
GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Iris Rosenblum-Sellers

Homework 9

1) List the isomorphism classes of abelian groups of the following orders: 27, 200, 605, 720

Generally, the isomorphism classes of finite abelian groups of a given order are determined by the prime fac-

torizations of the order; for a maximal prime power n such that pn is a factor of ∣G∣, and pn+1 is not, there are

the partition function of n ways to permute the p−group components whose orders are powers of p. In practice, we

permute each prime factor component individually, and mix-and-match.

27: Z27,Z3 ×Z9, and Z3 ×Z3 ×Z3. This one is easy, since it’s a prime power; we have only one prime component

to permute, so there are p(3) = 3 options.

200: 200 = 23 × 52, so we do each seperately; we should end up getting p(3) × p(2) = 6 options;

Z200 = Z8 ×Z25,Z2 ×Z4 ×Z25,Z2 ×Z2 ×Z2 ×Z25,Z8 ×Z5 ×Z5,Z2 ×Z4 ×Z5 ×Z5,Z2 ×Z2 ×Z2 ×Z5 ×Z5

605: 605 = 5 × 112. There are p(1) × p(2) options, so just Z5 ×Z121, and Z5 ×Z11 ×Z11.

720: 720 = 5 × 122. Same deal with this one; Z5 ×Z144,Z5 ×Z12 ×Z12.

2) Judson 13.3: 6,8

6: Let G be an abelian group of order m. If n divides m, prove that G has a subgroup of order n.

Proof. We first reduce to the case where m = pα, p prime. To do this, suppose we had shown this statement for

primes. Then if we let m = ∏p
αi
i , the prime factorization of m. n = ∏p

βi
i , where each βi ≤ αi, because n∣m. Then

we view m as the product of n pi-groups, which follows from the chinese remainder theorem. We call these Pi. By

our assumption that the statement holds for p-groups, for each pi-group Pi, we can pick a subgroup of Pi of order

pβii , which we call Qi. Then each of these Qi’s are subgroups of G, and they’re *normal*, since G is abelian. Then

their product, Q1Q2 . . .Qn is a subgroup of G. Also, since these groups have trivial overlap, and G is abelian, we

have ∣Q1Q2 . . .Qn∣ = n. This amounts to saying that for any g1, g2 ∈ Qi, h1, h2 ∈ Qj .g1h1 = g2h2 ⇒ g1 = g2, h1 = h2;

i.e. every tuple of elements of the Qi’s is distinct. However, we know that they have trivial overlap, since they’re

subgroups of trivially overlapping Pi’s so g1g
−1
2 = h1h

−1
2 implies that they’re both the identity. So from the statement

for prime powers, we have the general statement; it remains to show the statement for prime powers. We now reduce

to the cyclic case similarly. Let m = pα, n = pβ , β ≤ α. An abelian group of order pα is of the form ∏
n
i=1Zpki , where

∑ki = α. If the proposition is true for cyclic groups, we pick ji ≤ ki ∶ ∑ ji = β, and let Qi be subgroups of the Zpki of

order pji . We have the same situation as before where Q1Q2 . . .Qn is a subgroup of order pβ = n. It now remains to

show for cyclic p-groups. Then let G = Zpα for some α, and let n = pβ for some β ≤ α. Let H ∶= ⟨[pα−β]⟩. We note

that [pα−β]p
β

= [pβpα−β] = [pα] = [0], so ∣H ∣ ≤ pβ . However, [pα−β]k = [0] ⇒ kpα−β = qpα ⇒ k = qpβ , for some q ∈ Z,

so k > 0⇒ k ≥ pβ ⇒ ∣H ∣ ≥ pβ ⇒ ∣H ∣ = pβ .

8) Show that if G,H,K are finitely generated abelian groups, and G×H ≅ G×K, then H ≅K. Give a counterex-

ample to show that this is not true in general.
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We split G = ∏Gi into a unique ordered decomposition form, where Gi are cyclic, H = ∏Hi,K = ∏Ki

likewise. Then we have ∏Gi ×∏Hi ≅ ∏Gi ×∏Ki. By uniqueness of the decompositions, we have that each compo-

nent of the left is isomorphic to the same-numbered component on the right, so each Hi is isomorphic to each Ki, so

the product of the Hi’s, H is isomorphic to the product of the Ki’s, K. Then to show the converse in general, let

G = ∏
∞

k=1Z,H = Z, and let K be trivial. G×H ≅ G ≅ G×K, just by the principle “∞+1 = ∞”; i.e., let Φ ∶ G×H → G

be defined by, if (h, g1, g2,⋯) ∈H ×G,Φ(h, g1, g2,⋯) = (h, g1, g2,⋯). This is an isomorphism. Of course, H ≇K.

3) Find the smallest n > 42 such that there is exactly one isomorphism class of abelian groups of order n and ex-

actly one isomorphism class of abelian groups of order n+1. Justify your answer, including why there is no smaller n.

We note that it is exactly equivalent for there to be exactly one isomorphism class of abelian groups of or-

der n and for the prime factorization of n to have no multiplicities greater than 1 for a given prime, by the statement

we expressed in 1 about the partition function. Then we just proceed in order from n = 43. 43 is prime, but 44 = 22×7,

so that rules our both 43 and 44. 45 = 5 × 32, which rules out 45. 46, however, is 23 × 2, which are both multiplicity

1, and 46 + 1 = 47 which is prime, so 46 works.

