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This is an equivalence relation.

e R is reflexive: xRz for any x € Z, since © + = = 2z is even for any x € Z.
e R is symmetric: if xRy, then yRz, since addition is commutative.
e R is transitive: if xRy and yRz, then x +y and y + z are even, sox +z = (z +y) + (y + 2) — 2y is
a sum of even numbers and is thus even, so zRz.
The equivalence classes are {even integers} and {odd integers}.
This is not an equivalence relation.
e R is not reflexive: in fact, there is no « € Z for which 2Rz, since x + x = 2z is even (i.e., not odd)
for any = € Z.
e R is symmetric: if xRy, then yRx, since addition is commutative.
e R is not transitive: if zRy and yRz, then x + y and y + z are odd, sox + 2z = (z+y) + (y + 2) — 2y

is a sum of two odd numbers and an even number and is thus even, so zRz.

This is an equivalence relation. [Recall that a rotation in R can be represented by a 3 x 3 matrix M
which satisfies MT = M1 and det M = 1]

e R is reflexive: zRx for any z € R3, since I3 is a rotation matrix which maps x to .

e R is symmetric: if M is a rotation matrix which maps x to y, then M ! is a matrix which maps y to z,
and M~! is a rotation because (M~1)T = (MT)~? = (M~1)~! and det (M) = (det M)~ = 1.
Hence 2Ry implies y Rz for any x, y € R3.

e R is transitive: if M; is a rotation matrix which maps = to y and M, is a rotation matrix which
maps y to z, then their product MsM; is a matrix which maps = to z, and MM, is a rotation
because (Mo My)" = MM = M7 Myt = (MyM;)~" and det (MyM;) = (det Ms)(det M) = 1.
Hence for any z, y, 2 € R3, if xRy and yRz, then zRz.

The equivalence classes are the spheres {x € R® : |z| = r} for each non-negative real number r. [This
follows from the fact that any unit vector u can be extended to an orthonormal basis {u, v, w} for R3
(simply choose any unit vector v orthogonal to u and let w be the cross product u x v); then the matrix
with columns u, v, w is a rotation which maps (1, 0, 0) to u, and now a rotation which maps vy to va,
where |v1| = |vz| = r, is found by composing the inverse of a rotation which maps (1, 0, 0) to 2v; with
a rotation which maps (1, 0, 0) to vy

This is not an equivalence relation.

o R is reflexive: xRz for any x € R, since x — x = 0 = 02 is the square of a real number.

e R is not symmetric: we have 1R0 since 1 —0 =1 =12, but 0R 1 since 0 — 1 = —1 is not the square
of a real number.

e R is transitive: if zRy and yRz, then x —y and y — z are non-negative, so x — 2z = (z —y) + (y — 2)
is non-negative, so R z.
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For ease of notation define the function I : X — R given by f — fo x)dz, so that fRg iff I(f) = I(g).
We see that R is an equivalence relation on X because ‘=’ is an equivalence relation on R:

e R is reflexive: fRf for any f € X, since I(f) = I(f).

e R is symmetric: if fRg, then I(f) = I(g), so I(g) = I(f), and thus gRf.

e R is transitive: if fRg and gRh, then I(f) = I(g) and I(g) = I(h), so I(f) = I(h), and thus fRh.

The equivalence classes are the sets I=1(r) := {f € X : I(f) = r} for each r € R. Note that I~ ( ) is
non-empty for each r € R because the constant function f, : [0, 1] — R, given by f.(z) = r, is in I=1(r).
The set of equivalence classes is thus X/R = {I7'(r) : r € R}.

The natural bijection F from R to X/R = {I~1(r) : r € R} is given by 7+ I~1(r).

[The inverse bijection F~1 from X/R to R is given by S ~— I(s), where s is any function in S, which is
well-defined by the definition of X/R. Observe that, analogously to problem 5(b), we can write I = F~1op,
where p: X — X/R maps a function to its equivalence class.]
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(i) If a, b € Z are such that [a]nm = [b]nm, then by definition a — b is a multiple of nm. Any multiple of nm
is a multiple of m, so a — b is a multiple of m, and thus [a],,, = [b]n. Hence f is well-defined.

(ii) For each residue class [a],, € Z., we have f([a]nm) = [a]m, so f is surjective.
(iii) As in problem 2, ‘~y’ is an equivalence relation on Z,,, because ‘=’ 1is an equivalence relation on Z,,:

o ~y is reflexive: & ~yx for any « € Zy,,, since f(x) = f(x).
o ~y is symmetric: if x ~;y, then f(x) = f(y), so f(y) = f(x), and thus y ~x.
o ~y is transitive: if & ~yy and y ~y z, then f(z) = f(y) and f(y) = f(2), so f(x) = f(2), so & ~y 2.

For each 0 < a < m, there is an equivalence class {[a+km]pm : 0 < k < n} C Zp,, containing n elements.
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(a) In Z7: [0]* = [0]; [1]?> = [6]* = [1]; [2]* = [5]* = [4]; [3]* = [4]* = [2], so the squares are [0], [1], [2], [4].
(b) In Zs: [14] + [33] = [47) = [6] and [7] - [8] = [56] = [15].

(¢) In Zyp: 12-12 =2-2 =4 (mod 10) and 1074+ 413 = 7+ 3 = 10 = 0 (mod 10).
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(a) Recall (from the law of cosines) that two triangles are congruent iff they have the same three side lengths.
Thus, define the function g : X — R3, which maps a triangle T € X to its three side lengths (a, b, c)
(say, in non-descending order). Then Ty = Ty iff g(T1) = g(T%).

Thus, as before, ‘22’ is an equivalence relation on X because ‘=" is an equivalence relation on R3.

(b) We know that congruent triangles have equal areas; that is, if T} = Ts, then f(T1) = f(T2).

Therefore, f takes the same value on every triangle in a given equivalence class, which is to say that
f:(X/=) = R, which maps the equivalence class S to f(T) where T is any triangle in S, is well-defined.

Hence f = f op, where p: X — (X/2) maps a triangle T to its equivalence class.
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(i) We have

ged (104, 950) = ged(950 — 9 - 104, 104) = ged(14, 104) = ged(104 — 7- 14, 14) = ged(6, 14)
= ged(14 —2-6, 6) = ged(2, 6) = ged(6 — 3 -2, 2) = ged(0, 2) = 2

and lem(104, 950) = 104 - 950/ 2 = 49400.
(ii) We have
ged(18, 207) = ged(207 — 11 - 18, 18) = ged(9, 18) = ged(18 —2-9, 9) = ged(0,9) =9

and lem(18, 207) = 18- 207/9 = 414.



