 1. We find

Z (,u (til,éfl,r vVéla—0)"1w: w71r> —

r[>1
I (t_l,é_l,r Vola—0)" w1 w_lr))

— & Y Il (1 (w0 e @ /6 (a - 0) )

Ir|>1

I (t_lr_lw,(S_lr_lw, W)) .

Once more we apply Lemma 9. We find this is zero unless |§(a — §) 'w| > 1. Then

this is equal to
Vala—0)T=| > I

we write s = r2 or

==
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where the sum is for

t~lw 0 lw
L< |, Ir| € || I" £ | ———=
Vola—0)" 1w Vola—0)" 1w
Thus
0t -

— ’ tlw 0w
M\ oa=0 1= Voa-0) =)

Hence we find that Q! is zero unless §(a —6) " is odd and [0(a — 0) " 'ew| > 1. Tt

is then given by
1w 0 lw
\/5 (a—0)"1w {/5(a—0)w

—p (til,éfl, Vé(a — 5)—1w> .
We claim this is —u(t~1,671). Indeed, this is clear if
a i )

—|w (a—0)tw|pu

d(a—06)"tw| >

because the first term is then 0 and the second term equal to —u(t~1,671). Now
assume that ‘\'"/(5((1— 5)—1w’ < inf(|t7Y,]67Y). Recall |§] <1 and |¢t| < 1. To be

definite assume [¢t~1| < |671|. Then our sum is

()

—i ( vé(a — 5)—1w>
il L -
G
as was claimed. We have proved:

PROPOSITION 10. Q& 1Y) = 0 unless §(a — 6)~" is odd and |(a — 6)| < |éw|.
Then

—|w 5(a—96)"tw

QG (V) = —p(t",67h).
16.3. Computation of Qf}2. As before

a bs™t 0
QI =D 07| s —a 1 |n(s)
s 0 t 0

and we denote by Q” 21 and lef'2 the respective contributions of the terms |s| < 1
and |s| > 1. Then
112 11.2.1 11.2.2
QGlQ ( ) = QGZQ + QGZQ N
We now appeal to Proposition 5. To compute Q” 21 we write s = r2 or s = r’w
with || < 1. We find:

Qg2 =161 Z (rPwé(a—06)"", 0t 'w) —v (rPw?s(a—6)7, 6t ' w)]

lr|<1
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By Lemma 10 this is

LD

Ir| <1,1< |r?*wé(a—06)" < |0t o],
This is 0 unless |a — §| < |w@d| and [t~ < |§]. It can then be written as [§71|

over

times
({ Viemse= )L Teehi )

{ a0 }
y wi/(a—0)"1 Vie—90)t—lw
Vwla—0)"% |7 [ w1¢/(a—05)5-1
v (a—9)
Vw1(a—4§)6"1
This can be further simplified
(101) QG2 =671 x

v/ 5t—1
V(w\”/é(a—é)—l,{ Z“giflw }) if 6(a — 4) is even
- :

1/(” wé(a—d)%{ % }) if §(a — 4) is odd
To compute Q” 22 we write s = r2 or s = r?w with |r| > 1. We find:

gl222 |61 Z wr(S (a—0)" 1,5T_1t_1w) —V(wr&(a—d)_l,ér_lt_l)] .
[r|>1

By Lemma 10 this is
DS

@ < |r|, @ (a— &)t < |, |r| < |67

over

This is 0 unless
la — 6] < [6%t |, [tw ™| <[]

and can be written then as:
S (s, | YT

or

122 _ 51 1 [ @t t(a—6)71
(102) G, —|6 v <w5t , { i1 W

We can simplify our result:

PROPOSITION 11. Suppose
la — 0] < [wd], [tw "] < [4].

Then
dteven | 0t odd
QE2(Y) =27 s qu(st) + 0 —1 | d(a—0)even
0 1 0(a —0)odd
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Suppose
0] < la— 6] < [ws®], Jtw] < J9].
Then
Qi (V) =
dteven | 6todd
276 v (o) —v ((a—6)5t) + 0 —1 | d(a—0)even
-1 0 0(a—d)odd

In, all other cases QG 2(Y) = 0.

