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Nadir Matringe has indicated to me that the paper Conducteur des
Représentations du groupe linéaire ([JPSS81a], citeError2) contains an error.
I correct the error in this note. The correct proof is actually simpler than
the erroneous proof. Separately, Matringe has given a different, interesting
proof of the result in question ([Mat11]).

We recall the result in question. Let F be a local field. We denote by
α the absolute value, by q the cardinality of the residual field and finally
by v the valuation of F . Thus α(x) = |x| = q−v(x). Let ψ be an additive
character of F whose conductor is the ring of integers OF . Let Gr be the
group GL(r) regarded as an algebraic group. We denote by dg the Haar
measure of Gr(F ) for which the compact group Gr(OF ) has volume 1. Let
Nr be the subgroup of upper triangular matrices with unit diagonal. We
define a character

θr,ψ : Nr(F )→ C×

by the formula

θr,ψ(u) = ψ

 ∑
1≤i≤r−1

ui,i+1

 .

We denote by du the Haar measure on Nr(F ) for which Nr(OF ) has measure
1. We have then a quotient invariant measure on Nr(F )\Gr(F ).

Let Sr be the algebra of symmetric polynomials in

(X1, X
−1
1 , X2, X

−1
2 , . . . Xr, X

−1
r ) .

Let Hr be the Hecke algebra. Let Sr : Hr → Sr be the Satake isomorphism.
Thus for any r−tuple of non-zero complex numbers (x1, x2, . . . , xr) we have
an homomorphism Hr → C, defined by

φ 7→ S(φ)(x1, x2, . . . , xr) .
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There is a unique function W : Gr(F )→ C satisfying the following proper-
ties:

• W (gk) = W (g) for k ∈ Gr(OF ),

• W (ug) = θψ(u)W (g) for u inNr(F ),

• for all (x1, x2, . . . , xr) and all φ ∈ Hr,∫
Gr(F )

W (gh)φ(h)dh = S(φ)(x1, x2, . . . , xr)W (g) ,

• W (e) = 1.

We will denote this function by W (x1, x2, . . . xr;ψ) and its value at g by
W (g;x1, x2, . . . xr;ψ).

Let (π, V ) be an irreducible admissible representation of Gr(F ). We
assume that π is generic, that is, there is a non-zero linear form λ : V → C
such that

λ(π(u)v) = θr,ψ(u)λ(v)

for all u ∈ Nr(F ) and all v ∈ V . Recall that such a form is unique, within
a scalar factor. We denote by W(π;ψ) the space of functions of the form

g 7→ λ(π(g)v) ,

with v ∈ V . It is the Whittaker model of π. On the other hand, we have
the L−factor L(s, π) ([GJ72]). We denote by Pπ(X) the polynomial defined
by L(s, π) = Pπ(q−s)−1. The main result of [JPSS81a] is the following
Theorem.

Theorem 1 There is an element W ∈ W(π;ψ) such that, for all r−1-tuple
of non zero complex numbers (x1, x2, . . . , xr−1),∫

Nr−1(F )\Gr−1(F )
W

(
g 0
0 1

)
W (g;x1, x2, . . . xr−1;ψ)| det g|s−1/2dg

=
∏

1≤i≤r−1
Pπ(q−sxi)

−1 .

In [JPS] it is shown that if we impose the extra condition

W

(
gh 0
0 1

)
= W

(
g 0
0 1

)
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for all h ∈ Gr−1(OF ) and g ∈ Gr−1(F ) then W is unique. The vector W
is called the essential vector of π and further properties of this vector are
obtained in [JPSS81a].

The proof of this theorem is incorrect in [JPS]. We give a simple proof
here.

1 Review of some properties of the L−factor
Let r ≥ 2 be an integer. Let (t1, t2, . . . , tr−1) be a r − 1-tuple of complex
numbers. We assume that

Re(t1) ≥ Ret2 ≥ · · · ≥ Re(tr−1) .

We denote by π(t1, t2, . . . tr−1) the corresponding principal series represen-
tation. It is the representation induced by the characters αt1 , αt2 , . . . αtr−1 .
Its space I(t1, t2, . . . tr−1) is the space of smooth functions φ : Gr−1(F )→ C
such that

φ

 a1 ∗ . . . . . . ∗
0 a2 . . . . . . ∗
0 0 . . . . . . ar

 g

 =

|a1|t1+
r−2
2 |a2|t2+

r−2
2
−1 · · · |ar−1|tr−1− r−2

2 φ(g) .

