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Nadir Matringe has indicated to me that the paper Conducteur des
Représentations du groupe linéaire ([JPSS81a, citeError2) contains an error.
I correct the error in this note. The correct proof is actually simpler than
the erroneous proof. Separately, Matringe has given a different, interesting
proof of the result in question ([Mat11]).

We recall the result in question. Let F' be a local field. We denote by
« the absolute value, by ¢ the cardinality of the residual field and finally
by v the valuation of F. Thus a(z) = |z| = ¢ ¥®). Let 1 be an additive
character of F' whose conductor is the ring of integers Op. Let G, be the
group GL(r) regarded as an algebraic group. We denote by dg the Haar
measure of G, (F') for which the compact group G,(Op) has volume 1. Let
N, be the subgroup of upper triangular matrices with unit diagonal. We
define a character

Orp : Np(F) — C~
by the formula
Orp(w) =y [ Y wiin
1<i<r—1

We denote by du the Haar measure on N, (F) for which N, (Op) has measure
1. We have then a quotient invariant measure on N, (F)\G,(F).
Let S, be the algebra of symmetric polynomials in

(X1, X7H Xo, X5 b X0, XY,

Let H, be the Hecke algebra. Let S, : H, — S, be the Satake isomorphism.
Thus for any r—tuple of non-zero complex numbers (z1, z2, ..., z,) we have
an homomorphism H, — C, defined by

¢ —> S(¢)($1,$2, . ,:L'T) .



There is a unique function W : G,.(F') — C satisfying the following proper-
ties:

o W(gk) = W(g) for k € G(OF),
o W(ug) = 0y(u)W(g) for u inN,(F),

e for all (x1,x9,...,2,) and all ¢ € H,,
| o WO = S(O)w, 22,2 W),

e W(e)=1.

We will denote this function by W (z1,z2,...2,;%) and its value at g by
W(g;x1,x2,...2:;10).

Let (m,V) be an irreducible admissible representation of G,(F'). We
assume that m is gemeric, that is, there is a non-zero linear form A : V — C
such that

Al (u)v) = Or.y (u) A(v)

for all w € N,(F) and all v € V. Recall that such a form is unique, within
a scalar factor. We denote by W(m; 1) the space of functions of the form

g Am(g)v),

with v € V. It is the Whittaker model of m. On the other hand, we have
the L—factor L(s, ) ([GJ72]). We denote by Pr(X) the polynomial defined
by L(s,7) = Pr(¢~*)~!. The main result of [JPSS81a] is the following
Theorem.

Theorem 1 There is an element W € W(m; ) such that, for all r —1-tuple
of non zero complex numbers (x1,22,...,Tr—1),

- . E ol —
/ W( 0 )W(g;l'],l'g,....rr 1;7,[))|detg|s 1/2l
N'r 1(F)\G 71( )

- H Pﬁ(q_sxi)_l .

1<i<r—1

In [JPS] it is shown that if we impose the extra condition

(7)== (e )
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for all h € G,_1(OF) and g € G,_1(F) then W is unique. The vector W
is called the essential vector of m and further properties of this vector are
obtained in [JPSS81a).

The proof of this theorem is incorrect in [JPS]. We give a simple proof
here.

1 Review of some properties of the L—factor

Let r > 2 be an integer. Let (t1,t2,...,t-—1) be a r — 1-tuple of complex
numbers. We assume that

Re(tl) 2 Retg Z te 2 Re(trfl) .

We denote by m(t1,t2,...t,—1) the corresponding principal series represen-
tation. It is the representation induced by the characters o', of2,.. afr—1.
Its space I(t1,ta,...t,—1) is the space of smooth functions ¢ : G,_1(F) — C
such that

aq * ..
[0 0 as ... ... *x |g|=
0O 0 ... ... ap

r2 re2_ _r2
a1 |72 ag|2t T T e[ ().

The space I(t1, 1o, ...t,—1) contains a unique vector ¢y equal to 1 on G,_1(OF)
and thus invariant under G,_1(Op). We recall a standard result.

Lemma 1 The vector ¢y is a cyclic vector for the representation w(t1,ta,...t,—1).

PROOF: Indeed, if Re(t;) = Rete = --- = Re(t,—1), the representation is
irreducible and our assertion is trivial. If not, we use Langlands’ construction
([Sil78]). There is a certain intertwining operator N defined on the space of
the representation and the kernel of N is a maximal invariant subspace. By
direct computation N¢g # 0 and our assertion follows. O

The representation I(t1,to, . ..t,—1) admits a non-zero linear form \ such
that, for u € N,_1(F),

We denote by W(t1,ta,...,t,—1;1) the space spanned by the functions of
the form

g Wfb(Q) ) Wfb(Q) = )‘<7T(t1) lo,... tT—l)(9)¢) s
with ¢ € I(t1,t2,...t,—1) We recall the following result ([JS83])



Lemma 2 The map ¢ — Wy s injective.

