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1. GLOBAL RESULTS

Let E�F be a quadratic extension of number fields. We will denote by _
the non-trivial element of the Galois group of E�F and will often write
_(z)=z� . We will denote by U1 the unitary group in 1 variable. We assume
that every Archimedean place of F splits in E. We let H0 be the unitary
group for the 3_3 identity matrix. Recall that a cuspidal automorphic
representation 6 of GL(3, EA) is said to be distinguished by H0 if the linear
form:

P(,) :=|
H0(F )"H0(FA)

,(h) dh,
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is non identically zero on the space V(6) of smooth vectors of 6. Our
main result is that if this linear form is non-zero, then it can be written as
a tensor product of local linear forms. This is a rather startling result, since
there is no local property of uniqueness which guarantees in advance the
existence of such a decomposition.

In more detail, if 6 is distinguished, then the representation 6_ defined
by 6_ (g)=6(g_) is equivalent to 6. Moreover, the following condition is
satisfied for every place v0 of F inert in E; let v be the corresponding place
of E and Hv0

=H(6v , H0, v) be the space of linear forms on the space
V(6v) of smooth vectors of 6v which are invariant under H0, v0

. Then
Hv0

{0. If v0 is a place of F which split into v1 and v2 in E let similarly
Hv0

=H(6v1
�6v2

, H0, v0
) be the space of linear forms on the space

V(6v1
�6v2

) of smooth vectors for the tensor product 6v1
�6v2

which are
invariant under H0, v0

. Now H0, v0
is isomorphic to the group of pairs

(gv1
, gv2

) such that gv1
= tg&1

v2
, gv1

# GL(3, Fv0
). Furthermore 6v1

=6v2
.

Thus the dimension of Hv0
is actually one.

Let S0 be a finite set of places of F containing all the places at infinity,
the even places, and the places which ramify in E. Let Si be the set of
places in S0 which are inert in E and let Ss be the set of split places. Let
S be the set of places of E above a place of S0 . Let 6 be a distinguished
representation. Suppose that 6 is unramified outside S. We let VS(6) or
simply VS be the subspace of vectors in V(6) which are invariant under
KS :=>v � S Kv , Kv=GL(3, Ov). We consider the elements of VS(6) which
are pure tensors. They can be described in terms of the Whittaker models
as follows. Let � be a non-trivial character of FA �F. Set �E (z)=�(z+z� ).
Denote by N the group of upper triangular matrices with unit diagonal,
and by % the character of N(FA) defined by:

%(n)=�(n1, 2+n2, 3).

Similarly, define a character n [ %(nn� ) on N(EA) by:

%(nn� )=�E (n1, 2+n2, 3).

For , # V(6), set

W(,)=|
N(E)"N(EA)

,(n) %&1 (nn� ) dn, W(g)=W(6(g) ,).

Then

,(g)= :
# # N(2, E)"GL(2, E)

W _\#
0

0
1+ g& ,
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where N(2) denotes the group of upper triangular matrices with unit
diagonal in GL(2). If , is a pure tensor in VS, then the corresponding
function W has the form

W(g)=` Wv (gv),

where Wv is in the Whittaker model W(6v) of 6v for every place v, and,
for v � S, Wv=WKv is the unique element of W(6v) which is invariant
under Kv and equal to 1 on Kv . Whenever convenient, we identify the space
V(6v) with W(6v). Then our precise result is the following theorem:

Theorem 1. There exist a constant c{0 and, for each v0 # S0 , a non-
zero element Pv0

# Hv0
such that, for any pure tensor , in VS,

P(,)=c `
v0 # Si

Pv0
(Wv) `

v0 # Ss

Pv0
(Wv1

�Wv2
).

We remark that the proof of the theorem will provide us with a specific
choice of the local linear forms and also a specific value for the constant
c in terms of L-functions.

Since the spaces Hv0
with v0 # S i are not one-dimensional in general, the

existence of such a decomposition is not formal. Moreover, the theorem
implies the non-trivial result that the linear form P is non-zero on VS, for
any S satisfying the above conditions. A priori, one can only say that if it
is non-zero, then it is non-zero on a space VS, with a large enough S.

The paper is arranged as follows. We review the relative trace formula of
[JY] in Section 3. We prove the main theorem in Section 4. In Section 5
and 7 we prove local results. Let E�F be a local quadratic extension of non-
Archimedean fields. If 6 is a supercuspidal representation of GL(3, E) we
prove in Section 5 that the dimension of H(6, H0 (F )) is at most one. In
Section 6, we review the local theory for GL(2). In Section 7 we show, that,
at least for certain irreducible representations 6 of GL(3, E), the dimension
of H(6, H0 (F )) is equal to the number of irreducible representations of
GL(3, F ) (with a given central character) which base change to 6. Conjec-
turally, this should always be the case. Finally, in Section 8, we state
general conjectures.

We note that a recent work of E. Lapid and J. Rogawski treat a related
question ([LR]). Roughly speaking, they investigate the notion of dis-
tinguished representation and period integrals for non-cuspidal auto-
morphic representations. Finally, we refer to [yF2] for the discussion of
representations distinguished by GL(n, F ).
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We now explain our notations. In general G denotes the group GL(3)
regarded as an algebraic group. The context indicates whether we regard G
as an algebraic group over F or over E. For instance, if v0 is a place of F
then Gv0

denotes the group GL(3, Fv0
). Likewise if v is a place of E then Gv

denotes the group GL(3, Ev). Moreover Kv0
and Kv denote the correspond-

ing standard maximal compact subgroups. Throughout the paper S0 and S
are finite sets of places of F and E respectively satisfying the previous con-
ditions. Then GS0

is the product of the groups Gv0
with v0 # S0 and GS0 the

(restricted) product of the groups Gv0
with v0 � S0 . The notations FS0

, F_
S0

,
KS0

, KS0, GS , GS, KS , KS have a similar meaning.

2. L2-NORM OF A PURE TENSOR

We keep to the notations of the introduction. We recall how to compute
the L2-norm of a pure tensor in a cuspidal representation ? of GL(3, FA).
We assume that ? is unramified outside S0 . An invariant scalar product on
each space Wv0

(6v0
) is given by:

(W1 , W2)=|
N(2, Fv0

)"GL(2, Fv0
)
W1W� 2 _\g

0
0
1+& dg.

This is a result of Bernstein ([B]) in the non-Archimedean case and of
Baruch in the Archimedean case ([Ba]). More precisely, Baruch shows
that the restriction of the unitary representation 6v0

to the group Pv0
of tri-

angular matrices with last row (0, 0, 1) is irreducible (as a unitary represen-
tation). On the other hand in [JS] it is shown that the irreducible
representation { of Pv0

induced by the character %v0
of Nv0

occurs in this
restriction. The conclusion follows. In fact this assertion is also a conse-
quence of the global theory as we are going to see (once one knows that
the above Hermitian form is defined by a convergent integral ).

This being so, there is a constant c(F, S0), which depends on F, S0 , and
the choice of the Haar measures, but not on ?, such that:

&,&2=c(F, S0) LS0 (1, ?, Ad) `
v0 # S0

&Wv0
&2. (1)

Here LS0 (s, ?, Ad) denotes the partial adjoint L-function attached to ?.
Indeed, let 8=> 8v0

be a Schwartz�Bruhat function in three variables
where 8v0

is the characteristic function of O3
v0

for v0 � S0 . Consider the
Epstein�Eisenstein series:

E(g, 8, s)=|
F_"F_

A

:
! # F 3&[0]

8(t!g) |t|3s d _t |det g| s.

