CLASSIFICATION OF FINITE ABELIAN GROUPS

1. THE MAIN THEOREM

Theorem 1.1. Let A be a finite abelian group. There is a sequence of prime
numbers

P <p2<---<py

(not necessarily all distinct) and a sequence of positive integers
ai, az,...,0an
such that A is isomorphic to the direct product
A —)Zptln X Zpgz X o X Zpgln.

In particular
n
Al = [T #i
i=n

Example 1.2. We can classify abelian groups of order 144 = 2* x 32. Here
are the possibilities, with the partitions of the powers of 2 and 3 on the right:
Zo X Lo X Lo X Loy XLy *xZLs; (4,2)=(1+1+1+1,141)

Lo X Lo X Ly X Ly X L3y (4,2)=(14+1+2,14+1)

Ly X Ty XLy xXZLs; (4,2)=(2+2,1+1)

Zo X Zg x Ly X Z3; (4,2)=(1+3,1+1)

Zig X L3 x Z3; (4,2) = (4,14 1)

Lo X Loy X Lo X Ly X Lg; (4,2)=(14+1+1+4+1,2)

Lo X Loy X Ly X Lg; (4,2) =(1+1+42,2)

Ly x Ly X Lg; (4,2) =(242,2)

Zo x Lg X ZLg; (4,2) = (1+3,2)

Zi6 X Ly cyclic, isomorphic to Zi44; (4,2) = (4,2).

There are 10 non-isomorphic abelian groups of order 144.

Theorem 1.1 can be broken down into two theorems.
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Theorem 1.3. Let A be a finite abelian group. Let q1,...,q, be the distinct
primes dividing |A|, and say
b.
’A| = H q]‘j-
J

Then there are subgroups A; C A, j = 1,...,r, with |A;| = q?j, and an
isomorphism
A 54 x Ay x - X A,

Let p be a prime number. A finite group (abelian or not) is called a
p-group if its order is a power of p.

Theorem 1.4 (Abelian p-groups). Let p be a prime and let A be a finite
abelian group of order p” for some N > 1. Then there is a sequence of
positive integers c1 < co--- < ¢g and an isomorphism

A L)qu X ZpCQ X - X chs.

Theorem 1.3 is essentially a series of applications of the Chinese Remain-
der Theorem, and is not very hard, apart from one Key Lemma. It will be
presented in class.

Theorem 1.4 is a more complicated induction argument that needs to be
studied in order to be understood. It will be carried out in the next section.

Guide to the proof. Here is a short summary to help guide your reading
of the proof: Theorem 1.4 is obvious when the group A has order p. So we
assume it is true for abelian groups of order p* for k < N. We introduce
the notion of exponent of a finite p-group and choose an element a € A of
maximal order, which is equal to the exponent of A. We then show that there
is a subgroup H C A of order p such that H N (a) contains just the identity.
It follows that the image a € A/H of a is of maximal order — in other words,
its order is the exponent of A/H — and since |A/H| < |A|, the induction step
implies that the theorem holds for A/H. Thus A/H —~+{a) x B’ for some
B’, and a short argument then allows us to conclude that A —(a) x B,
where B = B’ is the subgroup of A corresponding to the subgroup B’ of
A/H.

This completes the proof of the Lemma, and then a second application of
the induction step, this time to B, completes the proof of Theorem 1.4.

2. THE INDUCTION STEP (A VERY LONG LEMMA)

Let p and A be as in Theorem 1.4. We prove it by induction on the integer
N, of course. If N =1 then |A| = p. In that case we know that A is a cyclic
group isomorphic to Z,. So we assume the theorem is known for groups of
order p* with k < N. The induction step is to show that it is then known
when |A| = p¥.
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Definition 2.1. Let A be a finite p-group. The exponent of A is the largest
integer m such that there is an element a € A of order exactly p™. In other
words a?” = e but o #e.

Thus if A is cyclic of order p, the exponent of A is N: a generator has
order p" but not p’V . We need the following facts about the exponent.

Fact 2.2. Let A be a finite p-group, H C A a normal subgroup. Suppose
the exponent of A is m. Then the exponent of A/H is < m.

Proof. Let m: A — A/H be the reduction map. Every element x € A/H is
of the form 7(a) for some element a € A. We know that a? = e for some
r < m. It follows that

2 = (r(a))? =w(a”") =7(e) =e.

