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Classification of finite abelian groups

The main theorem

Theorem
Let A be a finite abelian group. There is a sequence of prime numbers

p1 ≤ p2 ≤ · · · ≤ pn

(not necessarily all distinct) and a sequence of positive integers

a1, a2, . . . , an

(in no particular order) such that A is isomorphic to the direct product

A ∼−→Zp
a1
1
× Zp

a2
2
× · · · × Zpan

n
.

In particular

|A| =
n∏

i=n

pai
i .
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Classification of finite abelian groups

Prime factors

This can be broken down into two theorems.

Theorem (Theorem 1)
Let A be a finite abelian group. Let q1, . . . , qr be the distinct primes
dividing |A|, and say

|A| =
∏

j

qbj
j .

Then there are subgroups Aj ⊆ A, j = 1, . . . , r, with |Aj| = qbj
j , and an

isomorphism
A ∼−→A1 × A2 × · · · × Ar.
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Classification of finite abelian groups

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order pN for
some N > 1. Then there is a sequence of positive integers
c1 ≤ c2 · · · ≤ cs and an isomorphism

A ∼−→Zpc1 × Zpc2 × · · · × Zpcs .

Theorem 1 is essentially a series of applications of the Chinese
Remainder Theorem, and is not very hard.
Theorem 2 is a more complicated induction argument.
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Classification of finite abelian groups

Additive notation

We will use additive notation for the abelian group A. So instead of
writing a · b we write a + b, and instead of writing am we write ma,
where m is any integer. We also write −a instead of a−1 and 0 instead
of e. Because A is abelian, we know a + b = b + a for any a, b ∈ A.

Lemma
Let A be an abelian group. Then for any m ∈ Z, the function a 7→ ma
is a homomorphism.
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Classification of finite abelian groups

Proof of the Lemma

Proof.
We need to show that, for all a, b ∈ A,

m(a + b) = ma + mb.

We prove this for m > 0 by induction; the case of m < 0 is similar.
For m = 1 there is nothing to prove. Suppose we know the equality
for m. Then

(m + 1)(a + b) = m(a + b) + (a + b) = (ma + mb) + (a + b)

by the induction hypothesis. But now by associativity

(ma + mb) + (a + b) = ma + (mb + a) + b = ma + (a + mb) + b

where the last equality is allowed because A is abelian.
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Classification of finite abelian groups

Proof of the Lemma, concluded

Proof.
So far we have

(m + 1)(a + b) = ma + (a + mb) + b.

Continuing by associativity

ma + (a + mb) + b = (ma + a) + (mb + b) = (m + 1)a + (m + 1)b

and we are done by induction.
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Classification of finite abelian groups

A Proposition

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then
there are subgroups Am,An ⊆ A such that |Am| = m, |An| = n, such
that the inclusion defines an isomorphism

An × Am
∼−→A.

Proof.
Define

mA = {ma, a ∈ A}; nA = {na, a ∈ A}.

These are subgroups because they are the images of homomorphisms.
Claim mA ∩ nA = {0}. Suppose x ∈ mA ∩ nA. Then there are
a, b ∈ A such that

x = ma = nb.
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Classification of finite abelian groups

Proof of Proposition, continued

Proof.
Since x = ma = nb, we have

mx = m2a = mnb = 0.

Similarly nx = 0.
But there are constants α, β ∈ Z such that αm + βn = 1. Thus

x = (αm + βn)x = α · mx + β · nx = 0.

So mA ∩ nA = {0} as claimed.
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Classification of finite abelian groups

Proof of Proposition, continued

Proof.
Now define An = mA, Am = nA (careful!) Inclusion defines a
homomorphism

f : An × Am → A; f ((u, v)) = u− v.

Suppose (u, v) ∈ ker f . Then u− v = 0, so u = v ∈ An ∩ Am = {0}.
Thus f is injective.
On the other hand, if a ∈ A, let αm + βn = 1 as before. Write
u = α · ma ∈ An, v = −β · na ∈ Am. Then

f ((u, v)) = α · ma− (−β · na) = (αm + βn)a = a,

so f is surjective as well. Thus f is an isomorphism.
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Classification of finite abelian groups

Proof of Proposition, continued

Proof.
We see that

nm = |A| = |An| · |Am|.