It follows that the image Wy of ¢y is a cyclic vector in W(t1,ta, ..., t,_1;).

Up to a multiplicative constant, Wy is equal to the function W (1, 2o, ..., 2,_1;%).
Now let 7 be a generic representation of G,(F'). For W € W(m,) and

W’ € W(t1,ta,. .., t.—1;1) we consider the integral

0 .
www) = [ w (] Wil deng g
N'r 1\Gr 1

The integral converges absolutely if Res >> 0 and extends to a meromorphic
function of s. In any case, it has a meaning as a formal Laurent series in
the variable ¢—° (see below). We recall a result from [JPSS83]

Lemma 3 There are functions W; € W(m; ) and Wj’ EW(t1,ta, ..., tr_1;0),
1 <j <k, such that

Z (s, Wy, W)) = H L(s+t;,m).

1<5<k 1<i<r—1

Since W) is a cyclic vector we see, after a change of notations, that there
are functions W; € W(m; 1)) and integers nj, 1 < j < k, such that

Zq_nisqj(‘g?WhW(mth?- - Tp— 17¢ H L S"—t“ﬂ')
] 1<i<r—1
In our discussion |z1| < |z2] < -+ < |zy—1]. However, the functions
W(xy,xo...,2,-1;1) are symmetric in the variables x;. Thus we have the

following result.

Lemma 4 Given ar—1-tuple of non-zero complex numbers (x1,x2, . .. xy—1)
there are functions W; € W(m; 1) and integers nj, 1 < j <k, such that

> g (s, Wi, Wy, @, e 0)) =[] Prlg"za) ™"
J 1<i<r—1

2 The ideal I,

First, we can define a function W (X7, X, ... X,_1;¢) with values in S,_;

such that,n for every g and every r — 1-tuple (z1,z2,...,z,—1), the scalar
W (g;x1, 2, ...x,—1) is the value of the polynomial W (g; X1, Xo, ... X,—1;v)
at the point (z1,z9,...,2,—1). For g in a set compact modulo N,_;(F') the



polynomials W (g; X1, Xo, ... X,_1;%) remain in a finite dimensional vector
subspace of S;,_1. We have the relation

|detg|sW(g;x1,x2, cee 7331”—1;&) = W(Q? qisxl)qisl‘Za o 7qisxr—l;$) .

It follows that if | det g| = ¢~ then the polynomial W (g; X1, Xa, ... X,_1; %)
is homogeneous of degree n. For each integer n define the integral

U, (Wi X1, Xo,... Xp139) =

0 — _
/|dt | W( ‘g 1 >W(97X1,X2,~.Xr—1;¢)’det9| 12dg
et gl=q¢—"

The support of the integrand is contained in a set compact modulo N,_1(F),
which depends on W. In addition, there is an integer Ny such that the
support of the integrand is empty if n < N(W). The polynomial

U, (W; X1, Xo, ... Xr—1;%
is homogeneous of degree n, that is,
X", (W; X1, Xo, ... Xp1;0) =0, (W; X X1, X Xo,... XX, _1;0).
We consider the formal Laurent series

V(X Wi X1, Xo, o Xpoi9) = > X "0 (Wi X1, Xo, . Xpo1, ),
n

or, more precisely,

V(X Wi Xy, Xo, o Xpoi) = > XU, (W3 X1, X, X135 9)

If we multiply, this Laurent series by [[;,«,_; Pr(XX;) we obtain a new
Laurent series

U(OXGW, Xy, Xo, o X)) [ Pr(XXG) =

1<i<r—1

Z X" (X1, Xo,... X 159).
n>Ny (W)

where N1(W) is another integer depending on W. We can replace 7 by its
contragredient representation 7, W by V[N/, 1 by 1. Recall that W is defined
by

W(g) = W(w.'g"")



where w, is the permutation matrix whose non-zeero entries are on the anti-
diagonal. The function W belongs to W(7, ). We define similarly

U(W; X1, Xo, ..., Xo_139)).