112 HERVE� JACQUET



Then, for Rs>>0, if ,1 , ,2 are pure tensors,

| ,1,� (g) E(g, 8, s) dg

=LS0 (s, 1F) LS0 (s, ?, Ad) `
v0 # S0

| W1, v0
W2, v0

(g) 8v0
[(0, 0, 1) g] |det g| s dg.

Taking the residue at s=1 we obtain

| ,1,� (g) dg `
v0 # S0

|
F3

v0

8v0
(x) dx

=Ress=1LS0 (s, 1F) LS0 (1, ?, Ad)

_ `
v0 # S0

| W1, v0
W2, v0 _\g

0
0
1+ k& 8v0

[tk] |det t|3 d _t dk dg.

In the last integral k is in KS0
, g # GL(2, FS0

), t # F_
S0

. Now for v0 # S0 the
integrals

|
F3

v0

8v0
(x) dx, | 8v0

[tk] |det t| 3 d _t dk

are equal (up to a scalar factor). Moreover, the left hand side of the pre-
vious formula is an invariant Hermitian form on the space V(6). If follows
that for v0 # S0 there is an Hermitian form ;v0

on W(6v0
) such that

| W1W� 2 _\g
0

0
1+ k]& 8v0

[tk] |det t|3 d _t dk dg

=;v0
(W1 , W2) | 8v0

[tk] |det t| 3 d _t dk.

It follows in turn that for every smooth function fv0
on Kv0

invariant on the
left under Pv0

Zv0
& Kv0

, Z denoting the center,

| W1W� 2 _\g
0

0
1+ k]& fv0

(k) dk dg=;v0
(W1 , W2) | fv0

(k) dk.

The same relation is then true for every smooth function on Kv0
. In turn

this implies that the Hermitian form

(W1 , W2)
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is invariant under Kv0
and thus under Gv0

a claimed. Then

| W1W� 2 _\g
0

0
1+ k]& 8v0

[tk] |det t|3 d _t dk dg

=(W1 , W2) | 8v0
[tk] |det t|3 d _t dk,

and relation (1) follows.
Thus we can construct an orthonormal basis of VS0 as follows: for each

v0 # S0 , we choose an orthonormal basis (W:v0
), :v0

# Av0
, of W(6v0

, �v0
).

We then set A=>v0 # S0
Av0

. For each : # A we define

W: (g)= `
v0 # S0

W:v0
(gv0

) `
v0 � S0

W Kv0(gv0
)

and then we set

,: (g)=
1

- c(F, S0) LS0 (1, ?, Ad)
:

# # GL(2, F )

W: _\#
0

0
1+ g& .

Then (,:) is indeed an orthonormal basis of VS0.
We introduce the matrix

0 0 &1

w=\ 0 &1 0+&1 0 0

and a Bessel distribution on GL(3, FS0
). We let W$ be the linear form on

V(?) defined by:

W$(,$)=|
N(F )"N(FA)

,$(n) %&1 (n) dn.

We define the global Bessel distribution attached to ? as follows. If f $ is a
smooth function of compact support on GL(3, FS0

) we set

B? ( f $) :=:
:

W$(?( f $) ,:) W$(?(w) ,:). (2)

Remark. To make the above sum finite, we have to assume that
f =>v0 # S0

fv0
where fv0

is Kv0
-finite if v0 is Archimedean. However with a

little more effort, one can show that there is distribution whose value on
a function of this type is given by the above expression.
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On the other hand, for every place v0 # S0 we denote by Wv0
the local

Whittaker linear form (evaluation at e) and introduce the local Bessel
distribution B?v0

or simply Bv0
:

Bv0
( f $v0

) :=:
:v0

Wv0
(?v0

( f $) W:v0
) Wv0

(?v0
(w) W:v0

). (3)

Then if f $=>v0 # S0
f $v0

we have

B? ( f $)=c(?) `
v0 # S0

Bv0
( f $v0

),

where we have set

c(?) :=
1

c(F, S0) LS0 (1, ?, Ad)
. (4)

Similar results are true for a cuspidal automorphic representation 6 of
GL(3, EA) and a pure tensor , # VS:

&,&2=c(E, S) LS0 (1, ?, Ad) `
v # S

&Wv&2 (5)

with

c(6) :=
1

c(E, S) LS0 (1, 6, Ad)
. (6)

3. MATCHING OF ORBITAL INTEGRALS

The main theorem will a consequence of the relative trace formula of
[JY]. We recall the geometric side of the trace formula in question. We fix
an idele class character | of F.

Let F+ be the set of elements of F_ which are norm of an element of
E_ and, for each inert place v0 of F, let F +

v0
be the set of x # F_

v0
which are

a norm of an element of E _
v . We set F_

S0
=>v0 # Si

F +
v0

>v0 # Ss
F_

v0
. Similarly,

let F +
A be the set of ideles x such that xv0

# F +
v0

for every inert place v0 .
Then F+ =F_ & F +

A .
Let S be the variety of Hermitian matrices in GL(3, E) and S+ (F ) the

set of elements of S(F ) whose determinant is in F+. For each inert place
v0 , let S+

v0
be the set of s # Sv0

whose determinant is in F +
v0

. Note that
GL(3, Ov) & Sv0

is contained in S+
v0

if v0 is odd, inert, and unramified. Let
S+

S0
be the set of s # SS0

such that det s # F +
S0

. Let also S+
A be the set of

elements of S(FA) whose determinant is in F+
A . We define a distribution
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J(v) on S+
A as follows. If 8 is a smooth function of compact support on

S+
A we set:

J(8) :=|
N(EA)�N(E)

|
F +

A �F + \ :
! # S+(F )

8(n!tn� z)+ |(z) dz%(nn� ) dn. (7)

On the other hand, let G+ (F ) be the group of g # GL(3, F ) such that
det g # F+. Define similarly, for any inert place v0 , the group G+

v0
of

gv0
# GL(3, Fv0

) with det gv0
# F +

v0
. Finally, let G+ (FA) be the set of

g # GL(3, FA) such that det g is in F +
A . We define a distribution J$(v) on

G+ (FA):

J$( f $) :=|
(N(FA)�N(F ))2 |F +

A �F + \ :
! # S+(F )

f $(n1!ztn2)+
_|(z) dz%(n1n2) dn1 dn2 . (8)

We have a notion of matching orbital integrals; if 8 and f $ have match-
ing orbital integrals, then:

J(8)=J$( f $). (9)

In a precise way, we assume that 8 and f $ are products of local functions
which themselves have matching orbital integrals. This means the following.
If v0 is an inert place, we say that 8v0

and f $v0
have matching orbital

integrals, if, for any diagonal matrix a whose determinant is a norm:

|
N(Ev)

8v0
(natn� ) %v0

(nn� ) dn

=#(a, �v0
) |

N(Fv0
)_N(Fv0

)
f $v0

(n1atn2) %v0
(n1n2) dn1 dn2 . (10)

Here the transfer factor #(a, �v0
) is defined by:

#(diag(a1 , a2 , a3), �)=|E�F (a2).

One can show that, this relation implies, in turn, that there are similar rela-
tions between the other relevant orbital integrals [J3]. In an earlier paper
[JY4], we have shown that given 8v0

there is a function f $v0
satisfying the

above conditions and conversely. For instance, if v0 is odd, Ev �Fv0
is

unramified and the character �v0
has for conductor the ring of integers,

then, if 8v0
is the characteristic function of Kv & Sv0

we may take for f $v0
the

characteristic function of Kv0
.
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If fv is a smooth function of compact support on GL(3, Ev) and 8v0
is the

function on S+
v0

defined by

8v0
(gt

vg� v)=| fv (gvhv0
) dhv0

,

we say that fv and f $v0
have matching orbital integrals provided 8v0

and f $v0

do. If fv is a Hecke function and f $v0
is its image by the base change

homomorphism, then f $v0
is supported on G+

v0
and fv and f $v0

have matching
orbital integrals.