The space I(t1, t2, . . . tr−1) contains a unique vector φ0 equal to 1 onGr−1(OF )
and thus invariant under Gr−1(OF ). We recall a standard result.

Lemma 1 The vector φ0 is a cyclic vector for the representation π(t1, t2, . . . tr−1).

Proof: Indeed, if Re(t1) = Ret2 = · · · = Re(tr−1), the representation is
irreducible and our assertion is trivial. If not, we use Langlands’ construction
([Sil78]). There is a certain intertwining operator N defined on the space of
the representation and the kernel of N is a maximal invariant subspace. By
direct computation Nφ0 6= 0 and our assertion follows. 2

The representation I(t1, t2, . . . tr−1) admits a non-zero linear form λ such
that, for u ∈ Nr−1(F ),

λ(π(u)φ) = θr−1,ψ(u)λ(g) .

We denote by W(t1, t2, . . . , tr−1;ψ) the space spanned by the functions of
the form

g 7→Wφ(g) , Wφ(g) = λ(π(t1, t2, . . . tr−1)(g)φ) ,

with φ ∈ I(t1, t2, . . . tr−1) We recall the following result ([JS83])
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Lemma 2 The map φ 7→Wφ is injective.

It follows that the image W0 of φ0 is a cyclic vector inW(t1, t2, . . . , tr−1;ψ).
Up to a multiplicative constant, W0 is equal to the functionW (x1, x2, . . . , xr−1;ψ).

Now let π be a generic representation of Gr(F ). For W ∈ W(π, ψ) and
W ′ ∈ W(t1, t2, . . . , tr−1;ψ) we consider the integral

Ψ(s,W,W ′) =

∫
Nr−1\Gr−1

W

(
g 0
0 1

)
W ′(g)|det g|s−1/2dg

The integral converges absolutely if Res >> 0 and extends to a meromorphic
function of s. In any case, it has a meaning as a formal Laurent series in
the variable q−s (see below). We recall a result from [JPSS83]

Lemma 3 There are functions Wj ∈ W(π;ψ) and W ′j ∈ W(t1, t2, . . . , tr−1;ψ),
1 ≤ j ≤ k, such that∑

1≤j≤k
Ψ(s,Wj ,W

′
j) =

∏
1≤i≤r−1

L(s+ ti, π) .

Since W0 is a cyclic vector we see, after a change of notations, that there
are functions Wj ∈ W(π;ψ) and integers nj , 1 ≤ j ≤ k, such that∑

i

q−nisΨ(s,Wi,W (x1, x2, . . . xr−1;ψ)) =
∏

1≤i≤r−1
L(s+ ti, π) .

In our discussion |x1| ≤ |x2| ≤ · · · ≤ |xr−1|. However, the functions
W (x1, x2 . . . , xr−1;ψ) are symmetric in the variables xi. Thus we have the
following result.

Lemma 4 Given a r−1-tuple of non-zero complex numbers (x1, x2, . . . xr−1)
there are functions Wj ∈ W(π;ψ) and integers nj, 1 ≤ j ≤ k, such that∑

j

q−njsΨ(s,Wj ,W (x1, x2, . . . xr−1;ψ)) =
∏

1≤i≤r−1
Pπ(q−sxi)

−1 .

2 The ideal Iπ

First, we can define a function W (X1, X2, . . . Xr−1;ψ) with values in Sr−1
such that,n for every g and every r − 1-tuple (x1, x2, . . . , xr−1), the scalar
W (g;x1, x2, . . . xr−1) is the value of the polynomialW (g;X1, X2, . . . Xr−1;ψ)
at the point (x1, x2, . . . , xr−1). For g in a set compact modulo Nr−1(F ) the
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polynomials W (g;X1, X2, . . . Xr−1;ψ) remain in a finite dimensional vector
subspace of Sr−1. We have the relation

|det g|sW (g;x1, x2, . . . , xr−1;ψ) = W (g; q−sx1, q
−sx2, . . . , q

−sxr−1;ψ) .

