
HW 7 Solutions

April 1, 2020

1. If Sn has a subgroup isomorphic to Z7×Z7, then by Lagrange’s theorem,
we must have

49 = #(Z7 × Z7)|#Sn = n!

This happens only if n ≥ 14 (14! contains 7 and 14 as factors, but 13! only
has one factor of 7). Conversely, we must show that Z7×Z7 is a subgroup
of Sn for n ≥ 14. Let σ = (12 . . . 7), τ = (8 . . . 14). Let H = 〈σ, τ〉 ⊂ Sn.
This is {σiτ j |i, j ∈ Z} since σ and τ commute. It is enough to define an
injective homomorphism f : Z7 × Z7 → Sn with image H. For this, we
set f([i], [j]) = σiτ j . This is:

Well-defined: If i′ = i + 7m and j′ = j + 7n, then σi′τ j
′

= σiσj since
σ7 = τ7 = e.

A homomorphism:

f([i1] + [i2], [j1] + [j2]) = f([i1 + i2], [j1 + j2]) = σi1+i2τ j1+j2 = σi1τ j1σi2τ j2

= f([i1], [j1]) · f([i2], [j2]),

where we use that σ and τ commute as they are disjoint cycles.

Injective: If some σiτ j = e, then σi = τ−j ∈ 〈σ〉 ∩ 〈τ〉 = {e}. Thus
σi = τ j = e, which implies 7|i and 7|j, as needed.

2. (a) (14356) = (14)(43)(35)(56) is even.

(b) (156)(234) = (15)(56)(23)(34) is even.

(c) (1426)(142) = (14)(42)(26)(14)(42) is odd.

3. 8. (12345)(678) has order 15 and is in the alternating group since any
cycle having odd length is in the alternating group. (Proof: (n1 . . . nk) =
(n1n2)(n2n3)...(nk−1nk) is a product of k− 1 transpositions, so a cycle of
odd length is even and a cycle of even length is odd.)

9. A8 has no element of order 26, in fact, neither does S8, since 26 6 |8!.

4. 22. We are allowed to use Judson, Lemma 5.14. So, suppose σ1 · · ·σm =
σ = τ1 · · · τn with σi and τi transpositions. Then we can write σ−1 =
σm · · ·σ1, and so

e = σ−1σ = σm · · ·σ1τ1 · · · τn.
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Then by Lemma 5.14, m + n is even. This is true iff m ≡ n mod 2, as
needed.

23. If σ = (n1 · · ·n2k+1), then

σ2 = (n1n3n5 · · ·n2k+1n2n4 · · ·n2k).

24. See solution to problem 8. (abc) = (ab)(bc).

25. An element σ ∈ An is by definition the product σ = σ1 · · ·σ2k =
(σ1σ2)(σ3σ4) · · · (σ2k−1σ2k). It suffices to show that each σ2i−1σ2i can be
written as a product of 3-cycles. If σ2i−1 = σ2i we may simply remove
this term from the product above. Otherwise we have two cases.

Case 1. σ2i−1 = (ab) and σ2i = (cd) are disjoint. Then we have

σ2i−1σ2i = (ab)(cd) = (abc)(bcd).

Case 2. σ2i−1 = (ab) and σ2i = (bc) share one element in common. Then

(ab)(bc) = (abc).

26. (a) It suffices to show that every transposition (ij), 1 < i < j can be
written as a product of transpositions of the form (1k). For this use

(ij) = (1i)(1j)(1i).

(b) It suffices by (a) to show that every (1i) can be written as a product
of transpositions of the form (k k+ 1). We prove this by induction on i.
For the base case i = 2 there is nothing to prove. Assume we know it for
(1i). Then

(1 i+ 1) = (i i+ 1)(1i)(i i+ 1),

and using the inductive hypothesis to express (1i) as a product of (k k+
1)’s, we are done.

(c) It suffices by (b) to show every (i i+1) can be written as a product of
the elements (12), (12 . . . n). We prove this by induction on i. For i = 1,
there is nothing to prove. Assume we know it for i. Then

(i+ 1 i+ 2) = (12 . . . n)(i i+ 1)(12 · · ·n)−1,

and using the inductive hypothesis and the fact that (12 . . . n)−1 = (12 . . . n)n−1,
we are done.
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