If v0 splits into v1 , v2 then we may identify Sv0
to the set of pairs (s, ts)

with s # GL(3, Fv0
) and Hv0

to the set of pairs (h, th&1) with h # GL(3, Fv0
).

Thus we may identify GL(3, Fv0
), Sv0

and Hv0
. Then we take the condition

of matching orbital integrals to be:

f $v0
(g)=8v0

(g). (11)

We say that fv0
and fv1

_fv2
have matching orbital integrals if:

f $v0
(g)=8v0

(g)=| fv0
(gh) fv2

( th&1) dh.

For Hecke functions this means that fv0
is the convolution of fv1

and fv2
.

Identity (9) follows readily from the condition of matching.
To the functions f and f $ we attach kernels in the usual way:

Kf (x, y) :=|
E_

A �E_
:

! # GL(3, E)

f (x&1!zy) 0(z) dz,

Kf $ (x, y) :=|
F +

A �F +
:

! # G+(F )

f $(x&1!zy) 0(z) dz.

Then

J(8)=|
N(E)"N(EA)_H(F )"H(FA)

Kf (n, h) %&1 (nn� ) dn dh,

J$( f $)=|
N(F )"N(FA)_N(F )"N(FA)

Kf $ (n1 , tn2) %&1 (n1) %(n2) dn2 .

From identity (9) follows the equality of the integral of the two kernels. In
turn, this implies the equality of the integrals of the corresponding spectral
kernels and, finally, the equality of the integrals of the kernels attached to
a cuspidal representation ? and its base change.
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Now let 0 be the base change of |, that is, 0(z)=|(z_(z)). Let ? a
cuspidal representation of GL(3, FA) with central character | and let 6 its
base change. Let K 6

f and K ?
f $ be the kernels attached to the representations

6 and ? respectively:

K 6
f (x, y)=: 6( f ) , i (x) , i ( y),

K ?
f $(x, y)=: ?( f $) ,$i (x) ,$i ( y),

where the sums are over orthonormal bases of V(6) and V(?) respec-
tively.

Then, if f and f $ have matching orbital integrals,

| | K 6
f (nh) %&1 (nn� ) dn dh=| | K 6

f $(n1 , tn2) %&1 (n1) %(n2) dn1 dn2 . (12)

Recall that on the space of V(6) we have introduced the following linear
forms:

W(,)=| ,(n) %&1 (nn� ) dn, P(,)=| ,(h) dh.

Thus the integral of K 6
f can be written as

:
,i

W(6( f ) ,i) P(, i).

On the other hand:

|
N(FA)�N(F )

,$( tn$) %(n$) dn$=|
N(FA)�N(F )

,$( tn$) %&1 (n$) dn$

=|
N(FA)�N(F )

,$(wtn$ww) %&1 (n$) dn$

=|
N(F )"N(FA)

,$(n$w) %&1 (n$) dn$

=W$(?(w$) ,$).

Thus the integral of K ?
f $ can also be written:

:
,$i

W$(?( f $) ,$i) W$(?(w) ,$i).
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We arrive at the identity:

:
,i

W(6( f ) , i) P(,i)=:
,$i

W$(?( f $) ,$i) W$(?(w) , i
i), (13)

whenever f and f $ have matching orbital integrals.

Remark. If v0 is an Archimedean place of F, by hypothesis, the place v0

splits into v1 and v2 . We assume that the functions fv1
and fv2

are in fact
Kv1

&Kv2
&Kv0

finite so as to have only finite sums in the above identity.
In fact, both sides may be viewed as distributions and then the identity is
true without restriction at the infinite places.

4. PROOF OF THE MAIN THEOREM

We now prove the theorem stated in the first section. Thus we let 6 be
a distinguished cuspidal representation of GL(3, EA) with central character
0. It is thus the base change of a unique cuspidal representation ? of
GL(3, FA) with central character |. We let S0 and S be as before. If f is
a smooth function of compact support on GS and KS-finite, we set:

R6 ( f )=:
,i

W(6( f ) ,i) P(, i),

the sum over an orthonormal basis (, i) of VS. The sum does not depend
on the choice of the orthonormal basis. We think of this linear form as
being the relative Bessel distribution attached to 6.

Recall

G+
S0

:= `
v0 # Ss

Gv0
`

v0 # Si

G+
v0

.

We have defined the global Bessel distribution attached to ?. We can com-
pute its value on a function f $ smooth and of compact support, on the
group G+

S0
:

B? ( f $)=:
,$i

W$(?( f $) ,$i) W$(?(w) ,$i),

where the sum is over an orthonormal basis of VS0 (?). Actually, as before,
to make the sum finite we have to assume that f $=>v0 # S0

f $v0
where fv0

is
Kv0

-finite for v0 infinite. We think of B? as the Bessel distribution attached
to ?.
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If f and f $ have matching orbital integrals then it follows from the
previous section that:

R6 ( f )=B? ( f $). (14)

For v0 # Si we define a distribution Bv on GL(3, Ev) as follows: given a
smooth function of compact support fv , we choose a function f $v0

with
matching orbital integrals and we set:

Rv ( fv)=B?v0
( f $v0

).

We must check that the right hand side is independent of the choice of f $v0
.

But if f "v0
is another choice then f $v0

and f "v0
have the same orbital integrals,

or, what amounts to the same, all the orbital integrals of the difference
vanish. However, the orbital integrals are weakly dense in the space of dis-
tributions on GL(3, FA) which transform on the left and on the right under
the character % of N(Fv0

) ([GK], principle of localization). Thus the dis-
tribution B?v0

takes the same value on both functions, and the distribution
Rv is well defined.

At a place v0 # Ss we set

Rv0
( fv1

�fv2
)=Bv0

( f $v0
),

where f $v0
have matching orbital integrals with fv1

� fv2
, that is, f $v0

=
fv1

V tfv2
.

Recall the decomposition

B? ( f $)=c(?) `
v # S0

Bv0
( f $v0

).

It follows that we can write:

R6 ( f )=c(?) `
v0 # Si

Rv0
( fv) `

v0 # Ss

Rv0
( fv1

� fv2
). (15)

The theorem will follow from (15) and a careful analysis of the distribu-
tions Rv0

(See the next two lemmas.).

Lemma 1. For every v0 # Si there is a unique element Pv0
of Hv0

such that

Rv0
( fv)=:

ui

Wv (6v ( fv) ui) Pv0
(ui),

where the sum is over an orthonormal basis of V(6v).
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Proof of the lemma. We first prove the uniqueness. Suppose P0 is any
linear form such that

:
ui

Wv (6v ( fv) u i) P0 (u i)=0,

for any function fv . Our task is to show that, for any vector u0 , P0 (u0)=0.
We may as well assume that u0 is a unit vector and even a member of the
orthonormal basis (ui). We then choose a vector u$ such that W(u$){0
and a function fv such that 6v ( fv) u0=u$ and 6v ( fv) ui=0 for i{0. We
then obtain our conclusion by applying the hypothesis to fv .

To prove the existence, we fix a place w0 # S i and let w be the corre-
sponding place of E. Let 6w be the restricted tensor product of the unitary
representations 6v with v{w. We fix a unitary intertwining operator
A: 6 w�6w � 6. In a precise way, the space of smooth vectors of 6w can
be identified with the space Vw spanned by the functions of the form
Ww (gw)=>v{w Wv (gv) on the group Gw, the restricted product of the
groups Gv with v{w, where Wv is in W(6v) and Wv=WKv for v � S. Then
A has the form:

A(Ww�Ww)=d,(g),

,(g)= :
# # N(2, E)"GL(2, E)

W _\#
0

0
1+ g& ,

W(g)=Ww (gw) Ww (gw).

