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1. Introduction

We let k£ be a local non-Archimedean field of characteristic zero with a finite
residual field. We denote by G, the group GL(n) regarded as an algebraic group
over k. We let p > 1, g > 1 be two integers with p + ¢ = n and denote by
H = H, , the subgroup of G, of matrices of the form:

0 .
h:(gol gz) with g1 € G,, 92 € G,. 1

Suppose that 7 is an admissible irreducible representation of G, on a complex
vector space V. We let Homg (7, 1) be the space of H invariant linear forms on
V, i.e. linear forms T on V such that T'(7(h)v) = T'(v) forallv € V and h € H.
Our main result is the following one:

THEOREM 1.1. For any irreducible admissible representation ™
dimHompg(m,1) < 1.

Furthermore, if dimHomg(7,1) = 1 then 7 is equivalent to the contragredient
representation T.

If dimHomg (7, 1) # 0, we say that 7 is H distinguished. The importance of this
statement comes from the following result. We consider the special case where
p = ¢ (and n is even). We let k be a number field. Suppose that 7 is an automorphic
cuspidal representation of G',,(A) with trivial central character. For a form ¢ in the
space of T we consider the ‘period integral’

Plg) = /Z(A)H(k)\Hw #(h) dh,
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where Z is the center of G,. Then the integral P(¢) is non-zero for some ¢ € 7 if
and only if the (partial) exterior square L-function attached tow hasapoleats = 1
and the standard L-function L(s, ) does not vanish at s = 4 (see [FJ] and [BF]).
If this is the case, then the integral defines on the space of 7 an H(A) invariant
linear form. The local components 7, of = are thus H,-distinguished. The above
integral is then given by an Eulerian product in the following sense. There exists
an embedding 7 of @ 7, into the space of cusp forms of G, (A). If

¢ =7 (Qudv)

then

P(¢) = L(I/Z,W)HTU(¢U),

where T, is a certain canonical element of the space
Homp, (7y,1)

which is one dimensional if v is finite. In the above formula, at almost all finite
places v, the representation 7, is spherical, the vector ¢, is invariant under the
standard maximal compact subgroup and T',(¢,) = 1. This is proved in [FJ]
without using the previous theorem. However, it is clear that the theorem could be
used also to establish (in part) this assertion and will be used in any application of
the period integral to the study of the L-function at 1.

At this point it is natural to go back to a local situation and ask for an explicit
construction of a linear form invariant under H. We discuss only the most inter-
esting case where p = ¢. (For some partial results on the general case see [FJ]).
To that end, we introduce the parabolic subgroup P, = HU, of type (p,p). Its
unipotent radical U, is the subgroup of matrices of the form:

u= b 2 . ()
0 I,

Let 7 be a non-trivial character of k. We define a character ¥ of U, by:

¥(u) = $(Tr(2)).

Then the stabilizer of ¥ in H is the subgroup Hy of matrices of the form:

e (20 5

Suppose that 7 is an admissible irreducible representation of GL(2n) on a complex
vector space V. Then a Shalika functional on V is a linear form [ such that

[(m(uho)v) = ¥(u)l(v),
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for u € U, and ho € Hy. Assuming the existence of a Shalika functional [ # 0,
we construct an H invariant linear form as follows. We consider the integral

H(v,s)= /é l(ﬂ‘ ((g) 2) v) | detg |*~1/2 dg 4)

In order to show this integral converges for s sufficiently large, we first establish
an asymptotic expansion for the functions /(7 (a)v) where a is diagonal. Then as
in [FJ], it follows that this integral is an arbitrary holomorphic multiple of L(s, 7).
We then set

_ H(v,s)
L(s,m)

Ii(v)

s=1/2

and I; has the required invariance property. The uniqueness of the linear map I;
implies then the uniqueness of [. Also, it follows from the above results that an
irreducible representation which has a Shalika model is self-contragredient. This
result has been used by Cogdell and Piatetski-Shapiro in their study of the exterior
square L-function. At any rate, the above local results supplement the global
results of [JS]: there it was proved that an automorphic cuspidal representation 7
whose exterior square L-function has a pole has a global Shalika model. The local
components of the representation 7 have thus a local Shalika model.

At this point, we formulate a question: let p = ¢ and suppose that the vec-
tor space Homy, (7, 1) is not zero; we ask whether the representation 7 is self
contragredient.

In order to prove the above theorem we let o be the involution (antiautomor-
phism of order 2) defined by o(g) = ¢g~! and we prove that any distribution 7
on (&,, which is bi- H -invariant is fixed by o (see Theorem 4.1 below). This will
imply the theorem as in [G K. Indeed, since the automorphism g — g~! takes
H to itself and 7 to 7, the spaces Homy(7, 1) and Homp(7, 1) have the same
dimension. Let A € Hompy (7, 1) and A € Homp(, 1) be non-zero. For every
smooth function of compact support f on the group G, there is a smooth vector
7(f)A in the space of 7 such that for any smooth vector © in © we have:

(w(H)X D) = (\7(f)D) .
Applying the result to the distribution f — (7(f)A, A), we conclude that

(70X FA) = (DA F()A)

for any two functions f}, f, smooth of compact support. Since 7 is irreducible, this
implies that if 7( f)A = 0 then @(f)A = 0. Thus there is a linear operator S from
the space of 7 to the space of 7 such that S(7w(f)A) = (f)A. It is a non-trivial
intertwining operator. This already establishes the fact that 7 is self-contragredient.
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Moreover S is unique within a scalar factor. This proves our contention on the
dimension of Homg (7, 1).

In the case at hand, we do not have the property that o(g) € HgH for
all ¢ € G. Thus we cannot apply directly the method of [GK] to prove the
above result. The lack of stability of the double cosets under o leads us to con-
sider in great detail the structure of the space of double cosets of H. In fact
the method of proof given in our case is an adaptation of ideas presented by
J. Bernstein (see [Be] and [GPSR]). Bernstein proved that if G = GL(n) X GL(n —
1) and H = GL(n — 1) is viewed as the diagonal subgroup of the product, then
dimHom(7, 1) < 1. We remark thatif p # 1, ¢ # 1 we do not expect this to be true
for G = GL(p + q) x H, where H = GL(p) x GL(q) is viewed as the diagonal
subgroup, because H does not have an open orbit in the flag variety of G.

To study the double cosets of H, we consider the element

I, 0
e=epn=|, _; | 5)
q

Then we form the symmetric space
Y = {g € G, |ge is conjugate to ¢ } . (6)
We also introduce the moment map p: G — Y given by

pg) = geg™'e. ()
It satisfies the property that

p(gzh) = gp(z)eg™e 8)
forall g and z in G, and h in H. In particular, if g is in H then:

p(gz) = gp(z)g™". ©9)

Passing to the quotient, p defines an isomorphism G/ H — Y. We can classify the
double cosets of H via the map p. In particular, we show that for any g € Y the
semi-simple part ¢, and the unipotent part g,, of its Jordan decomposition g = gsg,,
both belong to Y. Suppose that g is a semi-simple element ¢ € Y and p(z) = g¢.
Then we show that the double coset Hz H is invariant under o (see Proposition
4.2). Thus ‘generically’ the double cosets of H are stable under 0. Now let G9 be
the centralizer of ¢ in G. For £ € GY we have

o(H¢xH) = HE'zH,

where ¢ — ¢! is a certain involution (antiautomorphism of order 2) of G9 which
leaves HY = H N GY invariant. In fact, in order for { to have order 2, it is
necessary to choose z suitably. Let U, be the open set of £ such that the map
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®(h1,&,hy) = hi€xhy is submersive at (1,£,1). The image of H x U, x H
under ® is an open set §2,. The most technical part of this work is to establish the
properties of these objects (see Subsection 5.2): the set U, is invariant under {; it
is also the set of non-zeroes of a regular function f, on GY which is bi-invariant
under H9 = H NGY and invariant under §; finally, the set {2, contains any element
y such that the semi-simple part of p(y) is g. Now to prove the theorem it suffices
to show an H invariant distribution 7" which is also ¢ skew invariant vanishes.
Suppose that g is semi-simple not central. Then the restriction of the distribution
T to Q, has a pullback p7 to U, which is HY invariant and { skew invariant. If
1 is a smooth function of compact support on k*, then (¢ o f;)ur extends to
a distribution on GY with the same properties of invariance under HY and §. In
turn, the triple (GY, HY, ) decomposes into a product of triples (G;, H;, 0;); here
o; is an involution of G; which leaves H; invariant. For each triple, the assertion
corresponding to the theorem is known, either for trivial reasons or inductively
because the triple has the form (GL(n'), Hy n1,g — ¢~!) with n’ < n. Thus
(¢ o fy)ur = 0 and pr = 0. It follows that the restriction of T' to {2 is trivial.
This amounts to saying that the support of such a distribution is contained in the
complement of the union of the sets {2, that is, the set of  such that the semi-
simple part of p(z) is £1. In other words, the support of T" is contained in the
union

HNyH U HNywH, (10)

where we have set

0 I,
w = 5
I, ©

and Ny denotes the set of unipotent elements of Y. Every coset in the first set is
invariant under o. Thus we can reduce ourselves to the case where the distribution
has support in the second set. Of course, we have then to assume p = q. At this
point we introduce the infinitesimal symmetric space, that is, the set L of matrices
X such that eXe = —X. Clearly L is invariant under conjugation by H and w.
Using the exponential map (or rather the Cayley map) we see that the distribution
T gives rise to a distribution 7’ on L which is invariant under conjugation by H
and skew invariant under conjugation by w. Our task is then to show that such
a distribution vanishes (Theorem 2.1). Using the same kind of reduction as in
the group case, we can show that such a distribution has support in the set nz,
of nilpotent elements of L. The Fourier transform of 7’ has the same property.
This implies that the distribution 7" is invariant under an appropriate oscillator
representation of SL(2, k). In particular, it has a certain property of homogeneity
under the dilations X +— tX. Now there are only finitely many orbits of H in
ng. If T' is not zero, one orbit must carry an invariant distribution with the same
property of homogeneity. We check this is not the case and so prove the theorem
(see Proposition 3.1).
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We did not mention a minor complication. In the group case, in order to carry
the induction, we have to consider also the involution z +— wz~!w. Equivalently,
we have to show that any distribution on G invariant under H is also invariant
under conjugation by w (see Subsection 5.3).

It will be clear to specialists that we have imitated some reduction techniques that
Harish Chandra used in his study of invariant distributions. See [RR] where similar
reduction techniques are used in a broader context to study spherical characters.

The paper is organized as follows. In Section 2, we discuss the space of orbits of
H on the infinitesimal symmetric space and reduce the problem on the infinitesimal
symmetric space to the study of distributions on the cone of nilpotent elements.
This study is carried out in Section 3. In Section 4 we discuss the structure of the
set of double cosets. In Section 5, we reduce the problem on the symmetric space to
the problem on the infinitesimal symmetric space. Finally in Section 6, we discuss
the Shalika models.

For a first reading, the reader should read Section 2 and Subsection 3.1, and take
for granted the crucial Lemma 3.1, the proof of which is given in Subsection 3.2.
Then it would be enough to glance at the results in Section 4 and read Subsection
5.1. The results of Subsection 5.2 can be taken for granted at first. Section 5.3 is
similar to Section 5.1. and so can be skipped. Finally, the above introduction gives
a sufficient idea of the contents of Section 6.

2. The infinitesimal symmetric space

We let k be a field of characteristic zero and V' be a vector space of dimension m
over k with a Z /27 grading; thus V' is written as the direct sum of its homogeneous
components:

V=VoV. (11

We set r; = dim(V;). We let ¢ be the element of GL(V) such that ¢(v) =
(—1)deeree(v)yy, Let I be the subspace of elements of Endx (V') which are homoge-
neous of degree 1. Thus

L = Hom(V}, V) @ Hom(Vg, V7). (12)
We write an element X of L as a pair of operators

X = (X, Xo)
with X € Hom(Vj, V1) and X; € Hom(V1, V). We set

9(X) = X1 Xo. (13)

We let H be the subgroup of ¢ € GL(V') which are homogeneous of degree 0.
Hence

H = GL(VO) X GL(Vl).
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We write an element g of H as a pair

g9 = (90,91)
with g; € GL(V;). The group G = GL(V) operates on g = End(V') by the adjoint
representation Adg(X) = gXg~!. In particular, L is stable under H. Explicitly, if
I = (X1, Xo) and g = (g0, 1) then

1

glg™" = (90X 197", 1 Xogy )

Let 7 be an element of G such that 72 = 1. We have then ry = 7. We then define an
involution ¢ of L by o(!) = 7lr. Our goal in this section is to prove the following
theorem:

THEOREM 2.1. Suppose that V is a Z/2Z graded vector space of dimension
m = 2r whose homogeneous subspaces have the same dimension. Let T be an
involution of V- homogeneous of degree 1. Let o be the corresponding involution
of L, the space of linear maps from V to itself which are homogeneous of degree
1. Let also H be the group of invertible automorphisms of V (of degree 0). Then
any distribution T’ on L which is H -invariant is invariant under o.

