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The alternating group An is simple

We have already proved the case n = 5 of the following theorem:

Theorem (Camille Jordan, 1875)
For any n ≥ 5, the alternating group An ⊂ Sn is a simple group of
order n!

2 .
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Some conjugacy classes in An

Lemma
The group An is generated by 3-cycles.

Proof: We know that An is generated by products σ · τ where σ and τ
are transpositions. So it suffices to show that any such product is also
a product of 3-cycles.
First case: σ = (ab), τ = (cd) disjoint. Then

(ab)(cd) = (dac)(abd)

Indeed, the second product is
(

a b c d
c b d a

)
·
(

a b c d
b d c a

)
, so

a→ b→ b; b→ d → a; c→ c→ d; d → a→ c. And this is exactly
(ab)(cd).
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Some conjugacy classes in An

Second case: σ = (ab), τ = (ac), c 6= b. Then

(ab)(ac) = (acb).

If {a, b} = {c, d} then (ab)(cd) = (ab)2 is the identity. So there is no
third case.
This completes the proof.
Note: this is a proof inside A4.
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More conjugacy classes in An

Lemma
Suppose n ≥ 5. Then An is generated by elements of the form σ · τ ,
where σ and τ are disjoint transpositions.

Proof.
By the previous result, we need to show that any 3-cycle in An can be
written as a product g1 · g2, where g1 = σ1 · τ1; g2 = σ2 · τ2, in each
case disjoint.
This is a calculation in S5:

(abc) = [(ab)(de)][(de)(bc)].

Check: the right hand side b→ c→ c; c→ b→ a; d → e→ d;
e→ d → e; a→ a→ b.
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All 3 cycles are conjugate in An, n ≥ 5

Lemma
Let n ≥ 5. Then any two 3-cycles in An are conjugate in An.

Proof.
Let g = (abc), h = (ijk). We know there is σ ∈ Sn such that

σgσ−1 = h.

If σ is even, we’re done. If not, σ is odd. So choose d, e /∈ {a, b, c},
and let σ′ = σ · (de). This is an element of An, and (de) commutes
with g. So

σ′gσ′,−1 = σgσ−1 = h.

.

Note that (123) and (132) = (123)−1 are not conjugate in A4.
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Conjugacy in A6

Lemma
All permutations with cycle decomposition (4, 2) are conjugate in A6.

It’s the same argument: if g = (abcd)(ef ) is conjugate to h in S6 by τ ,
then either τ is even or τ · (ef ) is. And

τ · (ef )g(τ · (ef ))−1 = τgτ−1 = h.
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Strategy of the proof

We assume n ≥ 5. Let N ⊂ An be a normal subgroup. Suppose N
contains a 3-cycle. Then N contains every 3-cycle, because N is
normal and n ≥ 5. But then N generates An, so N = An.
We thus have to prove that any normal subgroup of An contains a
3-cycle.
Keith Conrad’s home page at the University of Connecticut has a
9-page note with six different proofs of this.
https://kconrad.math.uconn.edu/blurbs/
grouptheory/Ansimple.pdf.
I present the shortest one.
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Conjugacy classes in S6

The conjugacy classes in S6 are determined by their cycle
decomposition, The partitions of 6 are

6 = 6; a 6-cycle is the product of 5 transpositions, hence is odd.

6 = 5 + 1; a 5-cycle is even.

6 = 4 + 2; a 3-cycle is the product of 3 transpositions, hence its
product with a disjoint transposition is even.

6 = 3 + 3: even.

6 = 3 + 2 + 1: odd; 6 = 3 + 1 + 1 + 1: even

6 = 2 + 2 + 2: odd.

6 = 2 + 2 + 1 + 1: even; 6 = 2 + 1 + 1 + 1: odd

6 = 1 + 1 + 1 + 1 + 1 + 1; the identity is even.
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Conjugacy classes in A6

There are thus 6 S6-conjugacy classes contained in A6, listed with the
number of elements.

6 = 1 + 1 + 1 + 1 + 1 + 1; (1)

6 = 3 + 3; 2 ·
(

6
3

)
= 40*.

6 = 5 + 1; (6 · 4! = 144).

6 = 4 + 2; (
(

6
4

)
· 3! = 90)

6 = 3 + 1 + 1 + 1: (
(

6
3

)
· 2 = 40)

6 = 2 + 2 + 1 + 1: (1
2(

(
6
2

)
)(

(
4
2

)
) = 45

And 1 + 40 + 144 + 90 + 40 + 45 = 360 = |A6|.
*20 choices for {a, b, c}, then (abc)(def ) has four signs; but each one
is counted twice because (abc)(def ) = (def )(abc).
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Conjugacy classes in A6

As in the case of A5, we see that 144 does not divide 360, so there are
two conjugacy classes of 5-cycles, each with 72 elements.
On the other hand, we have seen all 3 cycles, and all (4, 2)
permutations, are conjugate in A6. Thus the possible sizes of
conjugacy classes (without checking the (3, 3) permutations are all
conjugate) are:

(1, 45, 72, 72, 90, 40, 40); (1, 45, 72, 72, 90, 20, 20, 40)

The divisors of 360 = 23 · 32 · 5 with more than 21 elements (we need
the identity) are

24, 30, 36, 40, 45, 60, 72, 90, 120, 180.

The only odd one is 45, but we need the identity. Any even order must
be bigger than 46, thus at least 66. But we cannot reach any of
72, 90, 120, 180 as a sum of a subset of the above numbers.
So A6 is simple.
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Conjugacy classes in A5

Corollary
There are two conjugacy classes of 5-cycles in A5, and one conjugacy
class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form
more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a
single conjugacy class.
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Simplicity of An, n ≥ 7

Let n ≥ 7 and let N ⊂ An be a normal subgroup. It suffices to show
that N contains a 3 cycle. Let σ 6= e be an element of N. Up to
relabeling the numbers, we may assume σ(1) 6= 1. Suppose
σ(1) ∈ {i, j, k} with all the i, j, k distinct from 1 and let
τ = (ijk) ∈ An. Then

τστ−1(1) = τ(σ(1)) 6= σ(1).

So τστ−1 6= σ and both are in N.
Let g = τστ−1σ−1 6= e. We see that g =∈ N. But g = τ · στ−1σ−1

is a product of two 3-cycles, so it moves at most six numbers.
Thus g belongs to a subgroup H ⊂ An isomorphic to S6; but g is even,
so it belongs to a subgroup isomorphic to A6. Moreover, g ∈ H ∩ N,
which is normal in H. Since H is simple, H ∩ N = H.
Thus N ⊃ H, so N contains a 3-cycle.
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