4) Let n > 1 and m > 1 be integers. In the next question, we recall that if a ∈ Z and x ∈ Zn, we can define ax ∈ Zn
by letting x̃ be any element of Z with residue class x modulo n and letting ax denote the residue class of ax̃ modulo n.

a) Show that if a and d are integers such that (a,n) = (d,m) = 1, then there is an automorphism αa,d ∶ Zn ×Zm →
Zn ×Zm, such that for all (x, y) ∈ Zn ×Zm, we have αa,d(x, y) = (ax, dy).

Proof. We have the definition of α already; it suffices to show that it’s an isomorphism. It is a homomorphism; we note

that αa,d((x1, y1) + (x2, y2)) = αa,d(x1 +x2, y1 + y2) = (a(x1 +x2), d(y1 + y2)) = (ax1, dy1) + (ax2, dy2) = αa,d(x1, y1) +

αa,d(x2, y2). Then it suffices to show that it’s invertible. We consider [a] ∈ Z×n, [d] ∈ Z×m. This is valid because they’re

relatively prime to n and m respectively by assumption. Then let [b] ∶ b ∈ [1, n − 1] ∩ Z, [b] ∶= [a]−1, [c] ∶= [d]−1 in

this group. Then consider αb,c. It clearly commutes with αa,d because multiplication does, and αb,c(αa,d)(x, y) =

(abx, cdy). By assumption, ab = kn + 1, cd = jm + 1 for k, j ∈ Z, so we have RHS=(knx + x, jmy + y) ≅ (x, y), so this

is a proper inverse. Therefore, α is an automorphism.

b) Suppose (n,m) = 1. Show that the group Znm has a unique subgroup An of order n and a unique subgroup

Am of order m. Write down an isomorphism An ×Am
∼

→ Znm

Proof. Existence is clear; let An = ⟨[m]⟩ ,Am = ⟨[n]⟩. For uniqueness, we recall that any subgroup of a cyclic group

is cyclic, so it suffices to show that if ∣[x]∣ = n,x = km for some k, and likewise for Am; by symmetry, it suffices to

show just for n. If ∣[x]∣ = n, then nx = jnm for some j, which implies x = jm. Then let Φ ∶ An ×Am
∼

→ Znm map

([1], [0]) to [m], and ([0], [1]) to [n]. We require it to be a homomorphism from here; we note that this works

because ∣([1], [0])∣ = ∣[m]∣ = n, and likwise for m. We note that the orders of the groups agree, so it suffices to show

surjectivity, for which it suffices to write an inverse of a generator of Znm, since it’s cyclic. To do this, we simply use

the greatest common divisor fact ∃x, y ∶ xn + ym = (n,m) = 1; then Φ([x], [y]) = [1].

c)

Proof. Let Φ be an automorphism of Zn ×Zm. We recall that homomorphisms are completely determined by where

they send generators, and that isomorphisms preserve orders. We note that Φ([1], [0]) = ([a], [0]) for some a; to
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see this, we realize that if the latter component were nonzero, it would mean that ∣([a], [x])∣ = n, which means

that [x]n = 0, which means that nx = mk for some k, which means that x = m, since (n,m) = 1. Likewise,

Φ([0], [1]) = ([0], [d]) for some d. This means that Φ([x], [y]) = ([ax], [dy]). Finally, in order for Φ to preserve

orders, we have to have ∣[a]∣ = n, ∣[d]∣ =m, which is equivalent to (a,n) = (d,m) = 1, so we have that Φ = αa,d.

d)

Proof. Let Φ ∶ Z3 × Z9 → Z3 × Z9 be given by Φ([x], [y]) = ([x], [3x] + [y]). This is well-defined; the only concern

is in [3x], since [x] is defined up to equivalence mod 3. However, if x1 = x2 + 3k for some k, we have that

[3x1] = [3x2 + 9k] = [3x2] since we’re now in mod 9. It’s also a homomorphism; Φ(([x1], [y1]) + ([x2], [y2])) =

([x1+x2], [3(x1+x2)+y1+y1]) = ([x1], [3x1+y1])+([x2], [3x2+y2]) = Φ([x1], [y1])+Φ([x2], [y2]). It’s also a map from

the same space to itself, so it suffices to show surjectivity. Let ([x], [y]) in Z3×Z9. Then Φ([x], [y]−[3x]), which is a

well-defined element for the same reason [3x] was well-defined before, is equal to ([x], [3x]+[y]−[3x]) = ([x], [y]).

e)

Proof. The somewhat surprising answer is that it is iff (a, b) and (c, d) are linearly independent when considered as

vectors over Z2
3, which is in fact a vector space. To see this, we note that it’s always a homomorphism; M((x1, y1) +

(x2, y2)) = (a(x1 +x2)+ b(y1 +y2), c(x1 +x2)+d(y1 +y2)) = (ax1 + by1, cx1 +dy1)+(ax2 + by2, cx2 +dy2) =M(x1, y1)+

M(x2, y2). Then we can express any linear map from a vector space to itself by a square matrix; in this case, it’s

the matrix
⎛

⎝

a b

c d

⎞

⎠
. This is bijective iff it’s invertible; we know from linear algebra that it’s invertible iff the rows

are linearly independent, so that’s the correct condition.
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