We first recall some standard facts on the orbits of H on L. The assumption
ro = 71 is not needed there. For X € End(V), let

X=X,+X,

be the Jordan decomposition of X as a sum of a semi-simple element X, and
a nilpotent element X,, which commute with one another. Since L is the —1
eigenspace of Ade, we see that if X is in L then X, and X,, also belong to L.
Now suppose that k is algebraically closed and X € L is semi-simple. If v is an
eigenvector of X belonging to the eigenvalue A let vg, v| be its components. Then
Xwvo = Avp and X v; = Avg. In particular, vg— v; is an eigenvector for X belonging
to the eigenvalue — . One deduces from this observation that one can choose an
homogeneous basis with respect to which the operators X; have diagonal matrices
with the same non-zero diagonal entries. It follows that if X is semi-simple then
the matrices X, X1 and ¢(X ) = XX are semi-simple and have the same rank.
This last assertion remains true even if the field is not algebraically closed.

Choosing again a basis of each space V;, it will be convenient to view the
elements X of L as matrices

0 X
Xx=xxo={ . ')
0

Let R be any integer with R < r;,7 = 0, 1. For any matrix A of size R X R we let
J(A) be the element of L such that

A O Ir O
Xo= , X1 = .
0 0 0 0



72 HERVE JACQUET AND STEPHEN RALLIS

Thus J(A) is represented by the matrix

0 0 I O

J(A) = 0000 14)
A0 0 O
0 0 0 O

PROPOSITION 2.1. Each semi-simple element X of L is H conjugate to an
element of the form J(A) where 0 < R < r; and A is an invertible semi-simple
R X R matrix.

Proof. Let X = (X1, Xo) be a semi-simple element of L. Let R be the rank of
the matrix X;. Then Xy and ¢(X ) = XX, have also rank R. There is go and g,
in GL(ro, k) and GL(r, k) such that

. (Ir O
90X1911=(0 0)-

1

At the cost of replacing X by ¢ X ¢~ with g = (go, g1) we may as well assume

Ip 0
X, =R .
0 0
Let us write then
XO = 9
C D
where A is an R x R matrix. Then
(X) A B
2=V o0 o)

Since ¢(X') is semi-simple and of rank R, the matrix A is semi-simple and invert-
ible. We can replace X by g X g~! where

=((52) (0)

without changing X ;. Then we can compute

I 0 A B\ A B
v 1) \¢c D) \+yA+C +4'B+D



UNIQUENESS OF LINEAR PERIODS 73

A B I B A AB+B

¢ o) \o 1) \c cs+D)’
Since A is invertible there is 8 and v’ such that y’A + C = 0 and A3 + B = 0.
Thus there is a ¢ = (go, g1) of the above form such that

. A 0
.(JIXOgo = o D/

Since this matrix has rank R the matrix D must have rank zero, i.e., D = 0. This
proves our contention. a

and

Recall G = GL(V). Letg = M(m X m, k) be the Lie algebra of G. ForY € g
we will denote by GY the centralizer of Y in G and by g* the centralizer of Y
in g.

Let X = (X1, Xo) be an element of L. We will denote by HX its centralizer
H N GX in H and by LX its centralizer g* N L in L.

LEMMA 2.1. Suppose that
X =J(A)

where A is an invertible matrix of size R x R. Then HX is the group of all pairs
of the form:

((g 2) (g js))) (15)

where a € GL(R) commutes with A, § € GL(ro — R) and ¢’ € GL(r1 — R).
Similarly, LX consists of all pairs of the form:

((jcf (5)) (XOA ?)) (16)

where X € M(R X R, k) commutes with A and £, are arbitrary.
Proof. The first statement is immediate. We prove the second statement. If
(Z,W) € L commutes with X then we write

VAR W, W,
Z = . W= ,
23 24 Wi Wy
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where Z; and W7 are R x R matrices. We find at once that Z1A = AZ; = W,
Wy =0,W; =0and AZ, = 0and Z3A = 0. Since A is invertible we conclude
that Z3 = 0 and Z, = 0 and our conclusion follows. a

Suppose that X = J(A) as above. Then its centralizer H* in H is isomorphic to
the product

GL(R)“ x GL(ro — R) x GL(r| — R).
On the other hand, the centralizer L¥ in L is isomorphic to the product

M(R X R,k)* x M(ro— Rx 1 — R,k) x M(r; — R x 7y — R, k).

The space LX is invariant under the action of HX. With the above identifications
the element g = («, 6, 8") operates on (X, &, ¢’) by

(X,6,8) — (aXa™', 668", 8'€67").
Thus we have proved the following proposition:

PROPOSITION 2.2. Let X be a non-zero semi-simple element of L and R the rank
of ¢(X). Then there is an isomorphism of (HX , LX) with

(GL(R,k)*, M(R x R, k)*) x (H', L),

where A is semi-simple in GL(R, k). Here V' is a graded vector space whose
graded subspaces have dimension (ro — R, 71 — R), L' is the space of operators of
degree 1 on V', H' the group of automorphisms (of degree 0) of V'. The isomor-
phism is compatible with the respective adjoint actions. a

For X,Y € g,weset §(XY) = Tr(XY). We let gy be the orthogonal comple-
ment of g¥ for 3. If Y is semi-simple then

=g ®gy. an
For £ € g¥, both summands are stable under ad(Y + £). In particular:

LEMMA 2.2. If £ is nilpotent and commutes with Y then ad(Y + &) defines a
bijection of gy on itself.
Proof. This well known result follows from the Jordan normal form for Y +£.0

LetY be asemi-simple element of L. Our goal is to construct an open subset {2y
of L which is a union of orbits under H of elements belonging to LY . Furthermore,
the set 2y to be constructed contains any element of the form Y + £ where £ is
nilpotent in LY. Since LY = L only if Y = 0, it follows that the complement of
the union of the sets 2y with Y # 0 and semi-simple is the set ny, of nilpotent
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elements of L. We will eventually show that a distribution on L which is o skew
invariant and H invariant has a trivial restriction to any of the open sets {y, that
is, is supported in the set ny,.

We let h be the space of linear homogeneous operators of degree O on V. We
denote by hY the centralizer of Y in h, by LY the centralizer of Y in L. We set
hy = h N gy and similarly Ly = L N gy. Since b is the 41 eigenspace for Ade
and L the —1 eigenspace, we have

g=h&L,
o =0 s LY, gy =by &Ly
and the orthogonal decompositions:

h=0" @by, L=LY @ Ly.

LEMMA 2.3. Suppose Y € L is semi-simple. Then by and Ly have the same
dimension. The restriction of 3 to each space is non-degenerate.
Proof. Define
(A, B)y = Tr(Y[A, B]) = Tr([Y, A]B).
Then (A, B)y = O for all B if and only if A commutes with Y. Thus the radical of
this skew linear form is the centralizer g of Y. We have in fact g¥ = p¥ @ LY,
and h and L are maximal isotropic subspaces for the form (., .)y. The conclusion
follows. a
We denote by Uy the set of ¢ € LY such that
ad(Y +€):by — Ly

is surjective. Since the transpose of this linear map (with respect to 3) is the linear
map

ad(Y +¢&): Ly — by

and conversely, the previous lemma implies that Uy is also the set of ¢ € LY such
that

ad(Y +¢)*: Ly — Ly

is bijective. In particular:
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LEMMA 2.4. For £ in LY set:

fr(€) = det([ad(Y +€)*]|Ly ). (18)

The set Uy is the set of € in LY such that fy(€) # 0. It contains all nilpotent
elements of LY . The polynomial fy is invariant under Ad(H Y. In particular, the
set Uy is a non-empty open set invariant under Ad HY .

Proof. The first assertion is clear. The second assertion follows from Lem-
ma 2.2. The third assertion follows from the following formula, where A is
in HY :

ad(Y + Ad(h)(€)) = Ad(h) o ad(Y + £) o Ad(R)™'.

The last assertion is then an easy consequence. a

Consider the map
p:Hx LV - [
given by:
$:(9,6) > Adg(Y + &) = g(Y + &g (19)

The map ¢ is clearly submersive on the product G X Uy . Thus the image Qy of
G x Uy is open and contains any element of the form Y + ¢ with £ nilpotentin LY .
We will use these objects to study H invariant distributions on Qy. In a precise
way, there is a surjective map & — f, from C®(H x LY) to C2(Qy) such that
forany F' € C*®(Qy)

[ alg.OFA)Y +) dgdt = [ f(DF@AT, Q)
HxUy L

where dg, d¢, dT are appropriate Haar measure on H, LY, L respectively. It follows
that for every Ad(H ) invariant distribution 7" on Qy there is a unique distribution
p7 on Uy invariant under HY such that

T(forgas) = u:r(az)/al(g)dg- (21)

From now on, we assume rg = r1. We consider an element 7 of G of degree 1
such that 72 = 1. Thus
T = (1, 70)

with 7o = 7;!. We then define an involution o of L by o({) = ri7 and aninvolution
o of H by &(g) = Tgr. If we use 7 to identify Vj to V1 (or use an homogeneous
basis invariant under 7 to identify operators with matrices) then

o(X1, Xo) = (Xo, X1). (22)
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5(90,91) = (g1, 90)- (23)

We have the following compatibility between the two involutions
o(Ad(g)X) = Ad(6(g))o(X). (24)
We also note the following result:
LEMMA 2.5. IfY is semi-simple in L, then there is z € H such that
Ad(z)(e(Y)) =Y.
Then HY is invariant under the map
Gy: g~ Ad(z)((9))-

Moreover &y is an involution. The space LY and the open set Uy are both invariant
under the map:

oy: &+ Ad(z)(0(£)) = Ad(27)(£)

and oy is an involution. The involutions are compatible in the sense that
oy (Ad(h)§) = Ad(6y (h))oy (§).

Finally,
a(¢(g,€)) = ¢(3(g)="", oy (£))-

In particular, the open set Qy is invariant under o.
Proof. We may assume

Ir O A0

0 0/’ 0 o/|’
where A is an invertible semi-simple matrix of rank R < r. We define an element
z of H by

Al 0
z = S|
0 IT—R

Then

Y = J(A) =

Ad(2) (0(Y)) = z0(Y)z" ' =Y
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which proves our first assertion. The properties of 6y follow from the explicit
description of HY given above (In fact 5y = & on HY).
To continue, we recall that an element £ of LY has the form

(z) (502

where A commutes with X . It follows that

X 0 XA 0
sar©=|(5 2] (0]

is again in LY . Thus oy is indeed an involution of LY . To continue, we compute

a(4(9,€)) = Adé(g) [o(Y) + 0 ()] = Ada(g) [Ad(z~1)(Y) + o(£)]
= Ad(5(g)=") [Y + Ad(2)(o(€))]
= ¢ (5(9)2"", Ad(2)a(§)) -
The compatibility of oy and ¢y follows from the compatibility of o and &.
It remains to see that if £ is in Uy then Ad(z)o(§) € Uy. By assumption,

ad(Y + £) is injective on Ly and we have to see that ad(Y + Ad(z)o(€)) is also
injective on Ly . By the very choice of z we have

Y + Ad(z)0(€) = Ad(z)o(Y + €) = Ad(27)(Y + §).
Hence
ad(Y + Ad(2)o(€)) = Ad(z7)ad(Y + £)Ad(z7)~.

Since LY is invariant under Ad(z7) the same is true of Ly and our conclusion
follows. a

If we use the notations of the Proposi~tion 2.1, we see that oy = 1 x o' and
6y =1 x o'y where o/(X') = 7' X't’, 0'(¢') = 7'¢g/7'; here 7’ is an element of
order 2 in GL(V"), homogeneous of degree 1.

Now we apply the above considerations to the map a;® a2 — fa,gq, previously
defined. If f is a function on Qy (or L) we denote by f° the function defined by
fo(X) = f(o(X)).If p is any distribution on Qy we denote by p° the distribution
defined by p?( f) = p(f7). We deduce that

a — f ﬁ o
o ®ar a|®a, Y
where we have set

ol(g) = e1(5(g2)).
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In particular, if 7" is a distribution on Qy invariant under Ad( H ) we have

T*(forgen) = w2(03*) [ al() ah = ur(ag?) [ an(h) dh.

We say that a distribution x is skew invariant under o if u7 = —u. We have
proved the following lemma:

LEMMA 2.6. Suppose that a distributionT on Qy is AdH invariant. Then if T is
skew invariant under o, the distribution u is skew invariant under oy .

We are now ready to begin the proof of Theorem 2.1.

INDUCTION STEP: Because of the compatibility of the involutions ¢ and &, any
H invariant distribution can be written as the sum of a ¢ invariant and a o skew
invariant distributions, each of which is H invariant. It will suffice to show that
the skew invariant component is 0, that is, that a distribution 7" which is o skew
invariant and H invariant is 0.