It follows that if | det g| = q−n then the polynomial W (g;X1, X2, . . . Xr−1;ψ)
is homogeneous of degree n. For each integer n define the integral

Ψn(W ;X1, X2, . . . Xr−1;ψ) =∫
| det g|=q−n

W

(
g 0
0 1

)
W (g,X1, X2, . . . Xr−1;ψ)| det g|−1/2dg

The support of the integrand is contained in a set compact modulo Nr−1(F ),
which depends on W . In addition, there is an integer NW such that the
support of the integrand is empty if n < N(W ). The polynomial

Ψn(W ;X1, X2, . . . Xr−1;ψ

is homogeneous of degree n, that is,

XnΨn(W ;X1, X2, . . . Xr−1;ψ) = Ψn(W ;XX1, XX2, . . . XXr−1;ψ) .

We consider the formal Laurent series

Ψ(X;W ;X1, X2, . . . Xr−1;ψ) =
∑
n

XnΨn(W ;X1, X2, . . . Xr−1, ψ) ,

or, more precisely,

Ψ(X;W ;X1, X2, . . . Xr−1;ψ) =
∑
n≥NW

XnΨn(W ;X1, X2, . . . Xr−1;ψ)

If we multiply, this Laurent series by
∏

1≤i≤r−1 Pπ(XXi) we obtain a new
Laurent series

Ψ(X;W,X1, X2, . . . Xr−1;ψ)
∏

1≤i≤r−1
Pπ(XXi) =

∑
n≥N1(W )

Xnan(X1, X2, . . . Xr−1;ψ) .

where N1(W ) is another integer depending on W . We can replace π by its

contragredient representation π̃, W by W̃ , ψ by ψ. Recall that W̃ is defined
by

W̃ (g) = W (wr
tg−1)
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where wr is the permutation matrix whose non-zeero entries are on the anti-
diagonal. The function W̃ belongs to W(π̃, ψ). We define similarly

Ψ(W̃ ;X1, X2, . . . , Xr−1;ψ) .

We have then the following functional equation

Ψ(q−1X−1; W̃ ;X−11 , X−12 , . . . X−1r−1;ψ)
r−1∏
i=1

Pπ̃(q−1X−1X−1i )

=
r−1∏
i=1

επ(XXi, ψ) Ψ(X,W,X1, X2, . . . Xr−1;ψ)
∏

1≤i≤r−1
Pπ(XXi) .

The ε factors are monomials. Thus there is another integer N2(W ) such
that in fact

Ψ(X,W,X1, X2, . . . , Xr−1;ψ)
∏

1≤i≤r−1
Pπ(XXi) =

∑
N2(W )≥n≥N1(W )

Xnan(X1, X2, . . . Xr−1) .

From now on we drop the dependence on ψ from the notation. Hence the
product Ψ(X,W,X1, X2, . . . Xr−1)

∏
1≤i≤r−1 Pπ(XXi) is in fact a polyno-

mial in X with coefficients in Sr−1. Moreover, because the an are homoge-
neous of degree n, there is a polynomial Ξ(W ;X1, X2, . . . Xr−1) ∈ Sr−1 such
that

Ψ(X;W ;X1, X2, . . . Xr−1)
∏

1≤i≤r−1
Pπ(XXi) = Ξ(W ;XX1, XX2, . . . XXr−1) .

In a precise way, let us write

∏
1≤i≤r−1

Pπ(Xi) =
R∑

m=0

Pm(X1, X2, . . . , Xr−1)

where Pm is homogeneous of degree m. Then

Ψ(X;W ;X1, X2, . . . Xr−1)
∏

1≤i≤r−1
Pπ(XXi) = .

∑
n

Xn
R∑

m=0

Ψn−m(W ;X1, X2, . . . , Xr−1)Pm(X1, X2, . . . Xr−1) .
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The polynomial Ξ(W ;X1, XX2, . . . Xr−1) is then determined by the condi-
tion that its homogeneous component of degree n, Ξn(W ;X1, X2, . . . , Xr−1)
be given by

Ξn(W ;X1, X2, . . . , Xr−1) =

R∑
m=0

Ψn−m(W ;X1, X2, . . . , Xr−1)Pm(X1, X2, . . . Xr−1) .