The constant d is chosen to make the map a unitary operator. Let (u:) be
an orthonormal basis of W(6w) and (m;) be an orthonormal basis of Vw.
Then A(m;�u:) is an orthonormal basis of 6. If we set Ww (Ww (g))=
dWw (e) then

W(A(m�u))=Ww (m) Ww (u).

For every vector m in V(6w), the linear form

u [ P(A(m�u))

is invariant under H0 (Fw0
) thus belongs to Hw0

. Thus there is a linear map
AH : Vw � Hw0

such that

P(A(m�u))=AH(m)(u).

The global distribution R6 can be written

R6 ( f )=:
;

:
:

Ww (6w ( f w) m;) Ww (6w( fw) u:) AH(m;)(u:).
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Let P} be a basis for the space Hw0
. Note that, at this point, we do not

know that the space is finite dimensional in general. We can write

AH(m)=:
}

A} (m) P} ,

where the A} are suitable linear forms on Vw. Note that for a given m,
A} (m)=0 for all but finitely many }'s. We get:

R6 ( f )=:
} \:

;

Ww (6w ( f w) m;) A} (m;)+ R} ( fv)

where we have set:

R} ( fv)=:
:

Wv (6v ( fv) u:) P} (u:).

Now for each v0 # S i , v0 {w0 we can choose a function fv such that
Rv0

( fv){0 and, for v0 # Ss , functions fv1
, fv2

such that Rv0
( fv1

� fv2
){0.

Thus the distribution Rw0
is a linear combination of the distributions R} :

Rw0
=:

}

c}R} .

Now we set

Pw0
=:

}

c}R} ,

and then Rw0
has the required form. K

We need an analog of the previous lemma for a place v0 # Ss . It is in fact
formal. We define an element Pv0

# Hv0
as follows: we may identify the

representations ?v1
, ?v2

, ?v0
; their common space is the space W(?v0

).
Define an antilinear map A from that space to itself by:

AW(g)=W(wtg&1)

Then A?v0
(g)=?v0

( tg&1) A and A2=1. Now consider the unitary
representation attached to ?v0

and let H be its Hilbert space. Of course, we
use the same notation for the unitary representation attached to ?v0

. We
regard the representation ?v0

( tg&1) has a representation on the conjugate
Hilbert space. This new representation and the representation ?v0

have the
same character thus are equivalent. It follows that there is a unitary
antilinear operator U such that U?v0

(g)=?v0
( tg&1) U. Then U 2 is a

unitary operator which commutes to ?v0
. It is therefore a scalar + with
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|+|=1. Dividing U by the square root of + we may as well assume U2=1.
We have then (on the space of smooth vectors) A=*U with * # C_. Since
A2=1 we get *=\1 and so A preserves the norm. This being so, for u1 ,
u2 # W(?v0

), we set

Pv0
(u1�u2)=(u1 , Au2).

Then

Pv0
(?v0

(g) u1 �u2)=Pv0
(u1�?v0

( tg) u2).

We then define a distribution

R$v0
( fv1

� fv2
) := :

:, ;

Wv0
(?v0

( fv1
) u:) Wv0

(?v0
( fv2

) m;) Pv0
(u: �m;).

The sum is over orthonormal bases (u:) and (m;) of ?v0
.

Lemma 2. In fact:

R$v0
=Rv0

Proof of the Lemma. Indeed, let us take m;=A(u;). Then

Pv0
(u:�m;)=(u: , A2u;)=(u: , u;)=$:, ; .

Then:

R$v0
( fv1

� fv2
)=:

:

Wv0
(?v0

( fv1
) u:) Wv0

(?v0
( fv2

) Au:)

=:
:

Wv0
(?v0

( fv1
) u:) Wv0

(A?v0
( tf *v2

) u:)

=:
:

Wv0
(?v0

( fv1
) ?v0

( tfv2
) u:) Wv0

(Au:).

But Ww0
(Au)=W� w0

(?v0
(w) u). Thus we get at last:

R$v0
( fv1

� fv2
)=:

:

Wv0
(?v0

( fv1
V tfv2

) u:) Wv0
(?v0

(w) u:),

which is indeed Rv0
( fv1

� fv2
). K

Now we prove the theorem. Let P� be the linear form on VS(6) defined by

P� (,)= `
v0 # Si

Pv0
(Wv) `

v0 # Ss

Pv0
(Wv1

�Wv2
)
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when , is a pure tensor. Taking into account the computation of the norm
of a pure tensor, we get:

:
,

W(6( f ) ,i) P� (,i)=c(6) `
v0 # Si

Rv0
( fv) `

v0 # Ss

Rv0
( fv1

� fv2
)

=
c(6)
c(?)

R6 ( f )

=
c(6)
c(?)

:
,

W(6( f ) ,i) P(,i).

Since 6 is irreducible (See the proof of uniqueness in Lemma (1)) we get

P=
c(?)
c(6)

P� (16)

and the theorem follows.

5. LOCAL RESULTS: SUPERCUSPIDAL CASE

Now we consider a local quadratic extension E�F of non-Archimedean
local fields. We only consider irreducible unitary generic representations of
GL(3, E). We say that such a representation 6 is distinguished if the space
H(6, H) of H-invariant linear forms is non-zero. Then the central cha-
racter 0 of 6 is itself distinguished, that is, trivial on U1 . We then fix a
character | of F_ such that 0(z)=|(zz� ).

Theorem 2. Suppose 6 is supercuspidal. Then 6 is distinguished if and
only 6_=6. The dimension of H(6, H) is then one. Let 0 and | as above.
Then 6 is the base change of a unique cuspidal representation ? of GL(3, F )
with central character | and there exists a unique element P? of H(6, H)
such that

:
,i

W(6( f ) ,i) P? (,i)=B? ( f $), (17)

each time f and f $ have matching orbital integrals.

We first prove a result of density.

Lemma 3. If 6 is supercuspidal and distinguished, let Hc
6 be the space

spanned by the linear forms P defined by:

P(u)=|
H(F )

(6(h) u, u~ ) dh,
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where u~ is a (smooth) vector. Then for any P1 # H(6, H), the space Ker(P1)
contains the intersection �P # H

c
6

Ker(P).

Proof. We use Bernstein theory to write the space C of smooth
functions on GL(3, Ev) transforming under the character 0 and compactly
supported modulo the center, as a direct sum of bi-invariant subspaces

C=C(6)�C6,

where C(6) denotes the space spanned by the matrix coefficients of 6v ,
that is, the functions of the form

g [ (6(g) u, u~ ).

If we choose a linear basis (ui) of the space V(6) we can decompose
further C(6) as direct sum of the invariant spaces Ci ,

C(6)=�Ci ,

where Ci is the space spanned by the functions of the form:
g [ (6(g) u, ui). Choosing an index i0 , we may identify the space Ci0

to the
space V and view P1 as a linear form on Ci0

. We may extend P1 to C by
demanding that it be zero on Ci with i{i0 , and then zero on C6. Thus we
now view the given linear form P1 as a distribution invariant on the right
under H(F ). Its value on the function f (g)=(6(g) u, ui0

) is equal to
P1 (u). Since ui0

is invariant under a compact open subgroup K$ this
distribution is invariant on the left under K$. It follows that there exists
a distribution + on G(E)�H(F ) such that, for any f # C,

P1 ( f )=| \| f (xh) dh+ d+(x).

Moreover, this distribution is invariant on the left under K$. Thus, if (x j)
is a set of representatives for the double cosets Z(E) K$"G(E)�H(F ) we
have, for suitable constants *j ,

P1 ( f )=:
j

* j | | f (k$x ih) dh dk$.