Thus let T be such a distribution. Assume that the theorem is true for a graded
vector space of dimension < m. We will show that the support of T is contained
in the set ny, of nilpotent elements of L. In view of our previous results, it suffices
to show that for any semi-simple element Y # 0 of L the restriction of 7" to the
open set 2y is 0. In turn, it will suffice to show that the distribution s determined
by T is zero. Recall that 7 is a distribution on the open set Uy of LY invariant
under the action of HY and skew invariant under the involution oy introduced
above. Recall also that Uy is the set of non-zeroes of the polynomial fy on Ly.
This polynomial in invariant under Ad(H""). Furthermore fy (£) # O if and only
if fy (oy(§)) # 0. Thus Uy is also the set of non-zeroes of the polynomial

gy (§) = fr (&) f(oy (§))-

The compatibility of oy and &y show that the second factor is also invariant under
Ad(HY). Thus the polynomial gy is invariant under Ad #Y and oy. If ¢ is a
smooth function of compact support on F'*, the product (1 o gy )ur extends to
a distribution on the whole vector space LY which is Ad HY invariant and skew
invariant under oy. We will show in the next paragraph that such a distribution
vanishes. This will imply that the distribution p7 vanishes and will give us our
conclusion.

Thus we consider now a distribution 7' on LY which is invariant under HY
and skew invariant under oy . Recall that LY decompose into the direct product
of M(R x R, k)" and the space L’ of homogeneous operators of degree 1 on a
7./27 graded vector space V' of dimension m — 2R. The group HY decomposes
into the product of GL(R)“ and the group H' of homogeneous isomorphisms of
V. Finally the involution oy is the product of the identity on M(R x R, k)“ and
an involutive automorphism ¢’ of V' of degree 1, compatible with an involutive
automorphism &’ of H’. We have to show that any distribution x on the product
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M(R x R,k)* x L' which is invariant under GL(R)4 x H’ and skew invariant
under 1 X ¢’ is zero. This is clear if R = m/2 because the involution is then the
identity. If R < m /2 then for any function 1 of compact supporton M (R x R, k)4
the distribution f — p(1¥ ® f)on L’ is H' invariant and skew o’ invariant. By the
induction hypothesis, it vanishes. Hence p vanishes as well and we are done.

Coming back to the proof of our theorem, we have established (under the
induction hypothesis) that the support of 7' is contained in the set of nilpotent
elements. We will finish the proof of the theorem in the next section.

3. The nilpotent variety
3.1. HOMOGENEITY

We keep to the notations of the previous section. In particular, we assume dim V =
dim Vj. Suppose that T is a distribution on L which is H-invariant and o skew
invariant. By the results of the previous section and the induction hypothesis of
the Theorem, the support of 7" is contained in the set ny,. Our task is to show that
T is actually zero. To that end we introduce the restriction 87, of 8 to L. Thus
Br(X,Y) = Tr(XY'). The bilinear form £y, is invariant under Ad H and o, since
these operators are actually conjugation by an element of GL(V'). We define the
Fourier transform f of a function f € S(L) by:

f(x) = /L F(Y)$(BL(X,Y)) dY, (25)

where 9 is a non-trivial additive character of k£ and dY" a self-dual Haar measure
on L. The Fourier transform of a distribution 4 is then defined by i(f) = u(f).
Clearly, the Fourier transform T of T is also invariant under H and o skew
invariant. Thus its support is also contained in ny,. Our assertion and the theorem
will be proved if we establish the following proposition:

PROPOSITION 3.1. Let T be any Ad( H) invariant distribution such that T and
T have support in the nilpotent set ny,.. Then T = 0.

The remainder of this section is devoted to the proof of the proposition. We
first recall results of [KP] on the structure of the set ny,. For this discussion, we
need not have dim Vp = dim Vj. Suppose Z is in ny,. Then we may regard V" as a
k[ X ]-module, the action of a polynomial p(X ) on a vector v being p(Z)v. We can
write V' as a direct sum of indecomposable (cyclic) k[ X ]-modules. The main result
is that one can choose the generators of these submodules to be homogeneous.
Another result is that H has only finitely many orbits in ny,.

Now assume dim V) = dim Vj. The representation Ad of H on L gives us
an imbedding of H into the orthogonal group O(fL) of the form Jr. Since
(O(Br),SL(2,k)) is a dual reductive pair, we have a corresponding oscillator
representation w of SL(2, k) on S(L) which is defined as follows:
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“’(3 2—1)¢>(X) = (aldy) | a |E™V)/% g(aX) (26)

w( (1) i)wc) = P(tAL(X, X))B(X), @7)
o 1 X) = vd(X

w(_l O)«s( ) = 1(X). 28)

Here df, € kX /k*? is the discriminant of the form A1; we have denoted by (.|.)
the canonical pairing on kX /£*2 x k* /k*?; finally 7 is a suitable root of unity.

Consider then the distribution 7. It has support in n;,. However we have
BrL(X,X) = Tr(¢(X)). If X is nilpotent then X?" = 0. This implies that
¢(X)" = 0. Thus ¢(X) is nilpotent and its trace is zero. As a result, any nilpotent
element is isotropic for fy,. It follows from the above formula that T" is invariant
under

bt tek
L«JOI, .

Since the distribution

0 1
w T

is a scalar multiple of the Fourier transform of 7 it has the same property. Equiva-
lently, 7" is invariant under the operators

w , tEk,
t 1

and thus is fixed under the representation w. In particular, it has the following
property of homogeneity

[ £@xX)dT(x0) = (aldz) | a |67 [ £(3x0) aT(X). 29)
We are led to consider similarly the properties of homogeneity of the invariant
measures carried by the nilpotent orbits of H in L.

Let Z € ny,. We write

V=WweW,d. ¢ Wkg,
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where each W; is an indecomposable (graded) k[X]-submodule. We let z; be an
homogeneous generator of W;. Thus Z dim Wi ». — 0 and

{zi, LZiy..., Zdim(W‘)_lzi}

is a linear basis of W;. To continue our study of the homogeneity we introduce an
element D; € H suchthat D;ZD; 1 = tZ.Indeed, we define an operator D;' on W;
by demanding that Di(Z¥(z;)) = t*Z*(z;). Then we can choose for D; the direct
sum of the D:. Let b be the Lie algebra of H. This is the space of linear operators
of degree 0 on V. Consider the centralizer hZ of Z in h. Since D; transforms Z into
a scalar multiple, it follows that h? is invariant under Ad D;. We want to compute
the determinant of Ad D, on hZ:

LEMMA 3.1. There is an integer mz such that

mz

det Ad(Dt)

bz=t

Furthermore

(dimV)?

mz 2

Let us show how this lemma will imply our assertion and the theorem. We can
write

n;, = UXj,

where X; ,0 < j < R, is an increasing sequence of closed H invariant subspaces
of nz, with Xy = § and Xg = ng, and, in addition, the difference X;+; — X is
a single orbit of H. We have just verified that for any nilpotent element Z and
for any t # 0, Z and tZ belong to the same orbit of H. Thus the sets X; are
invariant under dilations. We prove by descending induction on j that T’ vanishes
on the complement O; of X ;. For 7 = R this is the assumption on the support of
T. Assume the restriction of T" to O;4 is zero. Consider the restriction of 7' to
O;. Suppose it is non-zero. Its support is contained in the set X;;; — X; which
is a closed orbit in O;. The orbit may or may not carry an H invariant measure.
If not, there is nothing to prove. Thus we may assume that the orbit carries an
invariant measure and then 7" is a multiple of this measure. Let Z be any point in
the orbit. Thus there is an invariant measure on the quotient H/HZ such that for
any f € C2°(Ok)

T(f)= /H/HZ fl9Zg™") dg.
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Fort € kX let fy(X) = f(X¢t). Then f; isin C(0;) and
T(f) = /f(thg"l)dg-

Introduce as before the element D;; then D;ZD; 1= ¢Z and

7(f) = [ £ (AdigD)(2)) dg = |det(ad Dilye)[ [ flaZg™") dg.

Thus we see that
T(f) =t I7"#T(f)-
However, we have
T(f) =| ¢ |75V (1)) T ().

Since mz < di—"}‘—‘ﬁ we conclude that 7'(f) = 0. Thus the restriction of T to O;
vanishes. Inductively, the restriction of 7" to O vanishes and we are done.
3.2. PROOF OF LEMMA 3.1

It remains to prove Lemma 3.1. Let Z be an element of ny,. As a first step, we
determine the centralizer gZ of Z in g = End(V'). Suppose that B = (b;;(X))is a
matrix in M (K x K, k[X]). We want to associate to B a linear operator 7g on V
such that for any ¢ and any m:

ne(Z™z) = Z bi;(Z)Z™ z;.
J

Since Z4mW: z; = 0, in order for this expression to make sense, we need to have
bi; (X)X MW =0 (mod X4mWr), (30)

Assuming the matrix B satisfies condition (30), there is indeed a unique linear
operator g on V with the above property. The operator g commutes with Z.
Every element of g is of the form g for a suitable B. The map 7 reverses the
order of multiplication:

NcnB = TBC-

For p € k[X]and t € k* we define a polynomial p(t)(p) by p(t)p(X) = p(tX).
For a matrix of polynomials B = (b;;) we set p(t)B = (p(t)b;;). Then

oy = DinsDy " (31)
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Finally ng = 0 if and only if
b;j =0 (mod X9mWs), (32)

Thus we can consider instead the space Z of matrices B = (b;;) of truncated
polynomials:

b € k[X]/X4mWs, (33)
bi; = 0 (mod XHmW,—dimW) (34)

Of course if dim W; > dim W the second condition is empty. The map B — np
is then a bijection from Z onto gZ.

Our next task is to determine the structure of hZ. To that end, we define an
elemente of H bye(v) = (—1)%€*(*)y if  is an homogeneous vector. Then X € g
is in h if and only if Ade(X) = X. Since each space W, is a graded subspace, it
is invariant under €. More precisely, define w; = (—1)%8*e(%) Then

e(Z5z) = (—1)Fw;i Z% ;. (35)
The operator 7p is in bz if and only if
1B = TBE- (36)

This relation is equivalent to
ne(z) = e (bii(2)%) ,
j
or, in view of relation (35),
wibij(Z)z; = wjbij(—=2)z;.
If we write

bii(X) = 3 afl X' (37)
sup(dim W, —dim W, ,0)<l<dim W,

the above condition reads:
of (wi — (=1)'w;) = 0,
or, more explicitly:

all = 0 when wiw; # (-1). (38)
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Thus np determines a bijection from the space Z; of matrices B = (b;;) of
truncated polynomials satisfying conditions (37) and (38) onto hZ. In view of @31
we have

det (Ad Dylyz) = detp(t)],

We view Z as the direct sum of spaces .5;; of truncated polynomials satisfying the
conditions (37) and (38). Then

det Ad Dy|yz = H detp(t)|sw .
(1,9)

The following lemma computes the right hand side. We set 7; = dim(W;).
LEMMA 3.2. (i) Suppose i = j and r; = 2p;. Then
det(p(t)]s;,) = 7P
(ii) Suppose t = j and r; = 2p; + 1. Then
det(p(t)]s,,) = 7P
(iii) Let i # j. Then
det(p(t)]s;,) det(p(t)]s,,)

is given by the following formulas:

( tzptP]—z min(p,,p; ) lf”‘i = 2p“ r; = 2p] and wiw; =
{2PiPs ifr; = 2p;,rj = 2p; and ww; = —1
12Pip; ifr; =2pi,r; =2p; + 1,7, < 1;
12PiPs ifr; =2p;,r;=2p;+1,7;>r; andww; = 1
2o t2pimp)=l e = 2p i = 2pi 4 1, > 1 andwiw; = —1
$2pep;+2 sup(pi,p;) ifr; =2p; + 1, Ty = 2p]' +1 and wiw; = 1
£2PPs ifri=2pi+1,r; =2p; + 1 and wiw; = —1

Proof. We consider first the case when ¢ = j. If r; = 2p, then the truncated
polynomials P € S;; have the form

Z ale.

0<1<2p;,!=0 mod 2

Thus the determinant of p(%) on that space is ¢ raised to the power

> l=pi-p (39)

0<I1<2p,,!=0 mod 2
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If ; = 2p; + 1 then the truncated polynomials in .5;; have the form

qul.
0<I<2p;+1,/=0 mod 2

Thus the determinant of p(t) on that space is ¢ raised to the power

I =p?+pi. (40)
0<1<2p,,!=0 mod 2

This gives the two first assertions of the lemma.
Now we consider the case where 7 # j and r; > r;. This time we have

det(p(t)]s,,) det(p(t)]s,;) = t™()

where

m(i,j)= Y I+ > 1- Y |

oglikr, 0gikr, ogigry—r,

where the summation on [ is restricted by the condition that

[ = 0 ifww;=1
1 ifww; = -1

We also note in addition to the identities (39) and (40):
> = p% 41)

0<I<2p—1,I=0mod 2

The third assertion of the lemma follows then from a lengthy but elementary com-
putation. o

At this point we have proved the first assertion of Lemma 3.1. The integer
m = my is the sum of the exponents occurring in the previous lemma. It remains
to establish the upper bound for the integer m in term of the dimension d of V.. We
have

d= > . (42)

1<igk

In general, dim(W;NVp) = dim(W;NV}) £ 1. Thus if 7; is even, we write r; = 2p;
and then dim(W; N Vp) = dim(W; N V}) = p;. Suppose that r; is odd. Then we
write 7; = 2p; + 1. If w; = 1, then dim(W; N Vp) = p; and dim(W,;NV}) = p; + 1.
If w; = =1 then dim(W; N V) = p; + 1 and dim(W; N V) = p; + 1. We let X
be the number of indices 7 such that r; is odd and w; = 1. Since Vj and V] have
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the same dimension, there must be the same number of indices ¢ such that r; is odd
and w; = —1. Then

dimV:2<X+Zpi).

