GU4041: Intro to Modern Algebra I

Professor Michael Harris

Solutions by Iris Rosenblum-Sellers

Homework 9

1) List the isomorphism classes of abelian groups of the following orders: 27, 200, 605, 720

Generally, the isomorphism classes of finite abelian groups of a given order are determined by the prime fac-
torizations of the order; for a maximal prime power n such that p" is a factor of |G|, and p"*! is not, there are
the partition function of n ways to permute the p—group components whose orders are powers of p. In practice, we
permute each prime factor component individually, and mix-and-match.

27: Za7,Z3 x Zg, and Z3 x Z3 x Z3. This one is easy, since it’s a prime power; we have only one prime component
to permute, so there are p(3) = 3 options.

200: 200 = 22 x 52, so we do each seperately; we should end up getting p(3) x p(2) = 6 options;
Linoo = Lig X Ligsy Lug X g X Lz, Lug X Log X Lig X L, Lig X L5 X L5 Ly ¥ L % Ly X Ly Ly X Log X g X L5 % i,

605: 605 =5 x 112. There are p(1) x p(2) options, so just Zs x Zio1, and Zs x Z1q x Zq1.
720: 720 = 5 x 122. Same deal with this one; Zs x Ziaa, Zs x Z1a % Z1s.

2) Judson 13.3: 6,8

6: Let G be an abelian group of order m. If n divides m, prove that G has a subgroup of order n.

Proof. We first reduce to the case where m = p“, p prime. To do this, suppose we had shown this statement for
primes. Then if we let m = [Tp;", the prime factorization of m. n =[] pf ¢ where each 3; < «;, because n|m. Then
we view m as the product of n p;-groups, which follows from the chinese remainder theorem. We call these P;. By
our assumption that the statement holds for p-groups, for each p;-group P;, we can pick a subgroup of P; of order
pf i which we call Q;. Then each of these Q;’s are subgroups of G, and they’re *normal*, since G is abelian. Then
their product, @1Qs...Q, is a subgroup of G. Also, since these groups have trivial overlap, and G is abelian, we
have [Q1Q2 ... Qx| = n. This amounts to saying that for any g1, g2 € Q;i,h1,ho € Qj.91h1 = goho = g1 = g2, h1 = ho;
i.e. every tuple of elements of the ();’s is distinct. However, we know that they have trivial overlap, since they’re
subgroups of trivially overlapping P;’s so g1g5* = h1h3! implies that they’re both the identity. So from the statement
for prime powers, we have the general statement; it remains to show the statement for prime powers. We now reduce

to the cyclic case similarly. Let m = p®,n = p?, 3 < a. An abelian group of order p® is of the form []}-, Z «,, where

P
> ki = a. If the proposition is true for cyclic groups, we pick j; <k; : 32 j; = 8, and let @; be subgroups of the Z,, of
order p’i. We have the same situation as before where Q1Qs . ..Q, is a subgroup of order p® = n. It now remains to
show for cyclic p-groups. Then let G = Z,. for some a, and let n = p” for some B < a. Let H = ([p®~"]). We note
that [po"ﬁ]]”ﬁ = [p?p*P] = [p*] = [0], so |H| < p”. However, [p*P1* = [0] = kp®~# = qp* = k = qp®, for some ¢ € Z,
Sok>0=>k2p5:>|H|2p5=>|H|:pﬁ_ 0

8) Show that if G, H, K are finitely generated abelian groups, and G x H 2 G x K, then H = K. Give a counterex-

ample to show that this is not true in general.



We split G = []G; into a unique ordered decomposition form, where G; are cyclic, H = [[H;, K =[] K;
likewise. Then we have [1G; x [1 H; 2 [1G; x [1 K;. By uniqueness of the decompositions, we have that each compo-
nent of the left is isomorphic to the same-numbered component on the right, so each H; is isomorphic to each Kj;, so
the product of the H;’s, H is isomorphic to the product of the K;’s, K. Then to show the converse in general, let
G=Tl1Z,H =7Z, and let K be trivial. Gx H 2 G = G x K, just by the principle “co+1 =00";ie.,let &:GxH - G
be defined by, if (h,g1,92,) € Hx G, ®(h,g1,92,*) = (h,g1,g2,---). This is an isomorphism. Of course, H % K.

3) Find the smallest n > 42 such that there is exactly one isomorphism class of abelian groups of order n and ex-

actly one isomorphism class of abelian groups of order n+1. Justify your answer, including why there is no smaller n.

We note that it is exactly equivalent for there to be exactly one isomorphism class of abelian groups of or-
der n and for the prime factorization of n to have no multiplicities greater than 1 for a given prime, by the statement
we expressed in 1 about the partition function. Then we just proceed in order from n = 43. 43 is prime, but 44 = 22x7,
so that rules our both 43 and 44. 45 = 5 x 32, which rules out 45. 46, however, is 23 x 2, which are both multiplicity
1, and 46 + 1 = 47 which is prime, so 46 works.