Let Iπ be the vector space spanned by the polynomials Ξ(W ;X1, X2, . . . Xr−1).

Lemma 5 In fact Iπ is an ideal.

Proof: Let Q be an element of Sr−1. Let φ be the corresponding element
of Hr−1. Then∫
W (gh;X1, X2, . . . , Xr−1)φ(h)dh = W (g;X1, X2, . . . , Xr−1)Q(X1, X2, . . . Xr−1) .

Let W be an element ofW(π, ψ). Define another element W1 ofW(π, ψ)
by

W1(g) =

∫
Gr−1

W

[
g

(
h−1 0

0 1

)]
φ(h)|deth|1/2dh .

We claim that

Ξ(W1;X1X2, . . . Xr−1) = Ξ(W ;X1X2, . . . , Xr−1)Q(X1, X2, . . . , Xr−1) .

This will imply the Lemma.
By linearity, it suffices to prove our claim when Q is homogeneous of

degree t. Then φ is supported on the set of h such that |deth| = q−t. We
have then, for every n,

Ψn(W1;X1, X2, . . . , Xr−1) =∫
|det g|=q−n

∫
W

(
gh−1 0

0 1

)
W (g;X1, X2, . . . , Xr−1)φ(h)|deth|1/2dh|det g|−1/2dg

=

∫
|det g|=q−n+t

∫
W

(
g 0
0 1

)
W (gh;X1, X2, . . . , Xr−1)φ(h)dh| det g|−1/2dg

=

∫
|det g|=q−n+t

W

(
g 0
0 1

)
W (g;X1, X2, . . . , Xr−1)|det g|−1/2dgQ(X1, X2, . . . , Xr−1)

= Ψn−t(W ;X1, X2, . . . , Xr−1) Q(X1, X2, . . . , Xr−1) .
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Hence
Ξn(W1;X1, X2, . . . Xr−1) =

R∑
m=0

Ψn−m(W1;X1, X2, . . . , Xr−1)Pm(X1, X2, . . . , Xr−1)

=
R∑

m=0

Ψn−m−t(W ;X1, X2, . . . , Xr−1)Pm(X1, X2, . . . , Xr−1)Q(X1, X2, . . . , Xr−1)

= Ξn−t(W ;X1, X2, . . . Xr−1) Q(X1, X2, . . . , Xr−1) .

Since Q is homogeneous of degree t our assertion follows. 2

3 Conclusion

Given a r−1-tuple of non-zero complex numbers (x1, x2, . . . , xr−1), Lemma 4
shows that we can find Wj and integers nj such that∑

1≤j≤k
(q−s)njΞ(Wj , q

−sx1, q
−sx2, . . . , q

−sxr−1) = 1 .

In particular, ∑
1≤j≤k

Ξ(Wj , x1, x2, . . . , xr−1) = 1 .

Thus the element

Q(X1, X2, . . . Xr−1) =
∑

1≤j≤k
Ξ(Wj ;X1, X2, . . . Xr−1)

of Iπ does not vanish at (x1, x2, . . . , xr−1). By the Theorem of zeros of
Hilbert Iπ = Sr−1. In particular, there is W such that

Ξ(W ;X1, X2, . . . Xr−1) = 1 .

This implies the Theorem.

Remark 1: The proof in [JPSS81a] is correct if L(s, π) is identically 1.
In general, the proof there only shows that the elements of Iπ cannot all
vanish on a coordinate hyperplane Xi = x.

Remark 2 : Consider an induced representation π of the form

π = I(σ1 ⊗ αs1 , σ2 ⊗ αs2 , . . . , σk ⊗ αsk)
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where the representations σ1, σ2, . . . σk are tempered and s1, s2, . . . s+ k are
real numbers such that

s1 > s2 > · · · > sk .

The representation π may fail to be irreducible. But, in any case, it has a
Whittaker model ([JS83]) and Theorem 1 is valid for the representation π.

Remark 3: The proof of Matringe uses the theory of derivatives of
a representation. The present proof appears simple only because we use
Lemma 3, the proof of which is quite elaborate (and can be obtained from
the theory of derivatives).

,
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