Thus

: 2
dimV® _ 2, 5% (Zp) + pr +2> pip;. (43)

4 i<y
Note that the integer m is determined by the data
(Tlswla T2,W2,..., T[\',CU[(),

without reference to the spaces at hand. The proof of the lemma is by induction
on the number of indices 7 so that r; is even. First assume the number is zero, that
is, all the integers r; are odd. Then K = 2X. We order the r; so that w; = 1 for
I <i<Xandw; = —1for X + 1 < ¢ < 2X. We further assume that p; is a
decreasing function of ¢ for 1 < 2 < X and for X + 1 < ¢ < 2X. The previous
lemma gives then

m= > (PF+p)+2) pipit+

1€i<2X i<j
H2(X = Dpr1 +2(X = 2)p2 + -+ -+ 2px -1}
+{2(X = px41 +2(X = 2)px42+ -+ 2p2x -1}

Clearly m is less than

E P?+22pipj+2X E i

1€i<2X i<j 1<i<2X

which in turn is strictly less than (43). Thus our assertion is proved in this case.

Now we can arrange the data so that 75 (the last term) is even. If K’ = 1 then
r1 = 2pand m = p* — p which s strictly less than dimV'2/4 = p2. By induction on
the number of indices 7 with r; even, we may assume that the inequality is proved
for the data (71, w1, 72, w2, ..., TK—1,wkK —1). The induction hypothesis shows that
the contribution of the indices (7,5) with 1 < 7 < 7 < K — 1 is strictly less
than d2/4 where d' = 3 ¢;cj_1 - Thus we must show that the sums of the
contributions of the pairs (¢, K') with 7 < K is less than or equal to

d?/4 - d?/4 = p§ + 2 pipk + 2Xpk. (44)
<K
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The previous lemma shows that the contribution of the pair (K, K) is p% — px <
p% . Consider now the contribution of a pair (i, K) with i < K. It is always less
than or equal to 2p;px except when r; = 2p; + 1 with rg > r; and w;w; = —1;
the contribution is then 2p;px + 2(px — p;) — 1 < 2p;px + 2pK. There are at
most X such terms. Thus the contribution of the pairs (¢, K') with 7 < K is at most
equal to the right hand side of (44). This proves our contention and concludes the
proof of the lemma and the theorem.

4. The symmetric space
4.1. ORBITS IN THE SYMMETRIC SPACE
We consider here the variety
Z ={s € M(n x n,k)|s* =1}. (45)

Under the adjoint action of G = GL(n), this variety decomposes into a finite
number of orbits:

Z =UZpn,
where
Zpn = Ugec Ad(9)(epn) (46)
with
I 0
Epn=1| " . (47)
' 0 —-Ihp

Note that Z,, ,, and Zy ,, are reduced to a single point. Each Z,, , admits the structure
of a symmetric space. Indeed, let 8, , be the involution of G defined by

Op,n(9) = €pngepm (48)
and let H,, ,, be the centralizer of ¢, ,. Then the space

Py = {9 € GL(n)|0p,n(9) = 97"} = {9 € G (9€pn)(9Epn) = In}
contains the set

Yorn = Zpnépn = {9 € G| gep,n is conjugate to €, , } .
The group G operates on P, ,, via the twisted action:

z % glyn(9”")-

The group H), , operates by conjugation; it is the stabilizer of e and Y, , is the
orbit of e. In particular, we have a surjective polarization map

Pp,n - G — Y;D,n ) pp,n(g) = gsp,ng—lep,n.



UNIQUENESS OF LINEAR PERIODS 89
It verifies:

Ppu(Tgh) = ‘”Pp,n(g)op,n(‘”_l )-

In particular Y, ,, is isomorphic to G/ H, , as a G-space. We can regard k™ as a
Z /27 graded vector space where the homogeneous vectors are the eigenvectors of
€p.n and have eigenvalue (—1)degree(®),

In what follows, we often drop the second index n or even both indices from
the notations. For instance we write €, or even ¢ for ¢, ,, if this does not create
confusion. When n = 2p we also introduce

(0 h 49
wP—IpO. 49)

Recall our goal is to prove the following theorem:

THEOREM 4.1. SupposeT is adistribution on GL(n, k) which is Hy, , bi-invariant.
ThenT is invariantunder g — g~'. Ifn = 2p it is also invariant under conjugation
by w,,.

We remark that once the first assertion is proved, then the second assertion amounts
to saying that the distribution 7' is invariant under g — w,g~ ' w,,.

The proof of the theorem is by induction on n: we assume n > 1 and the theorem
true for all groups GL(n') with n’ < n. We first study the orbits of H in P,.

Let N, be the set of unipotent elements in GL(n). We first investigate the
structure of the intersection V,, N P,. We recall that the exponential map defines
an isomorphism of n,, the set of nilpotent elements in M (n X n, k), onto N,. In
particular, if u = exp(X) lies in N, N P, then the equation ¢,ue, = u~! implies
epXep = —X. The operator ¢, defines a Z /27 grading of V' = k™: an eigenvector
v of ¢, has eigenvalue (—1)d€*), The above relation means that X is in L
(defined in Section 2). In particular 3 X isin L and v = exp( %X ) isin P,. We have
then

pp(v) = exp(3X)e, exp(—1X)e, = v2 = exp(X) = u.
Thus u is actually in Y,,. We set Ny = Y, N N,. Recall n;, = L N n,,. Thus
N, NP,, =Ny =exp(ng).

A consequence is the following lemma which describes the Jordan decomposition
of an element of Y},:

LEMMA 4.1. Let x € P, and x = z,x, = T, its Jordan decomposition, where
x5 is semi-simple and x,, unipotent. Then x5 and x,, are in P,. If x is in Yy then
zs and x, are in Y,. More precisely, there is Y € np and g1 € G such that
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p(exp(Y)) = zu, p(g1) = x5, the elements exp(Y') and x commute to one another
and p(exp(Y)g1) = .

Proof. Assume z is in Pp, that is, £,z¢, = z~!. The uniqueness of the Jordan
decomposition shows that z, and z,, satisfy the same condition and are thus in P,.
In fact z,, is in Y}, by the arguments above. More precisely, write z,, = exp(X).
Then z,Xz;' = X. It follows that v = exp(X/2) commutes with z; and also
with z.

Assume now that z is in Y,,. Thus 2 = pi(g) for some g € G. Suppose that
¢ € G commutes with z. Then £ commutes with eze = z~! and thus commutes
with z as well. As a result:

pp(€g) = Egeg™'¢ e = Eaet e
= Ee€7lex = pp(€)pp(9)-
We can apply this identity to the element v above. We find

po(v7'9) = po(v™ )z = v 22u2, = 2.

Thus z is in Y), as claimed. If we setY = X /2 and g; = v~ !¢ we obtain the last
assertion of the lemma. a

Our next task will be to analyze the elements of P, which are semi-simple.

LEMMA 4.2. Let

4B € P
9=\¢ p)=""
with A, B, C, D are matrices of sizep X p,p X (n—p),(n—p) X p,(n—p) X (n—p)
respectively. Suppose g is semi-simple. Then the matrices A, D, BC,C B and

(¢ o)

are (square) semi-simple matrices.

Proof. We may assume the ground field £ is algebraically closed, since the
condition of being semi-simple does not depend on the ground field. Let {7;} be a
basis of eigenvectors for g. We write T; = v; + w; where v; (resp. w;) lies in the
+1 (resp. —1) eigenspace of ¢,,. In other words, v; has degree 0 and w; has degree
1. We have then:

Av; + Bw; = \jv;,  Cv; + Dw; = \w;.

Since ege = g~! we have g(eT;) = A7 '(eT;). Thus €T is an eigenvector of g with
the eigenvalue A} '. This gives the relations

Av; — Bw; = /\i—l’vi, Cv; — Dw; = —)\i_lwi.
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Combining the above relations we obtain
At A
2

Since the vectors v; (resp. w;) span Vp (resp. V}), this implies that A and D are
semi-simple. We have also

_ At A

Av; 3 w;.

v, Dw;

A= A7 i+ 7!
Bw; = —Z#—vi, Cv; = 2—2—’—wi.
This implies similarly that C' B and BC' are semi-simple. In turn (see Section 2)
this implies the last assertion of the lemma. O

Now we want to obtain a canonical form for a semi-simple element of P,. We
record the algebraic equations defining P,: if

A B
9= c D)’
where A is a p X p matrix, then g is in P, if and only if
A*=1I,+BC, D*=1I,,+CB; (50)

AB = BD, DC = CA. 51)

Since the elements of H commute to ¢, the group H ~ GL(p) X GL(n — p) operates
on P, via conjugation:

-1 - -
gt 0\[(A B\ (a1 0\ [giAgi" 91Bg;'
0 g C D 0 o ng’gl'1 gzDgz'1 '
Thus, at the cost of replacing g by a conjugate under H, we may assume
I, 0
B = ,
where v is the rank of B. If g is semi-simple, then C has the same rank as B and

the products C'B and BC' are semi-simple. Arguing as in the infinitesimal case, we
see that g is H conjugate to an element of the form

I, 0
A

(5 0)
c, 0

D
(5 0)
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where C, is a v X v invertible semi-simple matrix. Let us write further

A A Dy D
A= 1 A2 . D= 1 2 7
Az A4 D3 Dy
where A; and D; are v X v matrices. From the algebraic equations which define
P, we get

A2:0a A3:0a DZ:Ov D3=07 Allea
and
C,=A43-1,, Ai=1I,_,, Di=1I,,,.

Thus so far we have shown that a semi-simple element g of P is conjugate to an
element of the form:
A 0o I, O
0 Ay 0 O
A2 -1, 0 Ay 0 |’
0 0 O Dy

(32)

where A is semi-simple of size v X v, A4 and Dy are elements of order 2; moreover
A% — I, is invertible, that is, £1 is not an eigenvalue of A;. Note that the extreme
cases v = p and v = 0 may occur.

We first study the case where v = p.

LEMMA 4.3. Let A € M(r x r,k) be a matrix so that 1 is not an eigenvalue of
A. Then the matrix

A I,
1(A) = (Az_I A) (53)

is invertible. It can be expressed in the formt(A) = p,2,(g) for some g € GL(2r).
In particular, it is in Y, .. Moreover, there is h € H, 5, such that

PT,ZT(Q) = hpr,Zr(g_l)h_l .

The matrix t(A) does not have the eigenvalue +1. It is semi-simple if and only if
A is semi-simple.

Proof. One checks at once that t(A)et(A)e = I so that t(A) is invertible and in
P, »,. Since A does not have the eigenvalues 1, we can write

A= (L +U)IL-U)"",
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where U is a square matrix without the eigenvalues 0 or 1. Then we can check at
once that t(A) = p,(z) where z = z(U) is defined by

b 2 - U)> : (54)

=(0) = (2U(1, o)t

In addition z has the form:

(L X
*=\y 1)’

where I, — XY and I, — Y X are invertible (in fact both equal to I, — U). Then

o (I-XY)! 0
T l_ams( 0 (I—YX)‘1>'

Since the matrix on the right is in H, we get

pr(e™") = epr(@)e.

This establishes the second assertion.

If t( A) is semi-simple we have seen that A is semi-simple. To prove the converse,
we may assume k is algebraically closed. As in the previous proposition, if A is
an eigenvalue of ¢(A) then (A + A~™!)/2 is an eigenvalue of A. Thus A # +1.
Moreover, if v is an eigenvector for the matrix A belonging to the eigenvalue p
then for A = pu & /pu? — 1 the column vector

To = [(A —vu)v]

is an eigenvector for ¢(A) belonging to the eigenvalue A. If A is semi-simple we
can choose the vectors v among a basis of eigenvectors for A; then the vectors
T,,+ form a basis of k*". Thus t(A) is semi-simple. m

REMARK. Similarly, it is easily proved that every element g € Y, ), of the
form

(A B
g_CD’

where A and D are r X r matrices not having +1 as eigenvalues is H, 5, conjugate
to a matrix of the form

AL
A1, A )
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where A’ does not have the eigenvalue 1. In fact, this establishes a bijection
between H, 5, conjugacy classes of elements g € Y, 5, satisfying the above condi-
tions and conjugacy classes of GL(r) in M (r X r, k) of elements A’ which do not
have eigenvalues £1. As in the proof of the previous lemma, the Cayley transform
gives a bijection of the latter set with the set of conjugacy classes of GL(r) in
M(r x r,k) of elements U which do not have eigenvalues 0 and 1.

Now we go back to the general situation of a semi-simple element of Y, .
Recall that ¢ € GL(n) isin Y}, ,, if and only if ge,, is conjugate to ;.