For a given function f, there are only finitely many non-zero terms on the
right. Coming back to the original linear form P1 , we see that

P1 (u)=:
j

*j | (6v (xjh) u, ui0
) dh,
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the sum on the right having only finitely many non-zero terms. If we set
uj=6(x&1

j )(ui0
) we get finally:

P1 (u)=:
j

*j | (6(h) u, uj) dh.

The lemma follows. K

To finish the proof we write our local extension in the form Ev �Fv0
where

E�F is a quadratic extension of number fields and v0 a place of F inert in
E, v the corresponding place of E. We assume that all the infinite places of
F split in E. We write the given supercuspidal representation as 6v .

Suppose first that 6 _
v =6v . Then 6v is the base change of a super-

cuspidal representation ?v0
. In turn we may write ?v0

as the local compo-
nent of a cuspidal automorphic representation ?. Let 6 be the base change
of ?. Then 6v is the local component of 6 at the place v. Since 6 is
globally distinguished, it follows that 6v is (locally) distinguished.

Now we suppose that 6v is distinguished. Then its central character 0v

is distinguished and we write, as before, 0v (z)=|v0
(zz� ). We may further

choose an idele class character | of F whose component at v0 is |v0
. We

then set 0(z)=|(zz� ). We first show that 6v is the local component at v of
a distinguished cuspidal automorphic representation 6 with central cha-
racter 0. Since 6_=6 then, it will follow that, as claimed, 6 _

v =6v . From
the previous density lemma, it follows there is a smooth vector u1 in the
space of 6v such that the linear form P1 defined by

P1 (u)=|
Hv0

(6v (h) u, u1) dh

is non-zero. For any smooth vector u in the space of 6v we set:

f u
v(gv)=(6v (gv) u, u1).

On the other hand, we let f v be a smooth function on the group Gv, trans-
forming under the character 0v of Zv, and compactly supported, modulo
the center. We set f (g)= f v (gv) f u

v(gv). We define a function ,u, f v
on

GL(3, EA) as follows:

,u, f v
(g)= :

# # Z(E)"G(E)

f (#g).

The resulting function is invariant under G(E) on the left, compactly sup-
ported modulo Z(EA) G(E) and cuspidal. Let (6:) be the family of
cuspidal representations with central character 0, and for each :, let V: be
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the space of smooth vectors of 6: . Let ,u, f v

: be the orthogonal projection
of ,u, f v

on V: . Then

,u, f v
(g)=:

:

,u, f v

: (g).

The series converges in the space of rapidly decreasing functions on the
quotient G(E) Z(EA)"G(EA). Thus we may write:

| ,u, f v
(h) dh=:

:
| ,u, f v

: (h) dh.

Moreover, Schur orthogonality relations imply the existence of a constant
d>0 such that

|
Zv"Gv

(6v (g0 gv) u, u0)(u1 , 6v (gv) u) dgv=d(u, u)(6v (g0) u1 , u0).

This implies that

|
Zv"Gv

,u, f v
(ggv)(u1 , 6v (gv) u) dgv=d(u, u) ,u1, f v

(g).

Thus, for each :

|
Zv"Gv

,u, f v

: (ggv)(u1 , 6v (gv) u) dgv=d(u, u) ,u1, f v

: (g).

It follows that if the projection ,u, f v

: is not zero (for some choice of u and
f v) then the representation 6: has the form 6v�6 v

: . We claim further
that at least one of the representations 6: is distinguished. Indeed, suppose
not. Thus, for all :,

| ,u, f v

: (h) dh=0.

It follows that for any function f v

| ,u, f v
(h) dh=0.

Explicitly:

:
# # G(E)�H(F ) Z(E)

|
Hv0

(6v(#hv0
) u, u0) dhv0 |

Hv0

f v(#hv0) dhv0=0.
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Now let 8v0
be the function on S+

v0
defined by

8v0
(gtg� )=|

Hv0

(6v(ghv0
) u, u0) dhv0

.

Similarly, let 8v0 be the function on Sv0, + defined by:

8v0(gtg� )=|
H v0

f v(ghv0) dhv0.

Finally let 8 be the product of 8v0
and 8v0. Thus 8(sz)=8(s) |(z) for

z # F +
A . Moreover the support of 8 is contained in a set of the form MF +

A

where M is a compact set. The above relation reads:

:
! # S+(F )�F+

8(!)=0.

We can choose 8v0 in such a way that the above relation reduces to
8v0

(1)=0 or

|
Hv0

(6v(hv0
) u, u0) dhv0

=0,

that is, P1(u)=0, which is a contradiction. Thus one of the representations
6: is distinguished. As we have remarked before, this implies that 6 _

:=6:

and thus as claimed, 6 _
v =6v .

Finally, it remains to prove that if 6v is distinguished then the dimension
of H(6v , Hv) is one. We have just seen that 6v is the local component of
a distinguished cuspidal representation 6, which is itself the base change of
a cuspidal representation ?. In particular, 6v is the local base change of the
local component ?v0

; in fact ?v0
is the unique irreducible representation

with central character |v0
whose base change is 6v . By lemma there is a

unique element P0 of H6v
such that (17) is satisfied. By the density result,

it will suffice to prove that if u is a vector in the kernel of P0 then P1(u)=0
for every element P1 of Hc

6v
. We may assume that P1 has the form:

P1(u)=|
Hv0

(6v(h) u, u1) dh.

Now if 6 is any cuspidal automorphic representation of GL(3, EA) with
local factor 6v and , is any smooth vector of 6 which is a pure tensor of
the form u�uv then

| ,(h) dh=0.
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Indeed, this is clear if 6 is not distinguished and follows from the factoriza-
tion of the global period and the uniqueness of ?v0

otherwise. We now
apply the previous construction. Each function ,u, f v

: corresponds to a pure
tensor vector of the form u�uv. Then

| ,u, f v

: (h) dh=0.

As we have seen this implies that in fact P1(u)=0, as claimed. Thus the
theorem is completely established.

6. SUPERCUSPIDAL REPRESENTATIONS FOR GL(2, E)

We briefly review the case of the group GL(2, E) (Cf. [HLR], [jH],
[jHyF], [yF2], [P]). Let H1 be a split-unitary group in two variables.
Denote by H� 1 the corresponding similitude group and by * the similitude
ratio. Thus H1 Z(E) has index two in H� 1 . Let h1 be an element of
H� 1&H1Z(E). We say that an irreducible admissible (unitary) representa-
tion 6 of GL(2, E) is distinguished by H1 if the space H(6, H1) of linear
forms invariant under H1 is non-zero.

Proposition 1. Suppose that 6 is supercuspidal. Then 6 is distinguished
by H1 if and only if 6 _=6. Then dim(H(6, H1))=1. Moreover, let ? be
a supercuspidal representation whose base change is 6 and let | be the
central character of ?. Then in fact, for P # H(6, H1) and h # H� 1 :

P(6(h) u)=||E�F ((*(h)) P(u).

Proof of the Proposition. If 6 is distinguished by H1 then its central
character 0 is distinguished by U1 and so has the form 0(z)=|(zz� ) for a
suitable |. For P # H(6, H1) set

P|(u)= 1
2 (P(6(h1) u)+|(*(h1)) P(u)), (18)

P|E�F|(u)= 1
2 (P(6(h1) u)+|E�F |(*(h1)) P(u)). (19)

Then, for any h # H� 1 and any vector u:

P|(6(h) u)=|(*(h)) P(u), (20)

P|E�F|(6(h) u)=|E�F|(*(h)) P(u). (21)

We denote by H(6, H1 , |) (resp. H(6, H1 , |E�F|) the space of linear
forms satisfying (20) (resp. (21)).
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Lemma 4. The dimension of the space H(6, H1 , |) is at most one.

