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First we claim the following:

Claim: Let H be a group of order pk, where k > 1. Then H is not simple.

Proof: Consider Z(H), the center of H; we know Z(H) is a normal subgroup of H. By the class equation,

|H| = |Z(H)| +
∑

A [H : CH(A)]

where A runs over the non-singleton conjugacy classes of H, and CH(A) is the centralizer in H of A.
For each A, we have [H : CH(A)] divides |H| = pk, so p divides [H : CH(A)]. Since p divides |H|,
we see from the class equation that p must divide |Z(H)|; that is, Z(H) 6= {1}.
This leaves two possibilities: either {1} ( Z(H) ( H, or Z(H) = H.

In the former case, Z(H) is a normal subgroup of H which is neither {1} nor H, so H is not simple.

In the latter case, H is abelian. The fact that |H| = pk with k > 1 guarantees H has a subgroup
which is neither {1} nor H. In an abelian group, any subgroup is normal; so H is not simple.

Hence in either case H is not simple. //

Now, for a group G of order pr, let G = Hn ) Hn−1 ) · · · ) H1 ) H0 = {1} be any composition series.

For any i = 1, . . . , n, we know |Hi|, |Hi−1| divide |G| = pr and are thus powers of p; then so is [Hi : Hi−1].
Then Hi/Hi−1 is a simple group of order pk for some k > 0, so by the Claim, we have k = 1; so Hi/Hi−1
has order p, and is therefore isomorphic to Zp.

Hence every composition factor of G is isomorphic to Zp. There must be r such factors. �
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§13.3, exercise 4

a) A composition series for Zn corresponds naturally to the prime factorization of n.

For Z12, the composition series are

Z12 ) 〈2〉 ) 〈4〉 ) {0}
Z12 ) 〈2〉 ) 〈6〉 ) {0}
Z12 ) 〈3〉 ) 〈6〉 ) {0}

b) For Z48, the composition series are

Z48 ) 〈2〉 ) 〈4〉 ) 〈8〉 ) 〈16〉 ) {0}
Z48 ) 〈2〉 ) 〈4〉 ) 〈8〉 ) 〈24〉 ) {0}
Z48 ) 〈2〉 ) 〈4〉 ) 〈12〉 ) 〈24〉 ) {0}
Z48 ) 〈2〉 ) 〈6〉 ) 〈12〉 ) 〈24〉 ) {0}
Z48 ) 〈3〉 ) 〈6〉 ) 〈12〉 ) 〈24〉 ) {0}
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c) The subgroups of Q8 are {1}, 〈−1〉, 〈i〉, 〈j〉, 〈k〉, Q8, all of which are normal in Q8. For each of these we
need to check whether the quotient group is simple and, if so, build the composition series from there.

The composition series are

Q8 ) 〈i〉 ) 〈−1〉 ) {1}
Q8 ) 〈j〉 ) 〈−1〉 ) {1}
Q8 ) 〈k〉 ) 〈−1〉 ) {1}

d) The normal subgroups of D4
..= 〈r, s | r4 = s2 = id, srs−1 = r−1〉 are {1}, 〈r2〉, 〈r〉, 〈s, r2〉, 〈sr, sr3〉, D4.

The composition series are

D4 ) 〈r〉 ) 〈r2〉 ) {1}
D4 ) 〈s, r2〉 ) 〈s〉 ) {1}
D4 ) 〈s, r2〉 ) 〈r2〉 ) {1}
D4 ) 〈s, r2〉 ) 〈sr2〉 ) {1}
D4 ) 〈sr, sr3〉 ) 〈sr〉 ) {1}
D4 ) 〈sr, sr3〉 ) 〈sr3〉 ) {1}
D4 ) 〈sr, sr3〉 ) 〈r2〉 ) {1}

e) The normal subgroups of S3 are {id}, A3, S3, and the normal subgroups of Z4 are {0}, 〈2〉, Z4.