PROPOSITION 4.1. Each semi-simple element g € Y, is H conjugate to an
element of the form

A 0 I, O
0 m 0 O

A -1, 0 A O]’
0 0 0 m

(35)

where A is a semi-simple element of M (v X v, k) without the eigenvalues +1 and
M, 12 are matrices of the form

(L. o (L 0 56
m= 0 -Iﬁ y = 0 —I& ’

witha+ 0 = p—v,y+6 = n—p—v and = §. The set of H conjugacy classes of
semi-simple elements of Yy, is in bijective correspondence with the set of all triples
(v, {A}, B), where 0 < v < p is an integer, { A} a semi-simple conjugacy class in
M (v x v) without the eigenvalues +1 and (3 is an integer with0 < 3 < p —v.

Proof. We may assume that g has the canonical form (52). We can view V' = k"
as the direct sum of two graded subspaces V' and V”; correspondingly, g = ¢’ @ g".
With respect to suitable homogeneous bases of V/ and V", the operator g’ has the
matrix ¢(A) and the operator ¢g” has the matrix

As O
0 D4/’
With obvious notations, the group H contains H'x H" where H' ~ GL(v)xGL(v)
and H" ~ GL(p—v) x GL(n—p—v). Since A3 = I,_,, the matrix A is conjugate
under GL(p — v) to a matrix 7; of the above form. Likewise D, is conjugate under

GL(n — v — p) to a matrix 7, of the above form. Thus ¢g” is indeed conjugate under
H" to an element with a matrix of the form:

(5 )
0 m
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with 7; of the above form. However, we have still to show that 3 = §. The previous
lemma shows that the product

A 1, I, O
A2 -1, A 0 -1,

is GL(2v) conjugate to €,,2,. Since gep, , is GL(n) conjugate to &, ,,, this implies
that the product

m 0\ (L., O
0 m 0 _In——p—u

is GL(n — 2v) conjugate to £,_,, »—p—, . Comparing the eigenvalues of the products
we get our result. This gives the first assertion of the proposition.

To prove the second assertion of the proposition we need to show that any
matrix of the specified form is actually in Y}. This amounts to showing that the
matrix

m 0
= 57
n (o m) (57)

isin Y,_, n—2,. This is easily checked: indeed, if

I, 0 0 O
0O 0 0 I
(= (58)
0 0 I, O
0 Iz 0 O

then (recall 8 = 6)

pp—u,n—’zv(C) =n,(= C_l- O 59)

REMARK. Suppose that g is the matrix of the proposition. Let us write again
V=V'®V"and g = ¢’ ® ¢". Since ¢’ and g” do not have a common eigenvalue,
the centralizer of g in GL(V') consists of all matrices of the form &' @ ¢” with
¢ € GL(V')? and £"” € GL(V")9".

Our main result is now:

PROPOSITION 4.2. If g € Y, ,, is semi-simple and p(z) = g then
pranpJL = p,nzanp,n-

Proof. We may assume that g has the form (55). Equivalently, we may assume
thatV = V'@ V" where V' and V" are graded subspaces, and g = ¢’ ® g” where ¢’
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has matrix ¢(A) and ¢g” has matrix 7, with respect to a suitable homogeneous basis.
Similarly, ¢ = ¢ @ ¢” where ¢’ and ¢” are homogeneous of degree 0. We have then,
with obvious notations, p’(z(U)) = ¢’ and p”(¢) = ¢”. Thusif 2 = 2(U) & ¢
then p(z) = g. Since H'z(U)H' = H'z(U)~'H' and ¢ = ¢{~! we obtain our
assertion. a

4.2. INDUCED SYMMETRIC SPACES

In this subsection, we discuss the symmetric spaces of lower rank which will be
used to carry out the induction step needed in the proof of Theorem 4.1. The
following simple lemma will be very useful:

LEMMA 4.4. Suppose z is in GL(n). Then
LN (zLz7h) = L7 g0 (zhz™h) = 57
Hn(zHz ") = H'®,

Proof. Suppose [ isin L N zLz~"!. Then

1 1

p(2)lp(x) ' = —zez Nzeaz™" = 2z Nz~

since £~ !/z is in L. Thus we find that  commutes with p(z ). Conversely, suppose
lisin L*(*). Then

ex Nze = 27 elex = -2~z

so that !l is in L and [ € L N zLz~!. The other assertions are proved in a
similar way. O

Recall the form 3(X,Y) = Tr(XY) on g = M(n x n, k). We have an orthog-
onal decomposition: g = h & L. Suppose z € GL(V). Since the orthogonal
complement of h + zhz~'is L N (zLz~"') = L*(®), we have

g= (f] + xbz_l) 4 Lr®),
Let z be in G. Suppose that g = p(z) is semi-simple. We consider the map
$: Hx G*@ x H — GL(n), (h,&,h') — hézh'. (60)

We denote by U, the set of £ € G*() such that ® is submersive at (1,¢,1) (and
thus at any point (h, £, &')). In fact U, is the set of £ € G*(%) such that

g = b+ Ad(¢z)(h) + L)
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The previous formula shows that 1 € U,. We will establish additional properties
of the set U, in Subsection 5.2, in particular, the fact that it is open and invariant
under left and right multiplication by H*(®),

Suppose p(z) is semi-simple. We have HzH = Hz~'H so that we can write
g12g2 = =~ with g; € H. In particular, p(z~!) = g1p(z)g;". Now z~1p(z)z =
ez~ ez, Taking in account these relations and the fact that ¢ commutes with g1, g,
we find

gi(ezez gy ! = 5gl:cg25g2'1x_1g1"1 = ez lez.
This identity can be written in the form:

z7'p(z)z = giep(a)egy !
or

= p(z)z = gip(x) g7 (61)

It follows that if ¢ belongs to G*(*) then z~!¢x commutes with z~!p(z)z =

g1p(z)"'g7 L. Tt therefore commutes with 91p(z)g7 " as well. Equivalently, the

element

¢ =grla7e 2y (62)
is in G*), Thus £ — ¢&!is an antiautomorphism of G*(*), We have

(M = g7 'z g7 e ez grzg.

Now p(z~') = g1p(z)gy ' and similarly g;'p(z=")g2 = p(). It follows that
g5 ' g1 commutes with p(z). Also zg12g1 = g5 'g1 and

(e = (h)~%h, h=g5'g1 € H. (63)

Furthermore, if £ is in H®) = HNn zHz™!, then 5” is also in H/’(””), since

zg1 = g7 'zl
‘We have

(HG*@zH) ' = He™'G*®)za ' H.
Since 2~ p(z)z = g1p(x)~'g; ! this is also
HglG”(”)gl"lx'IH.

Since zg; = g7 12=1 this is also equal to HG?(®)z H. Thus this set is invariant
under g — g~!. More precisely, forh; € H,i=1,2:

(h1§$h2)_1 — hz_laf_lé_lhl_l — hz_lglgugrlx_lhi—l
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or
(hézhy)™ = hy g1tz gohy ! (64)

We will see that the open set U, is invariant under ¢ — €. It will follow that the
image 2, of H X Uy X H under @ is also invariant under g — g~ 1. We will show
that any distribution 7" on , which is H bi-invariant and skew invariant under
g — g~ ! gives rise to a distribution p7 on the open set U, which is bi-invariant
under H*() and skew invariant under ¢ — £!. Note that in general § needs not be
an involution. However, if . is an H*(%) biinvariant distribution on G*(*) or on Q,

then (u!)f = 4.
Thus we must now study the triple (G”(I), Hr=@), #). First we study g#(*). Since
ep(z)e = p(z)~! we have
g?@) = pr@) g [P(2),
Recall that
h®) = pn (xh:z:_l), L) = [ n (:L'Lz'l).

We use this observation and the explicit form of the representatives of H orbits
given above.
First suppose that z € GL(2v) has the form

B ~ I, I, -U)
z=al)= (2U(L, - ) I, )

so that in the symmetric space Y, 7, we have p,2,(z) = t(A) where A = (I, +
U)(I, — U)~'. Given Z, Z, there are Z{ and Z} such that

(0 2z 0 z
X T =
Z 0 Z 0
ifand only if Z| = 7\, Z} = Z, and
Zy=4U(1-U)'2,(1-U)' =401 -U)'Z,(1 - U)"'U.
The last relation implies that (1 — U)~'Z;(1 — U)~! commutes with U. In turn

this implies that Z; commutes with U. Thus we see that L*(*) = L nzLz~" is
equal to the set of matrices of the form

0 Zl) ©5)
4201 -U)"2 0 )’
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where Z; € M(v x v,k)V. Similarly, h N (zhz~") is the set of matrices of the
form

Zy 0
(0 Zl)’ (66)

where Z; € M(v x v, k)V. It follows that for z = z(U)

M(2v x 2u, k)P (®) = (67)

7 Zy
{ (4Z2U(1 — U)_2 Z )

The group GL(2v, k)p(””) is just the set of invertible matrices of the above form.
The space h?(*) is just the space of matrices of the above form with Z, = 0 and
the group H #(#) the group of matrices of the above form with Z, = 0 and Z;
invertible.

Now we determine the effect of the map ¢ — ¢! = g7 'z=1¢"1zg;, where
g1 € H conjugates p(z) to p(a:‘l). Here we can take g; = €,,2,. We have:

(I, X
= (v 1);
where X = (I, — U)/2and Y = 2U(I, — U)~!. The matrices X and Y are in
the bicommutant of U and verify X6 = X =Y for§ = 4U(1 — U)~2. Thus z is

actually in the center of the algebra M (2v x 21/)"(””). Thus & = ¢,5,¢ ~le,,, in
this case. Explicitly, if £ =1 is written in the above form, then

{ﬁ _ VA )
N —-4ZzU(1 — U)_2 Z1 ’

In particular, (¢4)f = £.
Since the element U is semi-simple in M (v x v, k), there exists a k linear
isomorphism

Z1,Z, € M(v x V,k)U}.

e K@ Kl

where K;/k are field extension and the operator U becomes under this identifica-
tion

UGl ®---8 ¢,

with ; € K.
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If we identify k¥ @ k¥ with
(Ki'® Koo (K & Ky)

then the associative algebra M (2v x 2v, k)?(®) can be identified with a direct sum
of associative algebras:

X Y i
@{(Yéi X)‘X,YeM(lixl,-,Ix,)},

where 6; = 4¢;(1 — (;)~2. The group G*®) in this case is then identified to the
product of the multiplicative groups of the algebras. The group H #(2) is identified
with the product of the groups

X 0
0 X
Each factor of G*(*) is invariant under the map (induced by) £ — ¢!, The corre-
sponding map changes an element to its inverse and then changes the matrix Y to
-Y.
Now é; # 0 and thus §; is either represented by a square or not from the

multiplicative group K. In particular, if §; is not a square, then §; determines a
unique quadratic extension L; = K;(1/5;) of K;. Then the algebra

XY X, Y e M(l; x l;, K;)
Y(S,L X b 13 (2] "L
is isomorphic to M (l; X l;, L;) via the map

X+\/?5§Y»—><X Y).

Yé; X

X € GL(L;, Ki)} :

The multiplicative group is then GL(/;, L;), the factor of H r(2) ig GL(l;, K;) and
the map induced by { is £ — Z—l, where Z indicates the Galois conjugate of an
element z € L;. If §; is a square, then the algebra

Xy X, YeM(U;xl, K;
Y6 X Y € M(l; x 1;, K;)

is isomorphic to the direct sum M (I; X I;, K;) ® M(l; x l;, K;) via the map

X Y
(X + Y, X —0vY) (Yﬁ X)’
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where é; = v2. The multiplicative group is then GL(l;, K;) x GL(l;, K;) and
the factor of H*(%) is the diagonal group GL(/;, K)®. The map induced by { is
(21722) = (zl_lazz_l)‘

On the other hand, suppose z = ( where

I, 0 0 O
0 0 0 Is

“=lo o I, 0 (68)
0 Is 0 0

withg =6,a0+ 3 =p,v+ 6 = n — p. Then

I, 0 0 0
0 Iy 0 0
0 0 I 0
0 0 0 -I

p(¢) =

and the centralizer of p((), that is, M(n x n, k)?(9, is the algebra of matrices of
the form:

A 0 B O
0 A 0 B
¢ 0 D 0
o ¢ o D

(69)

with
A B A B
(C D)GM(n—ZﬂXn—Zﬂ),(C, D,)eM(ZﬂxZﬂ).

We have ¢ = (™! in this case, so that g; = go = 1 and &! = ¢£€71¢. Thusif €71 is
a matrix of the above form we have

A 0 B 0

g_|0 Do B o

“|lc o Db o] 70
0o ¢ o0 A

Thus we see that in this case, the triple (GP(”), HrE) £ &%) decomposes into
a product of two triples:

(GL(a +7),GL(@) x GL(7),z — z~")
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and
(GL(26), GL(B) x GL(8), & — wpz ™ wp).

In particular, (¢4)F = ¢.
Thus we have proved the following result:

PROPOSITION 4.3. Let g be a semi-simple element of Yy, ,,. Then one can choose
x such that p(z) = g and g1 € H with g19g97" = g~' in such a way that the
corresponding antiautomorphism § has order 2.