PROOF: In any case both Q2 (Y) and QF;22(Y) vanish unless [tw | < [4].
So we assume this is the case. Suppose |a —d| < [wd|. Then Q2! (Y) is non-zero.
Since |6t 'w| > 1 we have also |a — & < |6t | so QL22(Y) is non-zero as
well. We have then to consider 4 cases depending on the parity of (a — §)d and 4.
Suppose for instance that both are even. Then Q¢ ?(Y) is [0~ times

v (w V/6(a — 5)—1,w€/5t—1) —v (wétil,w&*l W)

If |a — 6| < |t| then this

v (w v 5t*1) —v (wétil)

(1 - (w v 5t—1)) — (1—v(wst™))
= %v(étil)‘

If, on the contrary, |t| < |a — J| then this is
v (w \/m) —v (wét‘l \/W)
= (1-v(#Vola=07)) = (1= v (wor fila=0) 7))

1

= 51}(&71) .

The other cases are treated in a similar way and we have proved the first assertion
of the Proposition.

Now assume [§| < |a — d]. Then QF>' = 0 and QF;>? # 0 if and only if
la — 8| < 6%t tw|. Note that these conditions imply |(a — &)w| > |t|. Assume
t(a — &) even. Then Q22 is equal to [§!| times

—v (wétil,w&*l {/W) .

Since |(a — d)w| > [t], this is in fact

v (8t {/a—8) 1) = v(s) - Loty = Lo@—9).

2 2
Assume now t(a — 6) odd. Then Qf>? is equal to [§~!| times

—v (wét*l,éfl m) .

Since |(a — 0)w| > [¢| this is

v (515*1 Ywt(a— 5)*1> — v(8) — %v(t) - %v(a )L
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Thus we have completely proved the Proposition. O

16.4. Case where —b is odd. We are now ready to compute Q¢;, completely.
PROPOSITION 12. If a®+b is a square but —b is not a norm then Qg,(Y) = 0.

PROOF: Assume that —b is not a norm, that is, has odd valuation. Recall
—b= (a+9)(a—0). Thus a+ 06 and a — J have different parities. In particular they
have different absolute values. Thus, choosing the sign + suitably, we must have
la + 6| = |a] = |d] and |a — §] < |wd|. In particular (a — §)d is odd and (a + §)d
even. At this point we recall that the terms Q7771 and Q7772 are obtained from
QI and Q12 by changing § into —d. If |a| = |6 > |¢| then

_ Vo—lg—1 _
bl = (0] Vs J) =07

If |a| = |0] < |¢| then
G, =t 07 w) = p(t™).
Thus, in any case,
OGr, = p(t™1,670).
On the other hand,
Qéllzl = _M(t_lﬁ 6_1) ) Qéllgl =0.

Thus

QL + Ol + llt =0,
We study the remaining terms. We have

Q&7 = |67 (6t 6t w) = |07 (6t w) = .
This is 0 unless || > |eo™'¢|. Similarly, the terms Q5% and Q! vanish unless
|6| > |eo~1t|. Thus we may assume |§| > [cw~#|. Then
Q&r, =16 (ot

Since |a — 0| < |wd| and (a — J)J is odd, we have

QF2 =276 {v(&t‘l) +

dteven | 0todd
0 1 ’

On the other hand since |a + 6| = |[§] and |§| < |62t~ Loo| we get

QUI? =2 5| {v(étl) "

dteven | 6t odd
0 -1 ’

Thus we do get
OB, + 0442 + 0L 0.

