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(a) This is an equivalence relation.

• R is reflexive: xRx for any x ∈ Z, since x + x = 2x is even for any x ∈ Z.

• R is symmetric: if xRy, then yRx, since addition is commutative.

• R is transitive: if xRy and yRz, then x + y and y + z are even, so x + z = (x + y) + (y + z)− 2y is
a sum of even numbers and is thus even, so xRz.

The equivalence classes are {even integers} and {odd integers}.

(b) This is not an equivalence relation.

• R is not reflexive: in fact, there is no x ∈ Z for which xRx, since x + x = 2x is even (i.e., not odd)
for any x ∈ Z.

• R is symmetric: if xRy, then yRx, since addition is commutative.

• R is not transitive: if xRy and yRz, then x+ y and y + z are odd, so x+ z = (x+ y) + (y + z)− 2y
is a sum of two odd numbers and an even number and is thus even, so xR/ z.

(c) This is an equivalence relation. [Recall that a rotation in R3 can be represented by a 3 × 3 matrix M
which satisfies MT = M−1 and detM = 1.]

• R is reflexive: xRx for any x ∈ R3, since I3 is a rotation matrix which maps x to x.

• R is symmetric: if M is a rotation matrix which maps x to y, then M−1 is a matrix which maps y to x,
and M−1 is a rotation because (M−1)T = (MT)−1 = (M−1)−1 and det (M−1) = (detM)−1 = 1.
Hence xRy implies yRx for any x, y ∈ R3.

• R is transitive: if M1 is a rotation matrix which maps x to y and M2 is a rotation matrix which
maps y to z, then their product M2M1 is a matrix which maps x to z, and M2M1 is a rotation
because (M2M1)T = MT

1 MT
2 = M−1

1 M−1
2 = (M2M1)−1 and det (M2M1) = (detM2)(detM1) = 1.

Hence for any x, y, z ∈ R3, if xRy and yRz, then xRz.

The equivalence classes are the spheres {x ∈ R3 : |x| = r} for each non-negative real number r. [This
follows from the fact that any unit vector u can be extended to an orthonormal basis {u, v, w} for R3

(simply choose any unit vector v orthogonal to u and let w be the cross product u× v); then the matrix
with columns u, v, w is a rotation which maps (1, 0, 0) to u, and now a rotation which maps v1 to v2,
where |v1| = |v2| = r, is found by composing the inverse of a rotation which maps (1, 0, 0) to 1

r v1 with
a rotation which maps (1, 0, 0) to 1

r v2.]

(d) This is not an equivalence relation.

• R is reflexive: xRx for any x ∈ R, since x− x = 0 = 02 is the square of a real number.

• R is not symmetric: we have 1R 0 since 1− 0 = 1 = 12, but 0 R/ 1 since 0− 1 = −1 is not the square
of a real number.

• R is transitive: if xRy and yRz, then x− y and y− z are non-negative, so x− z = (x− y) + (y− z)
is non-negative, so xRz.
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For ease of notation define the function I : X → R given by f 7→
∫ 1

0
f(x) dx, so that fRg iff I(f) = I(g).

We see that R is an equivalence relation on X because ‘=’ is an equivalence relation on R:

• R is reflexive: fRf for any f ∈ X, since I(f) = I(f).

• R is symmetric: if fRg, then I(f) = I(g), so I(g) = I(f), and thus gRf .

• R is transitive: if fRg and gRh, then I(f) = I(g) and I(g) = I(h), so I(f) = I(h), and thus fRh.

The equivalence classes are the sets I−1(r) ..= {f ∈ X : I(f) = r} for each r ∈ R. Note that I−1(r) is
non-empty for each r ∈ R because the constant function fr : [0, 1] → R, given by fr(x) = r, is in I−1(r).
The set of equivalence classes is thus X/R = {I−1(r) : r ∈ R}.
The natural bijection F from R to X/R = {I−1(r) : r ∈ R} is given by r 7→ I−1(r).

[The inverse bijection F−1 from X/R to R is given by S 7→ I(s), where s is any function in S, which is
well-defined by the definition of X/R. Observe that, analogously to problem 5(b), we can write I = F−1 ◦ p,
where p : X → X/R maps a function to its equivalence class.]
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(i) If a, b ∈ Z are such that [a]nm = [b]nm, then by definition a− b is a multiple of nm. Any multiple of nm
is a multiple of m, so a− b is a multiple of m, and thus [a]m = [b]m. Hence f is well-defined.

(ii) For each residue class [a]m ∈ Zm we have f([a]nm) = [a]m, so f is surjective.

(iii) As in problem 2, ‘∼f ’ is an equivalence relation on Znm because ‘=’ is an equivalence relation on Zm:

• ∼f is reflexive: x ∼f x for any x ∈ Znm, since f(x) = f(x).

• ∼f is symmetric: if x ∼f y, then f(x) = f(y), so f(y) = f(x), and thus y ∼f x.

• ∼f is transitive: if x ∼f y and y ∼f z, then f(x) = f(y) and f(y) = f(z), so f(x) = f(z), so x ∼f z.

For each 0 ≤ a < m, there is an equivalence class {[a+km]nm : 0 ≤ k < n} ⊂ Znm containing n elements.
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(a) In Z7: [0]2 = [0]; [1]2 = [6]2 = [1]; [2]2 = [5]2 = [4]; [3]2 = [4]2 = [2], so the squares are [0], [1], [2], [4].

(b) In Z41: [14] + [33] = [47] = [6] and [7] · [8] = [56] = [15].

(c) In Z10: 12 · 12 ≡ 2 · 2 ≡ 4 (mod 10) and 107 + 413 ≡ 7 + 3 ≡ 10 ≡ 0 (mod 10).
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(a) Recall (from the law of cosines) that two triangles are congruent iff they have the same three side lengths.
Thus, define the function g : X → R3, which maps a triangle T ∈ X to its three side lengths (a, b, c)
(say, in non-descending order). Then T1

∼= T2 iff g(T1) = g(T2).

Thus, as before, ‘∼=’ is an equivalence relation on X because ‘=’ is an equivalence relation on R3.

(b) We know that congruent triangles have equal areas; that is, if T1
∼= T2, then f(T1) = f(T2).

Therefore, f takes the same value on every triangle in a given equivalence class, which is to say that
f̃ : (X/∼=)→ R, which maps the equivalence class S to f(T ) where T is any triangle in S, is well-defined.

Hence f = f̃ ◦ p, where p : X → (X/∼=) maps a triangle T to its equivalence class.
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(i) We have

gcd(104, 950) = gcd(950− 9 · 104, 104) = gcd(14, 104) = gcd(104− 7 · 14, 14) = gcd(6, 14)

= gcd(14− 2 · 6, 6) = gcd(2, 6) = gcd(6− 3 · 2, 2) = gcd(0, 2) = 2

and lcm(104, 950) = 104 · 950/2 = 49400.

(ii) We have

gcd(18, 207) = gcd(207− 11 · 18, 18) = gcd(9, 18) = gcd(18− 2 · 9, 9) = gcd(0, 9) = 9

and lcm(18, 207) = 18 · 207/9 = 414.
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