Proof. Indeed, using the decomposition of V = V' & V" corresponding to
g = g @ g"” where ¢’ does not have the eigenvalue +1 and g” has only the
eigenvalues 1, we see that for a suitable choice of z and g, the original triple

(G*@) Hr#) 2 z!) is isomorphic to a product of triples of the following
types

(i) GL(l, K(\5)), GL(l, K), T
(i) GL(l,K) x GL(l, K) GL(l, K)4, (z1,22) = (231, 27") 71
(iii) GL(t1 + t2,k) GL(t1,k) x GL(t2, k), 7!
(iv) GL(2t,k) GL(t,k) x GL(t, k), T — wiz” wy
This proves our assertion. a

In addition, we claim that for every one of the above triples (G', H', o) we
know that every H' bi-invariant distribution is also invariant under the involution
o. For case (i), this is a result of [yF]; in this case, every double coset is actually
invariant under o. For case (ii), we may identify G’/ H' to GL(l, K') via the map
(21,22) — zlzz_l. Then if T is H' biinvariant on G’ there is a conjugacy invariant
distribution 2 on GL(/, K') such that

/f(gl,gz) dT'(g1,92) = // f(gh, k) du(g) dh

where dh is a Haar Measure on GL(/, K'). We have

[ fte" o) a1 2) = [[ 15797 dul) dh

= [[ 10'9.p" dutg) ah = [[ f(hg,h) du(g) ah

://f(gh,h)du(g) dh:/f(!h,gz) dT'(g1, 92)-

So our assertion is trivial in this case. Finally (iii) and (iv) are just the two cases of
the induction hypothesis, provided the centralizer of p(z) is not the whole group,

ie p(z) # £1.
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5. Reduction to the infinitesimal symmetric space
5.1. FIRST REDUCTION

We want to prove that a H bi-invariant distribution 7" is actually invariant under
g — g~ '. We may as well assume that 7" is skew invariant under g — ¢~! and
then show that 7" = 0.

To that end, we consider a semi-simple element g € Y and an element z such
that p(z) = ¢g. We choose z in such a way that { is an involution. Then we consider
the open set U, and the image €, of H X U, X H under the map ®. It is an
open set. We will show that the restriction of T to {2, vanishes. We shall need
another property of the set U, namely that it is the set of non-zeroes of a regular
function g,(€) on G*(*). Furthermore, this function is invariant under right and
left multiplication by H*(®). In particular, if we set f,(£) = g-(£)g.(£") then U,
is also the set of non-zeroes of f, and f, is invariant under §, and under left and
right multiplication by H*(%),

There exists a surjective map of C°(H x U, x H) onto C°(Q;) noted a — f,,
such that

[ fawsenOF (@) dt = [ alonBerr(e) Flo7¢zg2) dgn d dga

for all FF € C*°(Q;). Here dg; = dg, is a Haar measure on H and d¢ a Haar
measure on G*(%). In passing we note that G*(®) is reductive, hence unimodular,
because p(z ) is semi-simple.

Now suppose that T is a H X H bi-invariant distribution on 2. Then

T(fagper) = L(a)I(7)ur(B),

where p7 is a distribution on U, and I(a) = [ a(g) dg. The distribution ur
is uniquely determined by 7'. It has certain properties of invariance. For instance,
it is invariant under left multiplication by H*(*). It is also invariant under right
multiplicationby H N G*@) g Ha~'. Since this group is actually equal to H*(®),
we see that y7 is actually bi-invariant under H (%), Recall also the identity which
defines §:

(h1&hy) ™' = by g1 zgahT ! (72)

It follows that the distribution p is skew invariant under §. If ¢ is a smooth function
of compact support on k£, then (¢ o f,; )17 extends to adistribution on G*(=) which
is H7(®) invariant and { skew invariant. Assume that p(z) is not central. Then the
triple (G*(#), H?(®)_}) is a product of triples (G, H;, o;) for which the theorem is
true: a H; invariant distribution on G; which is o; skew invariant is 0. It follows
that (¢ o f; ) = 0 and then 7 = 0. Thus the restriction of T" to €2, is 0. The open
set 2, contains the element  and p(z) is semi-simple. We will show in the next
section that the set U, also contains all the elements of the form exp( X ) where X
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is nilpotent in L and commutes to p(z ). Thus Q, contains the product exp(3X )z.
However p(exp(3X)z) = p(exp(1X))p(z). Conversely, if ¢’ is an element of Y
with Jordan decomposition ¢’ = gg/, then ¢’ = p(exp(3X)z) for a suitable X
(Lemma 4.1). Thus (2, contains all y such that p(y) has semi-simple part p(z) = ¢
(and in fact all y such that the semi-simple part of p(y) is H conjugate to g).

Thus T vanishes on the union of these open sets, that is, 7" vanishes on the open
set of elements y such that the semi-simple part of p(y) is not central. In other
words, the support of 7" is contained in the union of the closed sets:

{y € GL(n,k)|p(y)s = I}, (73)
{y € GL(n,k)|p(y)s = —1}. (74)

Suppose p(z)s = I, that is, p(z) belongs to the set Ny of unipotent elements of
Y. Then we have z = exp(3X) with X € ny, and p(z) = exp(X). Thus the first
set is in fact H Ny H. The same analysis shows that if ¢ € Ny then ¢! = ege.
Thus Hg~'H = HgH.Let Q be the open set of z € G such that p(z)s # —1. We
claim the restriction of 7" to 2 is 0. Let £ be the complement of (73) in 2. We can
write {2 has a finite union of increasing open sets 2;,0 < 7 < J starting with o,
such that 2; — Q;_y = Hz;H with z; € ng. Since the orbit Hz; H is invariant
under = — z! so is each open set ;. We prove inductively that 7' vanishes on
§;. We already know that T’ vanishes on §2g. Thus we may assume that 7 > 0 and
T vanishes on 2;_1. Then its restriction T to 2; may be viewed as a distribution
on X; = HzjH invariant under H and skew invariant under z ~— z~!. Thus T}
is in fact an invariant measure on X;. The map z ~ z~! changes this measure
to a positive multiple hence must leave it invariant. On the other hand, T} is skew
invariant under the same map. This implies that T’; = 0. Thus T'; = O for all j and
T vanishes on (2.

We have now proved that the support of T’ is contained in the set (74). In order
for this set to be non empty we need —I,, to be in Y, ,,. This happens only if n is
even and p = n/2. Recall the element

0 I
w:wp:(jp 8’) (75)

We have p(w) = —1I,. It follows that the set (74) is actually the set
HwNyH = HNywH.
We introduce the Cayley map A from
W ={Z e M(nxn,k)|det(Z+I).det(Z — I) # 0} (76)
to

U = {Z € GL(n, k)| det(Z + I) # 0} a7
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defined by

NZ)=(I-2Z)T+2Z)™". (78)
Note that W is invariant under Z — —Z and

M=2)=X2)"L (79)

The map is a diffeomorphism of the two given sets. In particular, A carries the
set n,, of nilpotent elements of M (n X n, k) onto the set N of unipotent elements
of G. We set W, = L N W and define a map

¢: H x Wi, x H— GL(n)
given by
$(9,€,9") = gwA(€)g"

It is clear that A is submersive at every point of H X Wy, x H. Let Q be its image.
Thus 2 contains Hw Ny H. Moreover:

(hiwA(€)ha)~" = b ' A (&) whi! = by 'wA(—wEw)hT!.

In particular, the open set (2 is invariant under g — ¢~! and the restriction of T

to  is skew invariant under the same map. Finally the restriction of T to 2 has
support in the closed set Hw Ny H. We want to show that this restriction is 0.

As usual associated to the submersive map ¢ there is a surjective map o — f,
from C(H x W, x H)to C(£) such that for T' € C*(Q),

/ a1 (hy)aa(€)as(ha) T (hiwA(€)ha) dhy dhy dé
= [ fuoorsan(9)T(9) do.

To the invariant distribution 7" is then associated a distribution yr on W7, such
that

T(fo1@0m@as) = L(a)pur(ez)I(as3).

Asbefore I(c;) = [ a;(h)dh is a Haar measure on H. The distribution is invariant
under conjugation by H. It is also skew invariant under { — —wfw. However we
have ¢(§)e = —€ for € € L and € € H. Thus in fact ur is skew invariant under
€ — wéw. As usual, if 1 is in C°(F*) the product

b(det(] + &) - det(I - £)) dur(€)
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extends to a distribution on I which is invariant under Ad H and skew invariant
under £ — wfw. By the result on the infinitesimal symmetric space, it follows that
this distribution vanishes. Hence ur = 0 and T vanishes on 2. This concludes the

proof of the induction step for H bi-invariant distributions skew invariant under

grg L

5.2. THE OPEN SET U,

We let z € G be an element such that p(z) is semi-simple. Recall the map
&: H x G*® x H — GL(n)
®: (h,&,h') — hézh'.

Recall U, is the set of £ such that ® is submersive at (1, £, 1), or, what amounts to
the same:

b+ Ad(€2)(h) + L) =g,
a condition which is also equivalent to:

b+ Ad(€z)(h) + ¢ = g.

Recall also the decomposition of g into the +1 and —1 eigenspace for Ade:
g = h @ L. We call py, the projection on the second factor. Since ep(z)e = p(z)~!,
we have also

g?@ = pe(@) gy (@),
We see that ¢ is in Uy if and only if
pL (Ad(€2)(h)) + L) = L.
Recall we let g, denote the orthogonal complement of a”(®). We also set h N

(8p(c)) = Bp(z) and L N (g,(z)) = Ly(s)- Since p(z) is semi-simple, we have the
orthogonal decompositions:

h= bp(z) + hp(z)a L= Lp(:v) + Lp(x)

Since p(z~!') = 27 lep(z)ez, the element p(z~!) is also semi-simple so that we
have similar decompositions for z~!. In particular:

h= bp(z‘—l) + bp(l‘_l)'
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Recall h*(®™") = h 1 2~ 'hz. Then, for £ € G*(?),

Ad(éz)(h Nz~ hz) = AdE(hnzhz~t) = AdE(H*D) € g?@) C b+ LP),
It follows that £ is in U, if and only if

pr (Ad(€2)by(em) + L7 = L.

But we claim that the first term in this sum of spaces is actually contained in L ().
Indeed, we note that for W € LP(®) and T € bp(e—1) We have

B (W, pL(Ad(€2)(T))) = B (Ad(a~'e W, T).
However, Ad(¢6~1)W is still in g°(#). On the other hand:
Adz Y (g =pnz"be® Lna Lo = g? ),
Thus Ad(z~1¢~)Wisin ¢”(@™") and, in particular, orthogonal to T'. Our assertion

follows.
Thus there exists a linear map ¢¢,

¢§m: bp(z—’) - Lp(x) (80)
such that
¢e(T) = pr(Ad(€z)T), (81)

and ¢ is in U, if and only if the map (80) is surjective.

Next we assert that the spaces in (80) have the same dimension. To that end,
we let £ = 1 in the above discussion. We have already observed that Ad(z) carries
5™ = p N z=1ha to h N zhz~! = p?(®) which is orthogonal to L. It follows
that the map T +— pr(Ad(z)(T)) from h to L has kernel h Nz~ 'hz = TSl
Hence ¢, is injective. Now let us find the perpendicular complement of the range
of ¢,. So suppose W is orthogonal to pr,(Ad(z)T) for all T € b ,(,-1). Then
Adz~!(pLW) is orthogonal to Bp(z—1y thus is in L + b = L hnazha.
This implies in turn that png) € Ad(z)(L) + b N zhz~!. Thus in fact pr (W)
belongsto LNzLz~! = L? 7). Hence the perpendicular complement of the range
of ¢ is b + L?(®); that is, the range is L ,(z)- Hence ¢, is bijective.

We now choose bases in the spaces of (80). Then we can define the determinant
of the map ¢, and set

5z(§) = det(fez)- (82)

Thus £ is in U, if and only if S;(&) # 0.
Next we consider the group H*(¥), We claim that
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LEMMA 5.1. Forall € in G*®) and h; € H?(®), i = 1,2:

So(h1&ha) = 55(€)-

Proof. We note that
pr, 0 Ad(h1€hoz) = Ad(hy) o pr, 0 Ad(€x) o Ad(z ™ ho).

Next we recall that by € H*®) = HNzHz™! implies t e e HNz 'Hz =
H?E™"). Thus Ad(z~'hyz) defines a bijection of bo(z-1) on itself which is an
orthogonal transformation for the restriction of j3; in particular, it has determinant
62(h2) = 1. Onthe other hand, Ad h, leaves L , (. invariant and define a bijection
of that space onto itself which is an orthogonal transformation for the restriction
of 3, hence has determinant 6;(h;) = £1. However, we have seen in the previous
subsection that H*(*) is a productof linear groups (over k or an extension). Thus
81(h1) = 62(h2) = 1 and we are done. a

Our next lemma is:

LEMMA 5.2. The open set U, is invariant under £ +— &4,
Proof. Recall that we choose g; € H such that gip(z)g;"' = p(z~!) and then
¢t = g2~ 1¢"1zg. Suppose £ is in Uy, that is,

b+ Ad(€2)(h) + ) = g.