But we still need to show that |An| = n and |Am| = m. It suffices to
show that |Am| and n are relatively prime, because then n divides
nm = |An| · |Am| implies n divides |An| by Gauss’s Lemma; similarly
m divides |Am|, so we must have n = |An| and m = |Am|.
Thus suppose p|gcd(|Am|, n). Now we claim that v 7→ nv is an
automorphism of Am. Indeed, for v = nb ∈ Am, mv = mnb = 0, so

βnv = βn(nb) = αmv + βnv = v

so that v 7→ βv is the inverse automorphism. Since p|n, it follows that
for v ∈ Am, pv = 0 only if v = 0.
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Classification of finite abelian groups

A key lemma

So p is an automorphism of |Am| but p divides the order of Am. We
pause for a key lemma:

Lemma
Let B be a finite abelian group of order divisible by p. Then B
contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that pv = 0⇒ v = 0.
So the Lemma completes the proof of the Proposition.

The Lemma is true even if B is not abelian, and will be proved later.
So it can be skipped for now.
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Classification of finite abelian groups

Proof of the key lemma

Proof.
This is again an inductive proof. Say |B| = pN. If N = 1 then B is
cyclic of order p and we know the result. Suppose we know the result
for all |B| of order pk with k < N. If B has no nontrivial proper
subgroup, then B is cyclic of prime order; so B must have a proper
subgroup H ( B, |H| > 1. If p divides |H| then by induction H has a
non-zero element of order p, and we are done. So assume p does not
divide r = |H|. Since

p||B| = |H||B/H| = r · |B/H|

and p does not divide r, it follows that p||B/H|. Since |B/H| < |B|,
the induction step implies there is g ∈ B/H of order p.
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Classification of finite abelian groups

Proof of the key lemma

Proof.
Let π : B→ B/H be the quotient map, π(b) = g ∈ B/H. Thus b /∈ H
but π(pb) = pg = 0, so pb ∈ H, so rpb = 0. Let a = rb, so pa = 0.
We suppose a = 0 and derive a contradiction. Use Bezout’s relation
yet again. Since (p, r) = 1 there are integers γ, δ such that

b = (γp + δr)b = γpb + δa = γpb + 0 ∈ H,

contradiction.
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Classification of finite abelian groups

The general case

Corollary

Suppose A is an abelian group of order
∏r

i=1 mi, where (mi,mj) = 1
whenever i 6= j. Then there are subgroups Ami , i = 1, . . . , r ⊆ A such
that |Ami | = mi, and such that the inclusion defines an isomorphism

Am1 × Am2 × · · · × Amr
∼−→A.

Proof.

We complete the proof by induction on n. Write M =
∏n−1

i=1 mi, so
that |A| = M · mi. By the Proposition we have an isomorphism

AM × Amr
∼−→A.

Now apply the induction step to write AM
∼−→

∏r−1
i=1 Ami . So

A ∼−→AM × Amr
∼−→Am1 × Am2 × · · · × Amr .
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Classification of finite abelian groups

Completion of the proof of Theorem 1

Recall the statement: Let A be a finite abelian group. Let q1, . . . , qr be
the distinct primes dividing |A|, and say

|A| =
∏

j

qbj
j .

Then there are subgroups Aj ⊆ A, j = 1, . . . , r, with |Aj| = qbj
j , and an

isomorphism
A ∼−→A1 × A2 × · · · × Ar.

Write mj = qbj
j , j = 1, . . . , r. Then (mj,mi) = 1 whenever i 6= j. We

apply the Corollary. Thus there are subgroups Amj , j = 1, . . . , r, with

|Amj | = mj = qbj
j , such that

A ∼−→Am1 × Am2 × · · · × Amr .

Set Aj = Amj and we are done.
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