So 2P™ = e for all x € A/H which implies that the exponent of A/H is at
most m. U

Fact 2.3. Let A be a finite p-group, H C A a normal subgroup, a € A.
Suppose

(a) N H = {e},
where (a) C A is the cyclic subgroup generated by a. Suppose a is of order
p™. Letm: A — A/H be the reduction map and let a = w(a) € A/H. Then
a is of order p™ in A/H.

Proof. In any case a?" = e for the reason already seen in the proof of Fact
2.2. Suppose a is of order less than p™, say a® = e for some 1 < s < p™.
That means that m(a®) = e, or a® € kerm, which implies that a®* € H. Thus
a® € (a) N H = {e}, which implies that a® = e, and this contradicts the
assumption that a is of order p™. [l

Here is the main step in the proof.

Lemma 2.4. Let A be a finite abelian p-group of order p” and exponent
m, so that the cyclic group (a) has order p™. Let a € A be an element of
order p. Then there is a subgroup B C A such that BN {(a) = {e}, and the
inclusion of B and {(a) as subgroups of A defines an isomorphism

B x (a) —A.

Proof. This is an induction on N. If N = 1 then A is cyclic and we are
done. Suppose we know the statement for 1 < £ < N. We have already
chosen a of maximal exponent. Now we choose h € A of smallest order such
that h ¢ (a). (We will soon see that h is of order p.) If no such h exists,
then every h € A belongs to (a) and so A = (a) is cyclic, and we can take
B = {e}.

So we assume such an h exists. Let u = hP. If u = e then h has order p.
If not, then A has order p" for some r > 1, by Lagrange’s theorem, because
A is a p-group. And then w? = hP®" ™) = hP" = ¢, so u has smaller order
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than h, which by definition implies that u € (a), say u = a®, for some integer
se{l,2,...p"™ —1}. Thus h? = a®, so
(as)pmfl _ (h}p)pmfl _ hpm — e
since m is the exponent of A. It follows that a® has order strictly less than
p™, so a® is not a generator of the cyclic group (a). Thus s is divisible by p,
say s = pc. Then
h? = (a®)P = (a"“h)P =e.

Let ' = a=¢h. If b/ € (a) then so is a®h’ = h, but h was chosen not in (a),
contradiction. So h' € A is an element of order p that is not in (a). Since h
has the smallest order of elements not in (a), it follows that h has order p
after all.

Let H=<h>. Wesee H=| < h>|=p,and (a) N H = {e}, since
h ¢ (a). Consider the composite homomorphism

(a) - A — A/H.
We call this composite ¢, and write @ = ¢(a). Since (a) N H = {e}, it follows
from Fact 2.3 that a = ¢(a) has order p™.
Now it follows from Fact 2.2 that A/H has exponent at most m. But
a € A/H has order exactly p™, so A/H has exponent m. On the other hand
|A/H| has order |A|/|H| = p" /p < |A|. By induction on N, it follows that
there is a subgroup B’ C A/H such that B’ N (a) = {e} and
B’ x (a) —A/H.
In particular
|A/H| = |Al/p=1|B'|-[(@)]; |[Al=p-|B|-|(@)|=p-|B] p™
~ We know that there is a unique subgroup B’ C A containing H such that
B'/H = B’, and thus
|B'| =p-|B.
We claim that
{(a) N B" = {e}.
This implies that the homomorphism
¢ :(a)x B — A
has trivial kernel. Thus
p" = Al > [{a) x B'| = |(@)|B| =p™ - |B'| = p™ - p- |B'| = |A|.

Thus ¢’ is the isomorphism we are seeking. .
It remains to prove (a) N B’ = {e}. But if b € (a) N B’ then the coset
bH € A/H belongs to

(aH)NB'/H = (@ NB =eqp.
In other words, b € H, but b € (a), hence b = e.
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3. COMPLETION OF THE PROOF OF THEOREM 1.4

Now let A be any abelian p group. We have seen that A is isomorphic to
a product
A "3{a) x B,
where B is a subgroup of A. We can write this
A L)B X me.
Now |B| < |A], so by induction B is isomorphic to a product
B —5Zper X Lipes X -+ X Lo

where ¢; < ¢p--- < ¢s_1. Since m is the exponent of A, we know that
cs—1 < m. Thus setting c; = m, we have

A L}chl X chz X+ X ch5

and this completes the proof.