The composition series are

S3 × Z4 ) S3 ×〈2〉 ) S3 ×{0} ) A3 ×{0} ) {id}×{0}
S3 × Z4 ) S3 ×〈2〉 ) A3 ×〈2〉 ) A3 ×{0} ) {id}×{0}
S3 × Z4 ) S3 ×〈2〉 ) A3 ×〈2〉 ) {id} ×〈2〉 ) {id}×{0}
S3 × Z4 ) A3 × Z4 ) A3 ×〈2〉 ) A3 ×{0} ) {id}×{0}
S3 × Z4 ) A3 × Z4 ) A3 ×〈2〉 ) {id} ×〈2〉 ) {id}×{0}
S3 × Z4 ) A3 × Z4 ) {id} × Z4 ) {id} ×〈2〉 ) {id}×{0}

f) The normal subgroups of S4 are {id}, K (the subgroup of all products of two disjoint 2-cycles), A4, S4.

The composition series are

S4 ) A4 ) K ) 〈(12)(34)〉 ) {id}
S4 ) A4 ) K ) 〈(13)(24)〉 ) {id}
S4 ) A4 ) K ) 〈(14)(23)〉 ) {id}

[Remark : All of the factor groups are abelian, which means S4 is solvable. In Galois theory one uses this
to show that every degree-4 polynomial equation with rational coefficients is solvable by radicals.]

g) Knowing that An is simple for n ≥ 5, we see that the only composition series of Sn is

Sn ) An ) {id}

[Remark : This means Sn is not solvable for n ≥ 5; and in general, degree-n polynomial equations are not
solvable by radicals.]

[Note: The Jordan-Hölder theorem states that for any finite group, the composition series are isomorphic,
in the sense that the set of composition factors is the same up to ordering. One checks that this is true for
the groups above.]
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h) We claim that there is no composition series for Q.

Suppose Q ) H1 ) · · · ) Hn ) {0} is a composition series. To derive a contradiction, we construct a
subgroup Hn+1 of Hn which is neither {0} or Hn; since Q is abelian, any subgroup is a normal subgroup.
To do this, choose some non-zero x ∈ Hn and consider two cases:

If x/m ∈ Hn for all non-zero m ∈ Z, then Hn must be the entire group Q, in which case we let Hn+1
..= Z.

Otherwise, there exists a non-zero m ∈ Z with x/m 6∈ Hn. Define Hn+1
..= {mh : h ∈ Hn}. This is a

subgroup of Hn since mh ∈ Hn for any h ∈ Hn; and Hn+1 6= Hn, since x ∈ Hn but x 6∈ Hn+1.

Thus, in either case we have constructed a subgroup Hn+1 with Hn ) Hn+1 ) {0}, and we have the
desired contradiction. Hence our supposition is false and Q has no composition series. �

§13.3, exercise 12

Given a group G and a normal subgroup N , the correspondence theorem states that there is a one-to-one
correspondence between subgroups H ⊆ N and subgroups N ⊆ H ′ ⊆ G.

Moreover, H1, H2 ⊆ N satisfy H1 E H2 if and only if the corresponding N ⊆ H ′1, H ′2 ⊆ G satisfy H ′1 E H ′2,
in which case H2/H1

∼= H ′2/H
′
1.

Now suppose N ⊇ H1 ⊇ · · · ⊇ Hr−1 ⊇ {1} and G/N ⊇ G1 ⊇ · · · ⊇ Gs−1 ⊇ {1} are composition series for
N and G/N , respectively. Then we can use the correspondence theorem to lift the composition series for N
to get G ⊇ H ′1 ⊇ · · · ⊇ H ′r−1 ⊇ G/N . Then a composition series for G is

G ⊇ H ′1 ⊇ · · · ⊇ H ′r−1 ⊇ G/N ⊇ G1 ⊇ · · · ⊇ Gs−1 ⊇ {1}

The first r composition factors are isomorphic to the composition factors of N ; the remaining s composition
factors are the composition factors of G/N . Since these are all abelian (as N and G/N are solvable), we
conclude that G is solvable. �
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Let G be a solvable group, with G ⊇ G1 ⊇ · · · ⊇ Gn ⊇ {1} be a subnormal series for G, and let H ⊆ G be
any subgroup.

