Some group tables and group computations

The two groups of order 4 (up to isomorphism): (i) Z/4Z:
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Aside from the trivial subgroup, Z /47 has one proper subgroup of order
2: (2).

(ii) The Klein 4-group V' (isomorphic to Z/2Z x Z/2Z):
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V has three subgroups of order 2: (a), (b), and (c).

The only group, up to isomorphism, of order 5, Z/5Z:
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Z/5Z has no proper subgroups aside from the trivial subgroup.

The two groups of order 6: (i) Z/6Z:
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Z/6Z has one subgroup of order 2, namely (3), and one subgroup of
order 3, namely (2).

(ii) The group table for D3 = S3: Assume that the vertices of an
equilateral triangle are at the points p; = (1,0) = (cos0,sin0), ps =
(cos27m/3,sin27/3), and p3 = (cos4n/3,sindn/3). Let p = p1 be rota-
tion about the angle 27 /3, counterclockwise, and py = p? = p~! be rotation
about the angle 47/3, counterclockwise, or equivalently rotation by the an-
gle 27 /3, clockwise. Let 7 = 71 be reflection about the point pi, i.e. 7 fixes
p1 and interchanges po and p3, and similarly for 7, 73. Then one can check:
p171 = 73 and pa71y = 1. Clearly p? = 1 and 72 = TZ-Q =1 for all i. Hence
every element of D3 can be written as a product p®r?, where a = 0, 1,2 and
b = 0,1, and in fact this representation is unique. Also, again by checking
this directly, one can show that

Tt =TpT = 7,
which we can also write as
TP = p°T.

This equation tells us how to multiply any two elements in D3. For example,

TITy = TP*T = TppT

= p’rpr = p*p*rr = p't? = p = p1.
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D3 has one subgroup of order 3: (p1) = (p2). It has three subgroups of
order 2: (11), (m2), and (73).

The two nonabelian groups of order 8: (i) The dihedral group D4: Here
there are the four rotations 1, p = p1, p2 = p?, p3 = p?, about the angles 0,
/2 =21 /4, m = 4w /4, and 37/2 = 67 /4, and the reflections 7 = 71 and 7
about the two diagonals of a square (71 for the diagonal connecting vertices



1 and 3 and 75 connecting vertices 2 and 4) and p1, po for reflections about
the perpendicular bisectors of a pair of sides (u; for the reflection about
the line bisecting the line segments 12 and 34, and uo for the reflection
about the line bisecting the line segments 14 and 23). One can check that
pT = p17T1 = 1, p°T = pam1 = p1. The relations are p* = 1, 72 = 1, and
p1T = p~t = p?, or equivalently Tp = p?7.
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(ii) The quaternion group @, given by the following table:
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Note that there are two elements of order 4 in Dy, p; and p3, and five
elements of order 2, po, 71, T, w1, and po. In @, however, there are six
elements of order 4, +%, +j, and +k, and one element of order 2, —1. In
particular we see that Dy and @) are not isomorphic. As for subgroups, @
had three subgroups of order 4 and they are all cyclic: (i), (j), and (k).
(Note that for example (i) = (—i).) There is one subgroup of order 2: (—1).
As for Dy, there are five subgroups of order 2: (ps2), (11), (72), (u1), and
(u2). There are three subgroups of order 4. One of them is cyclic, namely
(p1) = (p3). The other two are {1, ps, 72,72} and {1, pa, 2, u2}; both are
isomorphic to the Klein 4-group V.