4) Let n > 1 and m > 1 be integers. In the next question, we recall that if a € Z and x € Z,,, we can define ax € Z,

by letting Z be any element of Z with residue class  modulo n and letting ax denote the residue class of az modulo n.

a) Show that if @ and d are integers such that (a,n) = (d,m) = 1, then there is an automorphism g 4 : Zy X Zy, —

Ly, X L, such that for all (x,y) € Zy, x Zy,, we have aq 4(x,y) = (az,dy).

Proof. We have the definition of « already; it suffices to show that it’s an isomorphism. It is a homomorphism; we note
that aqa((71,y1) + (T2, ¥2)) = @a,a(z1 + 22,91 +y2) = (a(@1 +22),d(y1 +y2)) = (az1,dy1) + (az2, dy2) = @g,a(T1,91) +
0q.4(z2,y2). Then it suffices to show that it’s invertible. We consider [a] € ZJ, [d] € Z),. This is valid because they’re
relatively prime to n and m respectively by assumption. Then let [b] : b e [1,n - 1]nZ,[b] := [a]™},[c] := [d]™} in
this group. Then consider oy .. It clearly commutes with ¢, ¢ because multiplication does, and ap o(@q,q)(z,y) =
(abzx,cdy). By assumption, ab = kn + 1,¢d = jm + 1 for k, j € Z, so we have RHS=(knzx + z, jmy +y) 2 (2,y), so this

is a proper inverse. Therefore, « is an automorphism. O

b) Suppose (n,m) = 1. Show that the group Z,,, has a unique subgroup A,, of order n and a unique subgroup

A,, of order m. Write down an isomorphism A, x A,, > Znm

Proof. Existence is clear; let A, = ([m]), Am = {[n]). For uniqueness, we recall that any subgroup of a cyclic group
is cyclic, so it suffices to show that if |[z]| = n,x = km for some k, and likewise for A,,; by symmetry, it suffices to
show just for n. If [[]| = n, then nz = jnm for some j, which implies = = jm. Then let ® : A,, x A,;, > Zyp,, map
([1],[0]) to [m], and ([0],[1]) to [n]. We require it to be a homomorphism from here; we note that this works
because |([1],[0])| = |[m]| = n, and likwise for m. We note that the orders of the groups agree, so it suffices to show
surjectivity, for which it suffices to write an inverse of a generator of Z,,,, since it’s cyclic. To do this, we simply use

the greatest common divisor fact 3z,y : xn +ym = (n,m) = 1; then ®([z],[y]) =[1]. O

c)

Proof. Let ® be an automorphism of Z,, x Z,,. We recall that homomorphisms are completely determined by where

they send generators, and that isomorphisms preserve orders. We note that ®([1],[0]) = ([a],[0]) for some a; to



see this, we realize that if the latter component were nonzero, it would mean that |([a],[z])| = n, which means
that [z]® = 0, which means that nx = mk for some k, which means that © = m, since (n,m) = 1. Likewise,
®([0],[1]) = ([0],[d]) for some d. This means that ®([z],[y]) = ([az],[dy]). Finally, in order for ® to preserve

orders, we have to have |[a]| = n,|[d]| = m, which is equivalent to (a,n) = (d,m) = 1, so we have that ® = ag 4. O
d)

Proof. Let ® : Z3 x Zg — Zs x Zg be given by ®([z],[y]) = ([z],[3z] + [y]). This is well-defined; the only concern
is in [3x], since [z] is defined up to equivalence mod 3. However, if x; = x5 + 3k for some k, we have that
[3x1] = [32z2 + 9k] = [3z2] since we’re now in mod 9. It’s also a homomorphism; ®(([z1],[y1]) + ([z2],[y=2])) =
([z1+a2], [B(zr+a2) +yr+yn]) = ([a1], [Bar+yn]) +([22], [Bra+y2]) = ©([21], [y1]) + P([2], [y2]). It’s also a map from
the same space to itself, so it suffices to show surjectivity. Let ([z],[y]) in ZgxZg. Then ®([z], [y]-[3x]), which is a
well-defined element for the same reason [3x] was well-defined before, is equal to ([x], [3z]+[y]-[3z]) = ([=],[y]). O

Proof. The somewhat surprising answer is that it is iff (a,b) and (¢, d) are linearly independent when considered as
vectors over Z3, which is in fact a vector space. To see this, we note that it’s always a homomorphism; M ((z1,y1) +
(72,92)) = (a(@1 +22) +b(y1 +y2), c(w1 +32) +d(y1 +y2)) = (ax1 +by1, cx1 +dyr) + (aw2 +by2, cx2 +dy2) = M (21,y1) +
M (x2,y2). Then we can express any linear map from a vector space to itself by a square matrix; in this case, it’s

a b
the matrix . This is bijective iff it’s invertible; we know from linear algebra that it’s invertible iff the rows
c

are linearly independent, so that’s the correct condition. O]