Define Hi
..= (H ∩Gi) for i = 1, . . . , n; then Hi ⊆ Gi is a subgroup. Also, Gi+1 E Gi is a normal subgroup,

so by the second isomorphism theorem, (Hi ∩ Gi+1) = Hi+1 is a normal subgroup of Hi, and Gi+1 is a
normal subgroup of HiGi+1 (which is a subgroup of Gi); and Hi/Hi+1

∼= HiGi+1/Gi+1 ⊆ Gi/Gi+1. Since
G is solvable, Gi/Gi+1 is an abelian group, so Hi/Hi+1 is also an abelian group.

Hence H ⊇ H1 ⊇ · · · ⊇ Hn ⊇ {1} is a subnormal series for H that shows that H is solvable. �
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An example is S3. The factor groups in the subnormal series S3 ) A3 ) {id} are, respectively, isomorphic
to Z2 and Z3, which are abelian, so S3 is solvable; but the center of S3 is trivial. �
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a) To show that H ⊆ GL3(R) is a subgroup, we verify that H is closed under multiplication and contains
the identity and inverses:

• H is closed under multiplication, since u(x1, y1, z1)u(x2, y2, z2) = u(x1+x2, y1+y2, x1y2+z1+z2).

• H contains id, since the identity of GL3(R) is u(0, 0, 0).

• H contains inverses, since (using the above) the inverse of u(x, y, z) is u(−x, −y, −z + xy).

Hence H ⊆ GL3(R) is a subgroup.
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b) Suppose u(x0, y0, z0) ∈ Z(H), and let u(x, y, z) ∈ H be any element. Then

u(x0, y0, z0)u(x, y, z) = u(x0 + x, y0 + y, x0y + z0 + z)

and u(x, y, z)u(x0, y0, z0) = u(x + x0, y + y0, xy0 + z + z0)

are equal if and only if x0y = xy0. Since x, y ∈ R are arbitrary, we must have x0 = y0 = 0.

Hence the center of H is Z(H) = {u(0, 0, z) : z ∈ R}.

c) The descending central series is given by H =.. H0 ⊇ H1 ⊇ H2 ⊇ · · · , where Hi = [Hi−1, H].

Thus, H1 = [H, H]. The commutator of u(x1, y1, z1) and u(x2, y2, z2) is

u(x1, y1, z1)u(x2, y2, z2)u(x1, y1, z1)−1u(x2, y2, z2)−1

= u(x1, y1, z1)u(x2, y2, z2)u(−x1, −y1, −z1 + x1y1)u(−x2, −y2, −z2 + x2y2)

= u(x1 + x2, y1 + y2, z1 + z2 + x1y2)u(−x1 − x2, −y1 − y2, −z1 − z2 + x1y1 + x1y2 + x2y2)

= u(0, 0, 2x1y2 + x1y1 + x2y2 + (x1 + x2)(−y1 − y2))

= u(0, 0, x1y2 − x2y1)

so the commutator is always in Z(H). Moreover, any element of Z(H) can be realized as a commutator,
for example, by setting x1 = 1 and y1 = 0. Since Z(H) is a group, this means [H, H] = Z(H).

Now, since any element of Z(H) commutes with any element of H, the commutator subgroup [Z(H), H]
is trivial. Hence H is nilpotent and the descending central series is H ⊇ Z(H) ⊇ {id}.

d) Possible answers include H0 = {id}, H1 = {u(0, 0, q) : q ∈ Q}, H2 = {u(x, x, z) : x, z ∈ R}. �
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