We have to see that ¢! verifies the same condition:
b+ Ad(£'z)(p) + ¢°*) = g.

The left hand side can be written as

Ad(g7'a7'¢7") [Ad(£2)(b) + Ad(zg12)(b) + Ad(€ag1)(@")] . (83)

But Ad(g;) takes p(z) to p(z~!) hence takes g*®) to g?(*™"). In turn, Ad = takes
this space to gp(x). Thus the third term in (83) is gp(””). For the middle term, we
remark that since g; € H commutes to ¢ we can write, for T’ € h:

Ad(e) Ad(zg12)(T) = Ad[(exe)gi(eze))|(T).

However, it is easily checked that

(eze)gi(eze)a™ g7 e™! = (eze)gi[p(x)] g7 "a™!

= (eze)lp(z ]!
= (eze)(ezle)zr™! = e.
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Thus
Ad(e) Ad(zg1z)(T) = Ad(zg12)(T),

so that the middle term is contained and in fact equal to h. Finally we see that (83)
can be rewritten in the form:

Ad(ge'€7) [b + Ad(E2)(h) + 0] = Ad(g7'27'¢7")(e) = 8.

Thus ¢! is in U, as claimed. O

We next give another formula for S;. It will be convenient to denote by q the
subspace g,(). It is invariant under Ade. If { € G commutes to p(z) then so does

€~1; thus q is invariant under Ad(p(€)). Since p(éz) = p(§)p(z) we see that q is
invariant under Ad p(§z).

LEMMA 5.3. Suppose p(z) is semi-simple. Then, there is ¢ € k* such that, for
all¢ € G*):

So(€)? = ¢ det (I — Ad p(£z)ly) -
Proof. We first compare S, and S, for by € H. We have p((zh)™!) =

hy'p(z)hy. Thus

g?(@r)™) = pT1grE T
Similarly:

bp((xhl)_l) = Ad(hl)_lbp(x—X).
On the other hand p(zh;) = p(z) so that

Ly(ah) = Lo(a)-

Since pr, o Ad(£zhy) o Ad(h1)~! = pL o Ad(£z) we see that the determinants of
¢, and ¢, are equal (for a suitable choice of the bases), that is, Sz1,(§) = Sz(€).
Thus we have for ki, hy € H?® and h € H:

Szn(h€ha) = 5z(€).

On the other hand, we have p(hi€hozh) = p(h1€ha)p(z) = hip(€)h7 p(z). It
follows that:

det((I — Ad p(hi&hazh))ly) = det((I — Ad p(£2))la);
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det(Ad p(hiEhaah)|y) = det(Ad p(€x)|q)-

Thus to prove the identity above we may modify 2 by multiplication on the
right by H and modify £ by multiplication on the left and on the right by H P(e),
Furthermore, we may replace k by its algebraic closure. Fix a torus 7" of G' which is
¢ invariant in the sense that ete = t~! for t € T'; suppose further that T' is maximal
among ¢ invariant tori. Then p(z) is H conjugate to an element of 7". Thus we
may as well assume p(z) € T. We can then write p(z) = 32 with 3 € T. Then
p(B) = 3% = p(z). It follows that = = Bh for some h € H (polar decomposition).
To prove our identity, we may as well assume z = 3. In other words, we may
assume that z is also in the torus 7.

Now the group G*(%) is invariant under conjugation by ¢. Clearly T is a maximal
invariant torus in G*(®), For £ € G*(), the element p(¢) = £e€~ ¢ is still in the
same group. Thus p is the polarization map for a symmetric space of G*(%), It
follows from a Theorem of Richardson that the set of £ such that p(¢) is semi-
simple is dense in G*(%). As a result, it suffices to prove ouridentity for an element ¢
such that p(€) is semi-simple. As before, £ has a polar decomposition { = ah, with
cae = a1 and hy € H?®). We may as well assume § = a, that is, efe = £,
p(€) = €2 and £ is semi-simple. Then £ is conjugate to T by an element h; € H*(*),
Thus we may as well assume ¢ is in 7'. Thus it suffices to prove our identity for =
andinT.

At this point, we choose orthonormal bases Y; and Z; (for the restriction of 3)
on the spaces f,(,-1) and L,(z). For X € b, we have

pr o Ad(€z)(X) = 5 [Ad(£z) — Ad(e) Ad(£z) Ad(e)] X.
Thus we can take:
Sq(€) = det{ B(3[Ad(éz) — Ad(e) Ad(éz) Ad(e)]Y;| Z;)}-

Since z is in T we have p(z) = 22 = p(z~')~!. Hence g*(*) = g™ in the
case at hand. Thus Ad(¢), Ad(¢), Ad(z) leave g?(%) invariant. Thus they leave g
invariant as well. We can then consider the restriction of the operator

3lAd(éz) — Ad € Ad(€z) Ade]

to g; it maps this space to itself. We compute its determinant. The vectors Y;, Z;
form here a basis of q. Using the fact that e£ze = (£z)7!, we get

B(3[Ad(6z) — Ad(e) Ad(¢z) Ad(e)]Yi] Z;)
= B(Yi|3lAd(e) Ad(¢z) Ad(e) — Ad(€2)]Yi|Z;).
We also have
B3[Ad(€z) - Ad(e) Ad(£z) Ad(e)]Yi[Y;) = 0
B(Zi|5[Ad(e) Ad(£z) Ad(e) — Ad(€x))Yi|Z;) = 0.



UNIQUENESS OF LINEAR PERIODS 111

We easily find then the matrix of our operator has the form

0o S
-5 0)’
where S is the matrix of ¢¢,. It follows that

(52(€))? = det 3[Ad(€z) — Ad(e) Ad(£z) Ad(e)]s.

Since e(éz)e = (£x)~! we have p(£z) = (£z)? and the above operator can be
written as the restriction to g of

~Ad(€2)7'3(1 — Ad(£2)?) = ~Ad(Ex) 7' 3(1 - Ad p(£x)).

Since, £z isin T C G*(*) C G, we have:
det Ad £z|, = (det Ad £z)) . (det Ad(éx)|?@))~! = 1.

So we get our formula for S, (). o

The last result we need is the following lemma:

LEMMA 5.4. Suppose y is an element such that the semi-simple part of p(y) is
equal to p(z). Then y is in Uy,

Proof. We have seen that there is v € L, nilpotent, such that v commutes with
p(z), and, setting £ = exp(v/2),

p(€) =exp(v), p(&x) = p(§)p(z) = p(y).

Thus y = £zh and we have to see that £ is in U,. Since g°(®) is the +1 eigenspace
for Ad(p(z)), it contains any +1 eigenvector for the product of Ad(p(z)) and the
unipotent operator Ad(p(¢)) which commutes with it. This product is Ad(p(&z)).
Thus

det(I — Ad p(£a))], # 0

and our conclusion follows.

5.3. SECOND REDUCTION

Assume n is even. We still have to show that a distribution 7’ on G which is H
invariant is invariant under conjugation by w = w, where p = n/2. We may as
well assume that T is skew invariant under conjugation by w and show that it is
Zero.
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LEMMA 5.5. Suppose p(z) is semi-simple. Then p(wzw) = wp(z)w is semi-
simple and there is h € H such that hxh~! = wazw. Finally, wh commutes with

p(z).
Proof. Indeed, we have wew = —¢. It follows that:

p(waw) = (wew)e(wz'w)e = —wzez™we

= w(zez™'e)w = wp(z)w.
Thus if ¢ = p(z) is semi-simple so is p(wzw). To continue we may write V =
V' @ V" where V' and V" are homogeneous subspaces and dim V] = dim V7,
dim Vy’ = dimV}’ and g = ¢’ @ ¢”, where ¢’ does not have the eigenvalue +1
while ¢” has only the eigenvalues +1. We have then: ¢ = ¢/ @¢” and w = w’' Hw”.
We may further assume z = 2’ @ 2”. Thus it suffices to prove our assertion for
2’ and z”. Equivalently, we may assume that g does not have the eigenvalue +1
or, on the contrary, has only the eigenvalues +1. In the first case, at the cost of

replacing g by a conjugate under H, we may assume that g = ¢(A) where A is a
p X p matrix without the eigenvalue £1. Then we write

A=I+U)I-U)"!

and we can take

x=x(U)=(}f f)

where X(I — U)/2and Y = 2U(I — U)~!. We have then

(1Y

We find
wrzw = hzh™!
where
4U 0
h = .
(o (1-UV>

If on the contrary g has only the eigenvalue +1 then, at the cost of replacing ¢
by an H conjugate, we may assume that g = p(a) where

I, 0 0 O
Y 0 0 0 Ig
10 0 I, O

0 Ig 0 0
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Then wzw = z.
Finally, we have

whp(z)h™'w = wp(hzh™w = p(whzh™'w) = p(z).

The last assertion of the lemma follows. O

At this point, we argue as before. Let g be a semi-simple element of Y. Let
be such that p(z) = g is semi-simple. We recall the map &: H x G*®) x H — G
defined by ®(h,&, ") = h&xzh'. We claim that the image of @ is invariant under
conjugation by w. Indeed, choose h € H such that hzh~! = wzw. We have then
= wp(z)wh = p(z). Thus for £ € G*(&) we get:

w(éz)w = wlwwzw = heh 'hah! = hetah™!,
where we have set

& = b lwEwh € GP@),
Thus we get:

w(hi&zhy)w = (whywh)e z(h~ whyw). (84)
This prove our assertion. We show now:

LEMMA 5.6. The open set U, is invariant under & — &°.
Proof. Suppose that £ is in U,. Then

b+ Ad(éz)h + 5@ = g
and we have to see that £” has the same property. Indeed:
b+ Ad(&2)h + 17 = p + Ad(h~'wEwhe)h + po=)
= b + Ad(h~'wEwhzh~'h)h + h°()
Since h normalizes b and hzh~! = wzw, we can write this as:
=h+ Ad(h“lwfww:cw)h + pP@)
or, using the fact that w normalizes b:

b+ Ad(h~'wéz)h + po(®)
= Ad(h~'w)[Ad(wh)b + Ad(€z)h + Ad(wh)p?()].

Again wh normalizes h and commutes with p(z) hence normalizes h*(*). Thus the
above expression is also

Ad(h™"w) [p + Ad(Ex)h + )] = Ad(h~w)(e) = .
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The lemma follows. O

If £ is in H?(®) 50 is £ since wh commutes with p(z). We have also

(&N = hy'Eh,

where hy = whwh. Clearly h; is in H and commutes with p(z) since wh does.
Now U, is the set of non-zeroes of g, a regular function invariant under H*(*) on
the left and the right. It is also the set of non-zeroes of f,.(¢) = g,(£)g.(£") which
is stillbinvariant under H*(*) on the left and the right, but is also invariant under
£ 8.

Suppose that g is a semi-simple not central element of Y. We claim we can
choose = with p(z) = g and h with wzw = hzh~! in such a way that b has order
2. As before, we write V = V' @ V" and g = ¢’ @ ¢g” where ¢’ does not have the
eigenvalue £1 and ¢” has only the eigenvalues +-1. We have also w = w’ @ w”. We
can choose z of the form z = 2’ @ &”. Also G*®) = GL(V')*(") @ GL(V")~(=")
and we can choose h of the form h = h’ @ h”. Then the automorphism ¢ — £
is compatible with this decomposition in the sense that if £ = £’ + £” then £’ =
(&) +(£")

We may assume z’ = z(U) as before. Then GL(V')?(*") is the set of matrices
of the form

¢ = AR/
76 Zy )’
where Z; commutes with U and § = 4U (I — U?)~!. We have then
gl_lwlflw/g' — 5/
by a direct computation. Hence £ — £ induces the identity on GL(V’ )p(”").
For z”" we may take ¢” = e and
I, 0 0 0
0 -Ig 0 O
0o o0 I, O
0 0 0 -Is

p(a") =

Thus £ +— £° induces conjugation by w” on the second factor. Further the pair
(G", H"") decomposes into a product of pairs

(GL(2a), GL(a)x GL(a)) x (GL(28), GL(8) x GL(8))

with w” = w, @ wg. Thus, for this choice of z the automorphism b has indeed
order 2. Furthermore the triple (G*(*), H?() ¢ — ¢*) decomposes into a product
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of triples of the form (G;, H;,0;); for each triple, every distribution biinvaraint
under H; is invariant under o; either trivially (o; is the identity) or by the induction
hypothesis.

Now let T be a distribution which is H invariant and skew invariant under w.
Just as before, it follows that the restriction of T' to U, vanishes. The support of T’
is contained in the set of z such that the semi-simple part of p(z) is £1, or what
amounts to the same, the union of the following closed sets:

{z|p(z)s = I} = HNyH, {z|p(z)s=—-I}= HNywH.

Now we consider the Cayley map A from

W ={Z|de((Z + I).det(Z — I) # 0} (85)
to

U ={Z € GL(n,k)|det(Z + I) # 0} (86)
given by

MNZ)=(I-2)T+ Z)™..
Let W, = W N L. We defineamap ¢: H Xx Wy, x H — G by:
d(h,E,h") = RA(E)N.