We have then the following functional equation

r—1
V(' XWX LG LX) [ Prle T XX
=1

r—1
= [[er(X X0 0) (X, W, X1, Xo,... Xo139)  [[ Pr(XX5).
=1 1<i<r—1

The e factors are monomials. Thus there is another integer No(WW) such
that in fact

U(X, W, X1, Xo,.. ., Xeo39) [] Pr(XX0) =
1<i<r—1

> X"an (X1, Xo, ... Xr_1).
No(W)>n>N1 (W)

From now on we drop the dependence on 1 from the notation. Hence the
product W(X, W, X1, Xo,... X;—1) [[1<i<y—1 Pr(XX;) is in fact a polyno-
mial in X with coefficients in S, _. M_or_eover, because the a, are homoge-
neous of degree n, there is a polynomial Z(W; X1, Xs,... X,_1) € S, such
that

V(X W X1, Xo, .. Xm1) [ Pr(XXG) = (W5 XX, X X, .. XX, 1)
1<i<r—1

In a precise way, let us write
R
H PTF(XZ) = ZPm<X1,X2,...,XT_1)
1<i<r—1 m=0

where P,, is homogeneous of degree m. Then

U(X;W; X1, X0, ... X_1) H P (XX;) =.
1<i<r—1

R
STXMY U (Wi X1, Xo,y o, Xy 1) Pr(X1, X, .. X 1)
n m=0
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The polynomial Z(W; X1, X X5, ... X, _1) is then determined by the condi-
tion that its homogeneous component of degree n, =, (W; X1, Xo,..., X, 1)
be given by

S0 (Wi X1, Xay ooy Xpq) =

R
> V(Wi X1, Xo, o, Xy 1) Pr(X1, X, X 1)

m=0

Let I; be the vector space spanned by the polynomials Z(W; X1, Xo, ... X, _1).
Lemma 5 In fact I; is an ideal.

PrOOF: Let @) be an element of S,._1. Let ¢ be the corresponding element
of H,_1. Then

/W(gh;Xl,Xm ooy Xpm1)o(h)dh = W(g; X, Xo, .o, X 1) Q(X, Xo, ... X 21) .

Let W be an element of W(7, ). Define another element Wy of W(w, 1))
by
Rt 0 1/2
Wi(g) = wig( ", | )| emldetn/2dn.
Gr—l

We claim that
EW X0 Xe, . .. Xp) =E(W; X1 Xe, .., Xom)Q(X1, Xy oo, X 1)

This will imply the Lemma.

By linearity, it suffices to prove our claim when @) is homogeneous of
degree t. Then ¢ is supported on the set of h such that |det h| = ¢~t. We
have then, for every n,

W At 0 .
/| | / ( gO 1 > (9 X1, X3, 'vxrfl)ﬁb(h)‘deth|1/2dh|detg| 1/2dg
detg:q*n
/ X _
/ld | +t/W( g . >W(gh; X1, Xo, ..., Xr_1)¢(h)dh| det g|~/%dg
et g|=q—™
" g0 Wig; X1, X X -1/2 XX
| det g|l=g—"+* 0 1 (95 X1, X2, ..., Xp—1)|det g| 7/ 7dgQ (X1, Xo, ..., Xom1)
etg:q*n

= \Ijnft(Wa Xla X27 s ,X,,-,]_) Q(Xla X27 s )erl) .



Hence
En(Wl;Xl,XQ, e erl) =
R
> U (Wi X1, Xo, o, X 1) Prn(X1, X, X 1)

m=0

R
= U o (W; X1, Xoy oo, X 1) P (X1, Xay o, X 1) Q( X1, Xo,y o, Xp1)

m=0

=En(W; X1, Xo,... Xp1) Q(X1, Xy, X))

Since @ is homogeneous of degree t our assertion follows. O

3 Conclusion

Given a r—1-tuple of non-zero complex numbers (x1, 2, . .., Zy—1), Lemma 4
shows that we can find W; and integers n; such that

Z (qis)njE(Wj7 qisxh qistJ v 7q78‘r7‘—1) =1.
1<j<k

In particular,

E E(Wj,l‘l,l'g,...,xr_l):l.
1<j<k

Thus the element

Q(X1,Xo,... X, 1) = Z =E(W;; X1, Xo, ... Xo1)
1<5<k

of I; does not vanish at (z1,z9,...,2,—1). By the Theorem of zeros of
Hilbert I; = S,_1. In particular, there is W such that

E(W, Xl,XQ, .. .XTfl) =1.

This implies the Theorem.

REMARK 1: The proof in [JPSS81a] is correct if L(s,7) is identically 1.
In general, the proof there only shows that the elements of I; cannot all
vanish on a coordinate hyperplane X; = x.

REMARK 2 : Consider an induced representation 7w of the form

=101 ®a’, 00 ®@a™,... 0p R a’F)



where the representations o, 09, .. .0} are tempered and s, So9,...5+ k are
real numbers such that
S§S1 >8>+ "> Sk.

The representation m may fail to be irreducible. But, in any case, it has a
Whittaker model ([JS83]) and Theorem 1 is valid for the representation .

REMARK 3: The proof of Matringe uses the theory of derivatives of
a representation. The present proof appears simple only because we use
Lemma 3, the proof of which is quite elaborate (and can be obtained from
the theory of derivatives).

)
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