This concludes the proof. O
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16.5. Case where b is even. We compute g, (Y) when a? +b =62, § # 0
and b is even. Then a + § and a — ¢ have the same parity. The result is as follows:

PROPOSITION 13. Suppose a4+ b =62, § #0 and b is even. Then

(103) ) = (7 { Yt }) itz 1o

_ Va—1lt—1 1 -
e R A ===y B AR

where
(105) €= {

PrOOF: First we claim that le'zl and Qgél are both zero. Indeed, if le'zl #0
then |a—d| < |wd| and (a—§)d is odd. Then (a+3)J is also odd. However |a+4| = |J]
and so we get a contradiction and lez ! = 0. Likewise leg 1 = 0. We compute the
other terms.

We first consider the case |§] < [¢|. Then the terms Q57 , QF:2, and QF12 all

vanish. Thus

1 if |a| < |wé?t7 Y, (a £ )t odd
0 otherwise

Qa1, (V) = QG -
We use the formula for QG . If [a] > [t| > |6] we find
e () (1 { G VY (f e
=0 N Vaw ) T\ Ve w )
If |t] > |a| then
Qai, (Y) = ,u(tila 671w) = p’(til)
Now assume [6] = [¢|. Then Q2 = Q¢! = 0. On the other hand,

QG =167 (1,60 'w).

This is zero unless |§| > |a| in which case this is [§71|. Thus, if |a| > |§] = ||, we
find
Q _ QI.I _ 571 UV a71t71 o —1 UV (Iﬁltil
ot =8t =10 Yot ) TN Ve f)

If |a| < |0] = |¢|, then
Qet, = QGit, + Qi = p(6 @) + 1671 = (57"

Thus if [t| > |§] we find the first formula of the Proposition.
From now on, we assume |6| > [t|. Then we find

PRI B A if [a] > |9]
abl, =< *\° 0 Vet e 2
w6 tw) if |a| < |d]

This can also be written

11 _ -1 Va~lt—! 0 if |a| > |0
(106) QGi, = <5 ; { Ja T }) +{ —[67Y if |a| < |9
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Similarly,
0l2 _ |67 (6%t ta " w) if |a| > |9
Glz = o~ (6t ) if |a| < |0]

Adding up these results we find:
o (s [ VT
R W

)+

0 if |a| > |d], |a| > |0%t~]
—[6=Ho(6%*t a™t) if |a| > |0], |a| < |62t o
—167 (6t h) if |a| < |d]

We compute the remaining terms.
Suppose |a| > |d]. Suppose first |a+J| = |d —a| = |a| (or for short, |d+a| = |a]).
Of course, this is always the case if |a| > |0]. Both lef and Qgé2 are 0 unless
la| < |wé?t~1|; then they are equal and
(a £d)teven | (a =+ d)todd }
0 -1 ’

Now suppose |6| = |a| but |§ £ a| is not equal to |a| = |d] for both choices of +. Say
0 —a| < |wd| and |6 +a| = [6]. Both QF;? and QF!? are non-zero. In addition we
remark that 0(d £ a) have the same parity and are thus even. Thus we find again
the same result. Note that here |a| = |0 < |wd?t~t|. We conclude that if |a| > |J]

QI[.Q

.2 _
cly + Q6,7 =

|61 {U(&Qt_la_l) +

11.2 II1.2
then Q42 + QLI

11.2
QGlz

+Q

111.2 __

Gla

= 0 unless |a| < |wd?t~Y|. Then

(a £ d)teven

(a £ d)todd

|61 {v(éQt_la_l)—i— 0

-1

b

Finally, suppose |a| < |6]. Then |a £ 6| =[] so (a £ 0)4 is even and both QF2

and leg 2 are non-zero with the same value. Then
_ _ atd)teven | (a £ d)todd
ff2 + fft? = o7t {ofart) 4 Lo oven a2 Dodd ]

Summing up, we find the second formula of the Proposition.