Indeed, H� 1 is conjugate to GL(2, F ) Z(E) by an element of GL(2, E) and
the conjugation takes the similitude ratio to gz [ det gzz� . Thus it suffices
to prove that the space H(6, GL(2, F ), |) of linear forms Q such that

Q(6(g) u)=|(det g) Q(u)

for g # GL(2, F ) has dimension at most one. We may extend | to a cha-
racter |1 of E _ and replace 6 by 6�|&1

1 . We are then reduced to prov-
ing that the space H(6�|&1

1 , GL(2, F)) of linear forms invariant under
GL(2, F ) by the representation 6�|&1

1 has dimension at most one; this
is known (see [jH] and [yF2]). Moreover if that space is non-zero then
(loc. cit.)

(6�|&1
1 )_= 6�|1

&1t
=6�0&1|2

1 .

This relation is in fact equivalent to 6 _=6. Thus if 6 is distinguished by
H1 then it is invariant by _.

Now we recall some global results. Let again E�F be a global quadratic
extension of number fields. Let 6 be a cuspidal representation. Let | be an
idele class character of F. The two following conditions are equivalent
([HLR]): (i) the representation 6 is the base change of a cuspidal
representation ? with central character ||E�F ; (ii) the restriction of the
central character 0 of 6 to F_

A is |2 and there is , in the space of 6 such
that

|
Z(FA) G(F )"G(FA)

,(g) |&1(det g) dg{0.

Note that the central character 0 verifies then 0(z)=|(zz� ). Thus, the
second condition amounts to: (iii) the central character 0 has the form
0=| b Norm and there is , in the space of 6 such that

|
Z(EA) H� (F )"H(FA)

,(g) |&1(*(h)) dh{0.

Now we go back to the local problem and again write our local exten-
sion in the form Ev �Fv0

and write 6v instead of 6. If 6v is given and
P|v

{0, then we can argue as before and find a cuspidal representation 6
of which 6v is the local component at the place v and 6 satisfies (ii). Then
6 is the base change of a representation ? with central character ||E�F .
Thus 6v is the base change of a representation ?v0

with central character
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|v0
|Ev�Fv0

. The only other representation of which 6v is the base change is
the representation ?v0

�|Ev�Fv0
and it has the same central character.

Likewise, if P|v0
|Ev �Fv0

{0 then 6v is the base change of a representation ?v0

with central character |v0
.

We conclude that P|v
and P|v0

|Ev �Fv0
cannot be both non-zero. This

already prove that if H(6v , H1, v0
){0 then it has dimension one.

Moreover 6v is then a base change of a representation ?v0
, 6v=6 _

v and
the central character has the required properties.

If 6 _
v =6v then, as before, 6v is the base change of a supercuspidal

representation ?v0
. We can find a cuspidal representation of which ?v0

is a
component. We base change ? to 6 and apply the previously recalled
result to conclude that 6 is distinguished by H1 and 6v by H1, v0

.

Remark. We could argue as in the previous section using the trace
formula described in [JY] (Cf. [yF2]).

Now let H2 be a unitary group which is not split. Let also H� 2 be the
corresponding similitude group and * the similitude ratio. We define again
H(6, H2) as the space of linear forms on V(6) which are invariant under
H2 . Then:

Proposition 2. Suppose that 6 is supercuspidal. Then 6 is distinguished
by H2 if and only if 6 _=6. Then dim(H(6, H2))=1. Moreover, let ? be
a supercuspidal representation whose base change is 6 and let | be the
central character of ?. Then in fact, for P # H(6, H2) and h # H� 2 :

P(6(h) u)=||E�F ((*(h)) P(u).

Let G$(F )/GL(2, E) be the multiplicative group of a quaternion algebra.
It is known that the dimension of H(6, G$(F )) is at most one. Moreover,
H(6, G$(F )){0 if and only if H(6, GL(2, F )){0 (see [jH] and
[jHyF]). Arguing as before we can reduce this proposition to the previous
one.

7. REPRESENTATIONS INDUCED FROM
A CUSPIDAL REPRESENTATION

For the other unitary generic representations of GL(3, E) we propose the
following conjecture:

Conjecture 1. Suppose 6 is a unitary irreducible generic representation
of GL(3, E). Then 6 is distinguished by H if and only 6_=6. Let 0 and
| as above. For each irreducible admissible representation ? of GL(3, F )
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with central character | whose base change is 6, there exists a unique
element P? of H(6, H) such that

:
,i

W(6( f ) ,i) P?(,i)=B?( f $), (22)

each time f and f $ have matching orbital integrals. Moreover, the linear
forms P? form a basis of H(6, H)

We have established this conjecture when 6 is supercuspidal. We prove
it in another case. Suppose that 6 is induced by a supercuspidal represen-
tation. In a precise way, let P=MU be the Levi decomposition of the
parabolic subgroup P of type (2, 1) (upper generalized triangular matrices).
Let 61 is a supercuspidal representation of GL(2, E) and 62 a character
of E_. Thus we may regard 61_62 as a representation of M(E)&
GL(2, E)_E_. We assume that 6 is the corresponding normalized
induced representation:

6=Ind(61 , 62).

Thus 6 operates by right shifts on the space of smooth maps ,: GL(3, E)
� V(61) such that

,( ph)=$P( p)1�2 61_62( p) ,(g)

for every p # P(E); here $P is the module of P(E). We will content ourselves
with proving the conjecture in this case. We begin with a lemma:

Lemma 5. The dimension of H(6, H) is at most two. Moreover, if 6 is
distinguished by H then 61 is distinguished by a split group in two variables,
62 is distinguished by U1 and 6_=6.

Proof of Lemma. Let P0 be the group of upper triangular matrices. We
first study the orbits of P0 (E) on S(F ); a system of representatives is given
by the following matrices:

0 1 0 b 0 0 0 0 1 b1 0 0

\1 0 0+ , \0 0 1+ , \0 b 0+ , \ 0 b2 0 + ,

0 0 b 0 1 0 1 0 0 0 0 b3
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where the elements b and bi take their values in F_�F+. Next, a set of
representatives for the orbits of P(E) on S(F ) is given by the matrices:

0 0 1 b1 0 0

\0 b 0+ , \ 0 1 0 + ,

1 0 0 0 0 b3

with b, b1 , b3 as before. A system of representatives for the orbits of P(E)
on S+ (F ) is then given by the following matrices:

0 0 1 &1 0 0 &b 0 0

_0=\0 &1 0+ , _1=\ 0 1 0+ , _2=\ 0 1 0 + ,

1 0 0 0 0 &1 0 0 &b&1

with b # F_&F+. For each element _i of the above type, let ! i be such that
!i

t!i =_i . Let $!i
be the module of the group P!i

:=P(E) & !iH(F ) !&1
i and

V(!i) be the space of linear forms + on the space V(61) such that

$1�2
P ( p) +(61_62 ( p) v)=$!i

( p) v,

for every vector u and every p # P!i
. Then

dim(H(6, H))�:
i

dim(V(!i)).

Now P!0
contains the subgroup

{\
1 x

xx�
2 +=0 1 x�

0 0 1

whose intersection with (or, more correctly, projection on) M(E) contains
the unipotent radical U1 of the parabolic subgroup of type (1, 1) of M.
Thus for any + # V(!0), any u # U1 and any vector v:

+(61 (u) v)=+(v)

Because 61 is supercuspidal, this implies +=0. Thus V(!0)=0.
Next, consider the case of the element _1 . Then P!1

is the set of matrices

\h1

0
0

h2+
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with h1 # H1 (F ) and h2 # U1 (F ), where H1 is the unitary group in GL(2, E)
for the Hermitian matrix

\&1
0

0
1+ .