This map is submersive at any point. Its image €2 is an open set which contains
H Ny H. We have also for h,h' € H

w(hA(E)R)w = whwA(wéw)wh'w.

Consider the pullback pr of the restriction of 7' to . Since Wy, is invariant
under w we see that pr is invariant under conjugation by H and skew invariant
under conjugation by w. Now W, is the set of non-zeroes of the function f(Z) =
det(I+ Z) . det(I — Z) which is invariant under conjugation by H and w. It follows
that if u7 is non-zero, then there is a non-zero distribution on L invariant under
H and skew invariant under w. This contradicts the results on the infinitesimal
symmetric space. Thus p7 = 0 and the restriction of 1" to 2 is zero.

To continue, we consider similarly the map ¢’ form H x W, x H to G defined

by:
9(h,&, 1) = hA(E)wh'.

Let Q' be its image. It an open set containing H Ny wH . We have:
w(hA(€)wh)w = whwA(wéw)wh'w.

As before, we conclude that the restriction of T to ' is 0. Now 2, Q' and the
complement of H Ny H U H NywH form an open cover; the restriction of 7" to



116 HERVE JACQUET AND STEPHEN RALLIS

every open set in the cover vanishes. Thus T' = 0. This concludes the proof of the
induction step and the theorem. a

6. Applications to Shalika models
6.1. UNIQUENESS

We recall the notion of Shalika model for an admissible irreducible representation
7 of G = GL(n,k),n = 2m. We consider the parabolic subgroup P, of type
(m,m). Its unipotent radical U,, is the group of matrices of the form:

-0 7)

The group H = H,, 5 is a Levi-factor of P. It acts on U,,. Let v be a non-trivial
additive character of k. Define a character ¥ of U,, by: ¥(u) = ¢(Tr(Z)). Then
the stabilizer of ¥ in H is the group

{2

A linear form [ on the space V' of 7 is said to be a Shalika functional if
[ (r(u)m(h)v) = ¥(u)l(v) (89)

foru e Uy, h € HyandvinV.
We will need the following lemma on Shalika functionals:

ZEM(mxm,k)}. 87)

g€ GL(m)} . (88)

LEMMA 6.1. Suppose that | is a Shalika functional for . Then there is s9 € R
such that for any v € V the product

0
z[w(g I)v] | detg |* (90)

is bounded in absolute value (independently of g). Furthermore, given v, there is a
positive Schwartz-Bruhat function ® > 0 on M (m X m, k) such that

FG)!

For the moment we take the lemma for granted and derive some consequences.
Assuming the lemma, we can form the integral

0
I(v,s):/GL(n)l [7r (g I) v] .|d<3tcz|s"1/2 da

| detg < ®(g).
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The integral converges for $(s) sufficiently large. As in [FJ] one can prove that the
integral represents a rational function of ¢~°. More precisely, it has the form

L(s,m)P(q™°),
where P is a polynomial. Moreover, there is a v so that P = 1.
REMARK. We note that these assertions are proved in [FJ] under the assumption
that the functions g — [(7(g)v)are bounded. The proof is easily modified to apply
to the case at hand. Furthermore, in Lemma 6.1, the fact that s is independent of

v is not critical.
If we consider then the quotient

IO('”? 8) = I(v’ 8)/L(37 71-)’

it is an entire function of s. Moreover:

s—1/2 0
Io(v,s) if h = (g‘ )
0 9

det g>

T e

For s = % we obtain a linear form I; = Iy(., %) on the space of = which is invariant
under H and non-zero if / is non-zero. In particular:

PROPOSITION 6.1. Suppose that  has a non-zero Shalika functional. Then ~ 7.
Moreover, the dimension of the space of Shalika functionals is then 1.

Proof. The first assertion follows from the theorem of the previous section. To
prove the second assertion we let [ and I’ be non-zero Shalika functionals for 7. Let
I; and I/ be the corresponding H invariant functionals. We have I;(v) = cIj(v)
with ¢ # 0. Consider then the new Shalika functional l; = [ — ¢!’. From the explicit
construction of the linear forms we have I;, = I; — cIyy = 0. On the other hand if
li # Othen I}, # 0. Thus [} = 0. a

6.2. AN ASYMPTOTIC EXPANSION

It remains to prove the lemma. The argument that follows is independent of, but
closely related to the techniques used by Casselman and Shalika in [CS]. It is
likely that their techniques can be used to obtain asymptotic expansions in more
general situations. We may assume the conductor of 4 is the ring Oy, of integers.
We denote by A the group of diagonal matrices and by P, the group of upper
triangular matrices. We denote by «; the simple roots of A with respect to Py. We
consider an element of H of the form:

0
h=h(g):<z p ) o1
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We write ¢ = k1bk, where k; € GL(m,Of) and b is a diagonal matrix with
| b;/biy1 |< 1, fori < m — 1. In other words, if we set

b O
a:a(b)z(o Im), 92)

then | a;(a) |< 1for1 < ¢ < m — 1. We claim that, given a vector v, there is r
such that I(7(h)v) # O implies | b, |< ¢".
Indeed, we note that we have

I(x(RYv) = (n(a)(k)),

where
ky O
k= ar
0 Ky
Since the vectors 7(k)v belong to a finite set, we may as well assume g = a. If

) A
U= ,
0 I

I(m(a)7(u)v) = ¥(aua™")(r(a)v) = (Zb Z; ,) (m(a)v).

then

Thus if v is invariant under the principal congruence subgroup K, of K =
GL(n, O), we have for I(7(a)v) # 0

Q,b (Z biZiﬂ') =1 for | Zm' |< q_r.

Thus | b, |< ¢, as claimed.
The next theorem will imply the lemma. It will be convenient to denote by
m(ay,ay,...,a,) the matrix a = a(b) where

bi = QG541 " Q.

Thus o;(a) = a; for i < m and a;(a) = 1 for 7 > m. Recall that a finite function
on a locally compact abehan group is a continuous function whose translates span
a finite dimensional vector space.

THEOREM 6.1. There is a finite set X of finite functions on (k*)™ with the
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following property: for any v, there are Schwartz-Bruhat functions ¢, x € X, on

k™ such that, for a = m(ay,az,...,am)with|a; |< 1for1<i<m—1:
l(ﬂ-(a’ ’U) Z X(alaa2, am)¢x(alaa23'--7am)'
x€X

Let us show how this theorem implies Lemma 6.1. Write as above h = h(g) with

= kibky and b; = a;a;41-- @y, with | a; |< 1 for 1 < ¢ < m — 1. Then
[(zw(h)v) = l(n(a)n(k)v) for a suitable k and a = m(ay,ay,...,an). There is r
such that /(7 (h)v) # 0 implies | a,, |< ¢". Thus, if @ is the characteristic function
of the set of X € M (m X m, k) such that || X ||< ¢, then I(7(h)v) # 0 implies
®(g) # 0. Let s > 0. Then | deta |*=| afa3®---a™* | . We can choose s so large
that the products

| deta |°| x(a1,a2,...,a4m) |

with x € X are bounded above for | a; |[< 1for1 <i<m—1,|a, |[<q.1t
follows that | [(7(h)v) || detg |°=| I(n(a)7(k)v) || deta |* is bounded above by
a constant C'. Finally,

| I((h(g))v) | | detg |°< C®(g)

and the lemma follows.

Proof. In view of the discussion above, we may in proving the Theorem restrict
our attention to the set of a = m(ay,az,...a,) € A such that | a; |< 1 for
1 < 7 < m. Thus in fact, | o;(a) |< 1 for all j. We first prove a lemma. For
1 <@ < m,welet P; = M;U,; be the standard parabolic subgroup of type (i, n — i),
A; the center of M;:

LEMMA 6.2. Suppose v = mw(u)vg — vo with w € U;. Then there is ¢ > 0 such
that for any a = m(ay,az,...,a,) € Awith| a; |< 1for1 < j < mand
| ai(a) =] @i |< e

[(n(a)v)=0

Proof. Suppose first 2 = m. Then, with the above notations,

I(m(a)v) = (¥(aua™") = 1)I(7(a)vo) (H ¥(biZ; ;) - 1) I(m(a)vo).

Since | b; |<| am | we see this is zero if | a,, | is small enough and we are done
in this case. Now suppose ¢ < m. We can write © = ujuy with u; € U; N U,,, and
up € U; N M,,. Explicitly:

(I Z (w0 , (L 7
“=lo 1,) T \o 5,) “T\o 1.}



120 HERVE JACQUET AND STEPHEN RALLIS

Then
I, 0
l(m(a)v) = H ¥(b;Z;;) . 1 |m(a)m —12—1 | vo| = U7 (a)vo).
< 0 bu~'b
A
As before, for j < i, we have | b; |=| ajajq1---ai---am |<| @i |. Thus

[1¥(b;Z;;) = 1if | a; | is small enough. Suppose vy is invariant under the
principal congruence subgroup K. If a; = «;(a) has a small enough absolute
value then ausa™! is in K,. Thus the matrix

I, 0
0 bu'"1p!

is also in K, and the above expression is then 0. a

We finish the proof as in [JPS]. Let V' be the space of «, V(U;) the space
spanned by the differences m(u)v — v with w € U; and v € V. The representation
Ty, = m; of M; on the quotient V; = V/V(U;) is admissible. In particular, the
operators m;(a) for a € A; span a finite dimensional algebra A of operators. In
fact, A is already spanned by the operators ;(a) with | ;(a) |< 1. There exists a
finite set X of finite functionson A; and for each x in X an operator A, belonging
to A such that

mi(a) = z x(a)Ay.
X€X
Thus A, has the form: A, = 3~ A; mi(a;) where a; € A; verifies | o;(a;) [< 1.
We define B, = Y A;,7(a;). Then we have forany v € V and a € A;

T(a)v = Zx(a)va (mod V(U;)).

To continue, we let S be the product group [];,, H; where H; ~ k*. Thus
(a1,a2,...,am) — m(a,ay,...,a,) gives a mapping S — A which identifies
the factor H; to the subgroup of A; of matrices of the form

a; I; 0
0 I '

Let C be the cone of m—tuples in S with | a; |< 1 for all ¢. For v € V let ¢, be
the function on C' defined by:

bu(ar,az,...,ay) =1 (r(m(ay,az,...,an)v)).

Denote by V the space spanned by the functions ¢,. For z € k* with | z |< 1 let
pi(2) be the operator on the space of functions on C' defined by:

pi(z)P(ar, ..., a5, .. an) = ¢(a1,..., 20, ..., 0n).
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Thus V is invariant under these operators. Also, for each ¢, there is a finite set X;
of finite functions on k* and operators B, such that, for any ¢, the difference

pi(z)d — Y x(z)By(d)

XEX;

vanishes for | a; |< Cy 4. The operators B, are themselves linear combinations
of operators p;(z) with |z| < 1. Since the vectors v € V are K finite, we may
write any function ¢ as a sum of functions in the same space transforming under a
character of 7' = (O*)™. Thus in analyzing our functions we may as well restrict
ourselves to those functions transforming under a fixed character of T'. If we choose
a uniformizer w, such functions are determined in turn by the following functions
on the cone (Z*+)™:

O(z1,22,...52m) = (@™, w?,...,w"™).

This space of functions, call it ¢/, has the following property. For 2 > 0, let again
pi(z) be the translation operator defined by:

pi(2)®(21, ...y 2y oy 2m) = ®(21,. ., + 24y vy Zim)-

Then for each 7, there are A; ;¢ ., € C and integers y; ;¢ » > O such that, for any
o

pi(2)8(2) = D> Nijiem€ 2™ pi(Yijem)®(2) = 0

when z; > M;. The integer M; depends on z and on ®. However, it does not
depend on the z; with j # ¢. As written the sum is over all £ € C* and all
integers m > 0. However, only finitely many of the scalars A, arenon zero and the
integers y; ; ¢,m are > 0 (and do not depend on z). Now we choose z larger than all
the integers v; ; ¢ . Then the above equation is a non-trivial difference equation,
which a given ® satisfies for z; > M;(®) and z; > 0 if j # i. We stress that
for lower values of z the difference equation could be tautological. Now define a
Schwartz-Bruhat function ® on Z1 as being a function which is constant (possibly
0) for large values of the variable. A Schwartz-Bruhat function on (Z*)™ is a sum
of tensor products of Schwartz-Bruhat functions in one variable. Solving the above
system of independent difference equations (for instance in terms of the formal
Mellin transform) we find that the functions in Z/ have the form:

Z x(2)®x(2),

x€X

where X is a finite set of finite functions on Z™ and the ®,, are Schwartz-Bruhat
functions on (Z1)™. If follows that the functions in } have the required forms. Thus
the functions {(7(a)v) have the required form, except that the set X may depend
on the vector v. At any rate the set X is not uniquely determined since some of
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the projections of the support of a function ¢ on some factor may be contained in
a compact subset of £*. However, one may choose the y to be exponents of the
representation 7 (see [JS] and [JPS]2) which are finite in number. At any rate for

our purposes, this is not a critical point. a
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