16.6. Verification of Q¢ (Y) = Qg, (X). We verify the identity of the fun-
damental lemma when a? + b = §2, § # 0 and b is even. We solve the equations of
matching (46) as before. We write

7% = y2 - TCL%

and then we take

2 t
=5 a= E(y—ﬂl), by = —§(y+7a).
Then

a? +biey = 7(a® +b) =762,
Thus a? + byc; is even but not a square. We need to compute |c1|. We have
72 =% — TCL% =724 — 7252,

Suppose |a| > |d]. If |a| = || we choose § in such a way that [0 — a| = |a|]. We
have |b] = |a? — 6%| < |a|?. From —72b = y? — 7a? we conclude that |y| < |a| and
la1| < |a|. From

y? —7%a® = 7(a? — 16%)
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we conclude that
|(y —Ta)(y + ra)| < |af*.
Hence either |y — Ta| = |a| or |y + Ta|] = |a|. Thus we can choose y in such a way
that |y — 7a| = |a|. Then
lea| = lat ™! = (6 —a)t™'.
2

Now suppose |§| > |a|. Then |b] = |§]2. From —72b = 3% — 7a? we conclude

that |y| < || and |a;| < |§]. Suppose |y| < |5]. Then |a1| = |6]. From y? — 7a? =

7202 — 7262 we get
<1 a2> 252 . Y2
T= - = =.
2 2 2
) aj aj
Thus 7 is congruent to a square unit modulo wOp hence is a square, a contradiction.

Thus |y| = |6| and we find again
e =16t~ = (0 — a)t™].

Now we can write down the formula for Qg;, (X). It reads as follows.
If |(0 —a)t™t < 1,
st (X) =

(7 Y= ) Vo= )

If |(6 —a)t™ Y > 1,

st (X) =
1
o] Ve 5! 1 A (6 —a)t™!
Vo e w V(i —a)t 1w

Suppose first |a| > [d]. Recall that if |a| = |d] then we choose ¢ in such a way
that |6 — a| = |a|]. Thus |§ — a| = |a| in all cases. Then we find

Qs1,(X) =

(et 51 [ Vat! vaTlt! if Ja| < |t
’ Vat—lw [’ YValt— 1w -

RETERNE =) R

Consider first the case |a| < |¢| so that |§] < |a| < |¢|. This is

Qs1, (X) = p <t1, { ;/\/% }) = Qa,(Y).

Consider now the case [t| < |a|. If |§] < |¢] this is

Qs1,(X) = ({ % }) = Qa1 (Y).

If |§] > |t| then we have to distinguish two cases. If |a| > |@d?t~1| we find

(Vi ) =0 (0 { V5= )
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which is again equal to gy, since € = 0 in this case. If |a| < |@d?t~!| and at (or
equivalently (a — 6)t) is even we find

Qs1, (X) = p(671).
Since € = 0 in this case, this is again Qg,. If |a| < [@§?t~] and at (or equivalently
(a — d)t) is odd we find
Qs1,(X) = p(0~ @) = p(67") — o711
This is again equal to Qgy,, since € = 1 in this case.

We now discuss the case where |a| < |§]. Then |a — 6] = |§] and our expression
for Qg;, simplifies:

Vo1l .
-1 f 16 < |t
K (t ) { V51 1m }) if |6] < [¢]

Vo1 s-11 1 e if [t] < o]
i m ’ w ’ Vot~ lw

This simplifies further as follows:

u(t) i 5] < |1

Qs1,(X) =< p(d™Y) if |t| < |d], 6t even
u(6=tw) if |t| < |§], 6t odd
Likewise, the expression for Q¢;, (V') simplifies as follows:
(1) if 18] < |t
Qc,(Y)=1¢ wp(1) if |t] <19, (a £ )t even

p(6=H — |67 if t] <[], (a % 8t) odd

Again 6t and (§ — a)t have the same parity and p(d~'w) = pu(6~1) — [§71]. Thus
Qs1,(X) = Qar,(Y) in all cases.