Thus V(!1)=0 unless 62 is distinguished and then V(!1) may be identified
with the space of linear forms + on V(61) such that

+(61 (h1) v)=+(v)

for any h1 # H1 and any vector v. Thus dim(V(!1))�1 by the previous sec-
tion. Moreover if V(!1){0 then 61 is distinguished by H1 and 62 by U1 .
In particular, it follows then that 6 _

1=61 and 6 _
2=62 , and thus 6_=6

as well.
Now consider the case of the element _2 . We let H2 be the unitary group

for the matrix

\&b
0

0
1+ .

Then V(!2)=0 unless 62 is distinguished by U1 and then V(!2) is
isomorphic to the space of linear forms + on V(61) which are invariant
under H2 . Thus dim(V(!2))�1 again. Furthermore, if V(!2){0 then again
61 and 62 are invariant under _ and so is 6.

Thus we do get dim(H(6, H))�2. Moreover if 6 is distinguished by H
then 6_=6.

Now suppose that 6_=6. Then 6 _
1=61 and 6 _

2=62 . The representa-
tion 61 is the base change of two supercuspidal representations, say ?1

1 and
?2

1 :=?1
1, v�|E�F . Let |1 be their common central character and set

|2=||&1
1 . Thus 6 is the base change of exactly two irreducible represen-

tations with central character |, the central character of 6 being
0=| b Norm. The two representations in question are the induced
representations

?i=Ind(? i
1 , ?2), i=1, 2.

It remains to show that there are two elements Pi , i=1, 2, of H(6, H)
with the following property. Define as before distributions Ri , i=1, 2, by

Ri ( f )=B?i ( f $),

for ( f, f $) with matching orbital integrals. Then

Ri ( f )=: Wv(6v ( f ) u:) Pi (u:).

134 HERVE� JACQUET



Note that f $ is an arbitrary smooth function of compact support on G+

and the restrictions of the representations ?i to G+ inequivalent. If follows
that the distributions B?i are linearly independent. The same is true of the
distributions Ri . It follows that the linear forms Pi are linearly independent
(see Lemma (1)).

To apply the global theory, we again write our local extension in the
form Ev �Fv0

, write 6v for 6 and so on. Our assertion follows from the
global theory if there exist two cuspidal representations ?i, i=1, 2, with
components ? i

v0
at v0 . Indeed, the corresponding base change representa-

tions 6i are then cuspidal and distinguished and we can argue as before.
Of course, this will not be the case in general.

To remedy the situation, for every z=q&s
v0

with s # C, we set:

? i, z
v0

=Ind(? i
1, v0

�:s
v0

, :&2s
v0

?2, v0
),

where :v0
denotes the module of Fv0

. We recall a standard lemma:

Lemma 6. Fix an index i. Let X be the set of complex numbers z of
module 1 such that there is a cuspidal automorphic representation ? of
GL(3, FA) whose component at v0 is ? i, z

v0
. The set X is infinite.

Proof of the Lemma. For the convenience of the reader we provide a
proof. For the proof of the lemma we fix the index i and drop it from the
notations and consider the representation

?z
v0

:=Ind(?1, v0
�:s

v0
, :&2s

v0
?2, v0

).

Let C(Gv0
, |&1

v0
) be the space of smooth functions transforming under the

character |&1
v0

and compactly supported modulo the center. We recall that
as a consequence of Bernstein's theory, there is a bi-invariant subspace C0

of the space C(Gv0
, |&1

v0
) with the following properties. There is a direct

sum decomposition

C(Gv0
, |&1

v0
)=C0 �C0

where C0 is also bi-invariant. Let f # C0 . For any irreducible admissible
representation ?1 of GL(3, Fv0

) with central character |v0
we have

?1 ( f )=0 unless ?=?z
v0

for some z. If f is given and f0 is its projection on
C0 in the above decomposition then ?z

v0
( f )=?z

v0
( f0) for any z. Given m+1

complex numbers z0 , z1 , z2 , ..., zm one can find f # C(Gv0
, |&1

v0
) such that

?z0
v0

( f ){0 but ?zi
v0

( f )=0, 1�i�m. This follows from the fact the represen-
tations are irreducible and inequivalent. Thus there is an element of C0 with
the same property, namely f0 . In particular, suppose Y is a set of complex
numbers of module 1 with the following property of density: for f # C0 the
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relations ? y
v0

( f )=0 for all y # Y imply f =0. Then the set Y must be
infinite. Thus it suffices to show X has precisely this property of density.

To show this is the case, consider an element f0 # C0 . Define a function

fv0
(g)=|

Gv0

f0 (gx) f0 (x) dx

on Gv0
. Choose another place v1 and a cuspidal element fv1

of C(Gv1
, |v1

)
with fv1

(e){0. Choose also an element f v1 , v2 of C(Gv0 , v1, |v0 , v1) and set

f =fv0
fv1

f v0 , v1, f $=f0 fv1
f v0 , v1.

Consider the sums

,(g)= :
# # Z(F )"G(F )

f (#g), ,$(g)= :
# # Z(F )"G(F )

f $(#g).

Both functions are cuspidal. Let again ?: denote the set of cuspidal
representations with central character | and let ,: , ,$: denote the corre-
sponding orthogonal projections. Then

,:=?:, v0
( f0) ,$: .

Thus if ,: {0 then ?:, v0
=?z

v0
for some z # X. Now suppose that f0 is such

that ?z
v0

( f0)=0 for all z # X. Then ,:=0 for all : and so ,=0. In par-
ticular

: f (#)=0,

for all choices of f v0, v1. This implies fv0
(e)=0 and so f0=0. Thus X is

infinite, as claimed. K

For any z of module 1, let 6 z
v be the base change of the representation

?i, z
v0

. Let Ri, z be the distribution corresponding to B? i, z
v0

. For z # X, there is
thus a linear form in H(6 z

v , H) with the required property. More precisely,
let Wz be any non-zero Whittaker linear form on V(6 z

v), then there is a
unique P i

z # H(6 z
v , H) such that

Ri, z( f )=:
:

Wz(6 z
v( f ) W:) P i

z(W:).

Our task is to show that for every z (of module 1) there is such a linear
form.

At this point, we may as well revert to a local notation, writing our
extension as E�F and writing simply 6 z rather than 6 z

v and so on. We may
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regard the representations ? i, z as a fiber bundle of representations. In a
precise way, we set K$=GL(3, OF) and let V$ be the space of smooth func-
tions ,: K$ � V(?1) such that ,(mk)=? i

1_?2 (m) for m # M(F ) & K$. Then
we may regard all the representations ?i, z as operating on V$. For every
u # V$ the map z [ ? i, z( f $) u takes its values in a fixed finite dimensional
vector space and is a polynomial function of z. Similarly, there is a
holomorphic family of Whittaker linear forms W$z on V$. More precisely,
for every u # V$ the map z [ W$z(u) is a polynomial in z. Now suppose
that f $ is bi-invariant under the compact open subgroup K$1 . Then the
Bessel distribution corresponding to W$z is given by:

B? z
i
( f $)=:

:

W$z(?z
i ( f $) u:) W$z(u:)

where u: is a fixed orthonormal basis of the space of K$1 -invariant vectors
in V. It follows that

z [ B? z
i
( f $)

is a polynomial in z. The same is therefore true of the map z [ R i, z( f ).
We introduce the notation of generalized vector and write

Wz(W)=(W, Wz), P i
z(W)=(W, P i

z).

In terms of generalized vectors, we see that for z # X:

(6 z
v( f ) P i

z , Wz)=R i, z( f ).

Fix a compact open subgroup K1 and let dk1 denote the Haar measure of
mass one on K1 . Set

f K1 (g)=| f (gk1) dk1 .