17. Proof of the fundamental Lemma: a2 +b=0

It remains to treat the case where a® + b = 0. THen —b = a? is a norm. We
proceed as before. We write the integral for (2, as the sum of QéLz and G’glz
corresponding respectively to the contributions of |s| < 1 and |s|] > 1. We use
Proposition 6. For |s| <1 we write s = 7?2 or s = r?w with |r| < 1. We obtain

W, = Y (™ a ) —pt 0 rw))
Ir[<1
= ut ™ a).
For |s| > 1 we write s = 72 or s = r?w with |r > |1. We find
QF, = Y (- a ) - ety )
[r|>1

Applying Lemma 9 we find this is

Z la™1r|

I < ||, la] < Jrl, [r?] < |at™Y].

over
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This is

Va~1t=1 calol 1
u v a*lt*lw . a w ) M
Va—lt—1
-1 =1y _ ,,(4—1 ca-l 1 _
If |a] < |¢| then p(t~',a™ ') = p(t™!) and p ({ o T T } e w ,1) = 0.

If |a| > |t| then u(t~t,a™1) = p(a™t). Moreover, if |a| < 1 then

If |a| > 1 then pu(a=!) =0 and
\/U a—1t—1 . a_lw_l 1) = W
a Va=1lt-1w |- ’ a Valt-lw
Thus the above equality remains true. In summary,

p(th) if |af < J¢]

QGZ (Y) = va-lt—1 .
: M VaTt1m if |a] > [t
On the other hand, the conditions of matching (46) can be solved with
—4a Tt
=0,b=0 =— 1 =——.
ay y 01 y C1 PR 5

For the corresponding element X we find

p(t™h) if |af < |¢|

Qgp,(X) = _ Va~lt .
st (X) M(t 1{ {J/me }) if |a| > |t|

Clearly QSZ2 (X) = QGl2 (Y)
We have now completely proved the fundamental lemma for strongly regular
elements.

18. Other regular elements

Recall the definition of a regular element. A matrix X € M(3x3, E) is regular
if writing X in the form
A B
(e )

the column vectors B, AB are linearly independent and the row vectors C, C'A are
linearly independent. We have seen that if X is in g(F)’ then it is regular if and
only if it is strongly regular. We consider now the elements X which are regular but
not strongly regular. For such an element we have necessarily A2(X) = CB = 0.

LEMMA 11. Any element X € g(FE) which is reqular but not strongly regular is
conjugate under tGly(E) to a unique matriz of the form

0 b O
c 0 1
1 0 0
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with b # 0. In addition
A(X) = —bc
Bi(X) = b
Proor: First B and C are not 0. After conjugation we may assume B =
< ? ) Since C'B = 0 we have

C=(0),t#£0.

Conjugating by a diagonal matrix in Gla(E) we may assume ¢ = 1. Thus we are
reduced to the case of matrix of the form

a b 0
c —a 1
1 0 0

. . 1 . . .
If we conjugate by the matrix ¢ < o 1 ) we arrive at a matrix of the prescribed
3

form. The other assertions are obvious. O.
REMARK: Similarly, the element is conjugate to a unique matrix of the form

0 b 0
c 0 1
-1 0 0

Any element X of s(F) which is regular but not strongly regular is conjugate
under Gly(F) to a unique element of the form

0 b 0
E=| ¢ 0 V7
Jr 0 0

with b,¢ € Fy/T and b # 0. Then
Al(X) = —bc
AQ(X) = br

Two such elements are conjugate under Glo(F') if and only if they are conjugate
under Gl (FE).

LEMMA 12. Any element X of u(F) which is reqular but not strongly regular
is conjugate under LUy 1 to a unique element of the form

0 b 0
c 0 1 ,
-1 0 0

with b,c € F\/T and b # 0. In addition
Al(X) = —bc
Bi(X) = —b

Two such elements are conjugate under Uy 1 if and only if they are conjugate under

Glo(E).
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PRrROOF: Write
a b z1

X = c —a 2y
-z —-z1 O
By assumption we have Z3z; + Z122 = 0. Conjugating by a diagonal matrix in Uy 3

we may assume 2o = 1. Then z; + z7 = 0. Conjugating by the matrix ( (1) le )

we are reduced to the case where the matrix has the form

a b 0
c —a 1
-1 0 0

We finish the proof as before. O
We see now that any element &’ of s(F') which is regular but not strongly regular
matches an element & of u(F'). Explicitly

0 b 0
&= c 01
-1 0 0
matches
0o v 0
g=| ¢ 0 V7

v 0 0

if and only

bc=bc, -b="b1.
As before we set

 (€) /U Jole(u)ee(u) ™) du

Qon(€) = [ Blle)'le) nldetg)ds
Gla(F)
The fundamental lemma asserts that if £ — £’ then

Qu () =7(§)u, (&)

To prove the lemma we proceed as before. We set

Then
0 b O
X = cgc 0 1
-1 0 0
with

On the other hand

0 by
Y = C2 0
1 0

with
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Thus in terms of X and Y the matching conditions become

b1
02:7617',()2:7*2.
T
We have
|bl| = |b2|7 |bz\ = \02\-
Moreover, if byc; (and thus bocs) is even, then bic; is a square if and only if baco is
not a square.

THEOREM 2 (Remaining case of the fundamental Lemma). If X and Y are as

above and
by

o =—aT, by =——,
T

then
Qs1,(X) = 1(b2)Qe, (Y) .
19. Orbital integrals for Sl
We compute the orbital integral under SLy(F) of

0 b 0
X=| ¢ 01],
-1 0 0
where b # 0, ¢ # 0. We also write Qg,(X) = Qgi1, (b, ¢).
We have
—bu bm? 0
Qs1,(X) = /<I> m~2(c—u?b) wub m~' | dulm|"2d*m.
—m~! 0 0

If the integral is non zero then |b| < 1 and |bc| < 1. Explicitly the domain of
integration is
1< |m|, |bu] <1, [bm? <1,
lbe — u?b?| < |m?b| < 1.

Under the assumption |bc| < 1 the condition |ub| < 1 is superfluous. After a change
of variables, we can rewrite the integral as

B! /du|m|’2dxm
over
lbe —u?| < [m?b| < 1,1 < |m|.
We divide the integral into the sum of the contribution Qg (X) of |¢| < [m?| and

the contribution Q%,_(X) of [m?| < |¢|.
We have

Qb (X) = [b|7* /du|m|*2dxm
over
[u?] < [m?b], sup(L, [e]) < [m?| < [b]7".
This integral can be computed as follows

Qf,(X) =
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le] <1 beven W_ll_/#
(] <1 bodd L e
le| > 1 be odd Wlb{f#
lcf >1 beven bceven ‘bd;zzflqil
el >1 bodd bc even qillbf‘:qlii_qil

For Q% (X) we first compute the integral

du .
/bc—u2ém2b

It is 0 unless be is a square then it is equal to 2|bc|~/2|bm?|. We have thus
0%, (X) = |bc|—1/22/ d*m.
1<m?[<|e|
This is 0 unless |c| > 1. Then it is equal to

¢ even —v(c)
codd 1-—w(c)

Adding our two results we arrive at the following Proposition.

02, (X) = b~ {

PROPOSITION 14. Qg;, (b, ¢) is given by the following formula.

lc] <1 beven lb‘_ll_/:flq_l

] <1 bodd w0 gt

le| > 1 be odd o bel Pog !

el >1 beven bceven non square ‘bclizz_ffl

el >1 bodd bc even non square %

le] >1 be square |bc|11/:;1q - v(c)|be| /2

20. Orbital integrals for Giy(F)
We let

0 b 0
Y=|c 0 1],
100

and we write Qg, (V) = Qai1, (b, ¢). We have

Qa, (V) = D(e(g9)Ye(g) ™ )n(det g)dg
Gla(F)
Explicitly this is
—bau bam? 0
/‘I) m~2(ca”! —u?ba) bau m~' | n(a)d*adulm|?d*m.

a”tm™! 0 0

or
/n(oz)dxadu|m|_2dxm

over

Im™ <1, la"tm™ <1
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lbau| < 1, [bam?| < 1
lcb — u?b?a?| < |m2bal.
As before, if the integral is non zero then |b] < 1 and |be|] < 1. Under these

assumptions the condition |bau| < 1 is superfluous. After a change of variables this
becomes

\b|—1//n(a)|a|—1dxadu|m|—2dxm
over
1< |ml, Jal™! < |m],
lcb — u?| < |m?bal < 1.