Let also Pz
K1

denote the corresponding projection operator:

Pz
K1

=| 6 z(k1) dk1 .

Then for any z, we can write:

Ri, z( f K1)=| Wz(g) f (g) dg
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where Wz is a function such that

Wz(ngk1)=%(nn� ) Wz(g),

for n # N(E) and k1 # K1 . For every g the map z [ Wz(g) is a polynomial
in z.

We claim that Wz belongs to the Whittaker model of 6z. This is true for
z # X. Indeed, for z # X, we have:

Wz(g)=(6 z(g) Pz
K1

P i
z , Wz).

Again the representations 6z form a fiber bundle of representations all
operating on the same space V smooth of functions on K=GL(3, OE) with
values in V(61). There is also an analytic family of Whittaker linear forms
Wz on V. Let e+ , 1�+�M, be a basis of the space of vectors in V

invariant under K1 . The functions W z
+ defined by:

W z
+(g)=Wz(6 z(g) e+)

form a basis of the space of K1 invariant elements in the Whittaker model
of 6 z

v . Thus for z # X we have a unique decomposition:

Wz(g)= :
1�+�M

*+ (z) W z
+(g).

Let z0 be a point not in X. Now choose M elements (g&) such that

D(z) :=det(W z
+(g&))

is non-zero at z0 . Then D(z){0 on a subset X0 of X which is also infinite.
For z # X0 the scalars (*+ (z)) are solutions of the Cramer system

Wz(g&)= :
1�+�M

*+ (z) W z
+(g&).

Thus there exist polynomials (P+) such that

*+ (z)=
P+ (z)
D(z)

for z # X0 . Then

Wz(g)=:
+

P+ (z)
D(z)

W z
+(g)

for z # X0 . Thus the same relation is true at z0 . Our assertion follows.
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This being so the above result for z=0 amounts to saying that for every
K1 there is a unique vector uK1

invariant under K1 such that, for any
function f,

Ri ( f K1)=(6( f ) uK1
, W).

Now if K2 $K1 then ( f K2)K1= f K2. Thus

Ri ( f K2)=(6( f K2) uK1
, W)=(6( f ) PK2

uK1
, W).

It follows that PK2
uK1

=uK2
. It follows there is a generalized vector Pi such

that

Ri ( f )=(6( f ) Pi , W).

By definition the distribution Ri is invariant under H on the right. Thus
the generalized vector Pi is also invariant and we are done.

8. CONCLUDING REMARKS

The same technics can be used to prove the conjecture for other
representations. As a matter of fact, this is done in [LR]. However, it is
difficult to prove the conjecture for all representations thus we prefer to
limit ourself to the above cases.

One expects the above results to generalize in a straightforward way to
the groups GL(n) with n odd. For n even, the situation is more com-
plicated. Even if we assume that the infinite places of F split in E, we have
to deal with more than one unitary group. Thus it is reasonable to conjec-
ture that a cuspidal representation which is a base change is distinguished
by some unitary group; it is then a separate issue to show that it is in fact
distinguished with respect to the quasi-split group H, that is the unitary
group for the Hermitian matrix w with entries wi, j=$i+ j, n+1 . Assuming
that it is the case, it is best to introduce the similitude group H� and global
period integrals of the form:

|
Z(EA)"H� (EA)

,(h) |&1 (*(h)) dh.

Such an integral should be non-identically zero if and only if 6 is the base
change of a cuspidal representation ? with central character ||n�2

E�F . It
should factor as product of local invariant linear forms.
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Now we discuss the local situation for n even. So let E�F be a local non-
Archimedean quadratic extension. For every generic irreducible representa-
tion 6, we should introduce, for a character | of F_, the space
H(6, H� , |) of linear forms P such that

P(6(h� ) u)=|(*(h� )) P(u).

Then it should be that H(6, H� , |){0 if and only if 6 is the base change
of at least one representation ? with central character ||n�2

E�F . This conjec-
ture is motivated by the following property of the local transfer factor
#(a, �v0

), at an inert place v0 : the transfer factor is a function defined on the
group A(Fv0

) of diagonal matrices with entries in Fv0
. If n is even, for any

scalar matrix z # F_
v0

,

#(az, �)=#(a, �) |E�F (z)n�2.

Going back to a local situation, for global purposes, we deal with func-
tions 8 supported on the set of Hermitian matrices in the orbit of w, that
is, whose determinant is in det wF+. The matching functions f $ are sup-
ported on the set wG+. It is more convenient to consider the symmetric space
Sw of matrices s such that s=s* where we have set g* :=wtg_w. The group
GL(n, E) operates on Sw by s [ gsg*. We consider the orbit of w, that is,
the set S+

w of matrices with det s # F+. Then the condition of matching
reads

8(gg*)=| f (gh) dh,

| 8(nawn*) %(nn� ) dn=#(a, �) | f $(n1 awn2) %(n1) %(n2) dn1 dn2 .

The relative Bessel distribution is defined in the same way as before but the
Bessel distribution is now defined by:

B? ( f $) :=:
:

W(?( f $) W:) W(W:).

The distributions B? and B?�|E�F
have the same restriction to G+. We

have the following lemma:

Lemma 7. The restriction of B? to G+ is non-zero. Let ?j , 1�i�m be
a family of irreducible generic representations of GL(n, F ) such that for any
pair (i, j), i{ j, the representations ?i and ?j (resp. ?i and ?j�|E�F) are
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inequivalent. Then the restrictions of the Bessel distributions B?i
to G+ are

linearly independent.

Proof of the Lemma. Indeed, the first assertion is clear if the restriction
of ? to G+ is irreducible (see Lemma (1)). Suppose it is not. Then ? is
induced by an irreducible representation ?0 of G+ and ?=?�|E�F . Sup-
pose that W # W(?) is such that W(W){0. Then the function W1 defined
by:

W1 (g)= 1
2(W(g)+W(g) |E�F (det g))

is a non-zero element of W supported on G+. It follows that

W(?)=W+ �?(r) W+,

where W+ is the space of elements of W(?) supported on G+ and
det r � F+. It follows that the representation ?+ on W+ by right shifts is
equivalent to ?0 or ?r

0 and is irreducible. Since W vanishes on ?(r) W+,
for f $ supported on G+, we may take the sum defining the Bessel distribu-
tion over a basis of W+. The first assertion follows.

To prove the second assertion, for each i, denote by ?i, 0 the restriction
of ?i to G+, if this restriction is irreducible, or the irreducible representa-
tion of G+ which induces ?i if not. Then the representations ?i, 0 are
irreducible and pairwise inequivalent. By the first part of the proof, the
restriction of the Bessel distribution B?i

to G+ may be viewed as a
(generalized) matrix coefficient of ?i, 0 . The second assertion follows. K

The lemma implies that in the (still conjectural) relative trace formula,
for a global extension E�F of number fields, where the infinite places of F
split in E, a cuspidal automorphic representation of GL(n, FA) cannot give
a zero contribution, even if we consider only functions f $ supported on G+

A .
This will prove that any base change representation of GL(n, EA) is dis-
tinguished by a quasi-split unitary group. Note that this argument is insuf-
ficient if some real place of F is inert in E.

The lemma also suggest the following conjecture: suppose that H(6, H� , |)
is not zero. Let ?1 , ?2 , ?3 , ..., ?m be representations of GL(n, F ) with central
character ||n�2

E�F which base change to 6. We assume that for any other
representation ? which base change to 6 there is exactly one index i such
that either ?=? i or ?=?i�|E�F . Then, for each index i, there is a unique
element Pi of H(6, H� , |) such that

R6 ( f )=B?i
( f $)

if f and f $ have matching orbital integrals. Moreover, the vectors Pi ,
1�i�m, form a basis of H(6, H� , |).
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