After a new change of variables, we get

\b|71//n(a)|a|71dxadudxm
over
L< |m| <ol <",
lbe —u?| < |abl.

/ d*m=1-v(a).
1<m|<]|e

! / n(@)la " (1 - v(a))d* adu

Now, if |a| > 1 then

Thus we get

over
1<|al <[p|7t, |be —u?| < |ab)

or, after a new change of variables,

1®) [ n(@)lal (1 vla) + v(B)d"adu
over
bl < lal <1, Jbe = w?| < |af,
We divide the integral into the sum of the contribution Qg,(Y) of |bc| < |a| and
the contribution QZ,(Y) of |bc| > |al.
To compute Q4,(Y) we may write o = w?® or a = w?st!
over s. We set A =0 or A= bc in such a way that

|A| = sup([b], [be]) -

with s > 0 and sum

We get
Q5i(6) =
nb) Y, (1-2s+v(b)g
5>0,]A|<|w?s|
—n(b) > (v(b) —2s)q°.
5>0,|A|<|w?2s 1|

If |A| = |?"| the first sum is for 0 < s < r and the second sum if for 0 < s <r—1.
We find

n®) | > ¢+ wb) -2r)q | =

0<s<r
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o) (LS ) - 2na )
If || <1, then A =b, bis even, and we are left with
b1|/2 — g1
1—q¢7t
If |¢| > 1 then A = b, be is even, and we are left with
) (P o)
If |A| = |@* 1| then both sums are for 0 < s < 7. We are left with

ol1/2 1/2 _ 1
a0 Y ¢ = ey AT Za

0<s<r 1=q~

n(b)

Now we compute QZ%,(Y). Now [b] < |a| < |bc|. Thus in order to have a
non-zero result we need |¢| > 1. The integral

du
/Ibcu2|<|a

is 0 unless bc is a square. Then it is equal to 2|a||bc|~/2. Thus we find

20(5)[be] 1/ /b|< G e

2be| /2 / o A

:2|bc|_1/2/ n(a)dxa+2|bc|_1/2/ v(a)n(a)d*a.
<lel<]e| le] =1 <|er|<1

Let us write |¢!| = |"| and use the formula

r—1

> (-1 = i(—l + (1) =2(=1)"7r).

n=0
The first integral is 0 unless r is odd in which case it is 1. We find

| ceven |be|~1/2v(c)
Qa, (V) = { codd |be|=Y2(1 —wv(c))

Adding our two results we arrive at the following Proposition.

PROPOSITION 15. Q¢q, (b, ¢) is given by the following formula.

‘b| 12_g=1
lc] <1 beven n(b)
| <1 bodd n(b) = ’”" ;/2 a!
‘ 71bC| 1/2_q—1
le] > 1 be odd n(b)*=
le] > 1 be even non square  7(b) ‘bc‘ 1/2_‘1 i v(c)|bc|_1/2)
le] >1 beven bc square n(b) el 1/: -
le] >1 bodd be square n(b) q_l‘bcl_ln a’
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21. Verifcation of Qg;,(X) = n(b2)Qa, (V)
Under our condition of matching we have

b1] = [b2|, |e1] = |eal.

In addition if byc; and bycs are even then byc; is a square if and only baco is not a
square. By direct inspection we find

Qsi, (b1, c1) = 1(b2)Qa1, (b2, c2) -

This concludes the proof of the fundamental Lemma.
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