
SYMMETRIES OF REGULAR POLYHEDRA

1. The cube (regular hexahedron)

Any polyhedron with six faces is called a hexahedron; the cube is the
(only) one with the property that all of its faces are polygons with the same
angles and side lengths. The cube also has eight vertices (corners) and twelve
1-dimensional edges. You can check for yourself that Euler’s formula holds
for the cube:

V − E + F = 2

where V is the number of vertices, E the number of edges, and F is the
number of faces. This is a purely topological property of any closed convex
polyhedron; it has nothing to do with lengths or angles or even the number
of faces.

We call the cube C and we let R denote the group of rotations of C. The
elements of R are compositions of rotations around one of the axes between
the midpoints of opposite faces. If we assume the vertices of C are the points

(1, 1, 1), (1, 1,−1),(1,−1, 1), (−1, 1, 1),

(1,−1,−1), (−1, 1,−1),(−1,−1, 1), (−1,−1,−1)

in Euclidean space, then the center is the origin (0, 0, 0). The group R then
has three generators: the rotations of 90◦ (clockwise, to be precise) around
the x, y, and z-axes. Each of these generators is of order 4 (rotate 90◦ four
times and you are back where you started.)

We prove in a moment that R is a group of order 24. By way of contrast,
let Rb be the group of operations on the Rubik’s cube. It has six generators
– the 90◦ rotations around each of the six faces and its order is

43252003274489856000 = 227314537211

which seems ridiculously large until you realize that you can construct a
very large non-abelian group with just two generators.

The group R permutes the faces transitively: given any two faces A and
B, there is a rotation r such that r(A) = B. This shows that R has at least
6 elements, which is the number of faces; but it also permutes the vertices
and the edges transitively (it’s easier to convince yourself with your own
cube), so |R| ≥ 12. And it permutes the diagonals of all six faces (of which
there are 12) and the lines between midpoints of opposing edges (see Figure
5.29 on p. 72 of Judson’s book) as well as the long diagonals, such as the
one between (−1,−1,−1) and (1, 1, 1) (see Figure 5.28 on p. 72 of Judson’s
book).

Proposition 1.1. The group |R| has order 24.
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Proof. We use the action on the six faces. Let’s call them F , B, U , D,
L, and r. For every face X, let RX denote the subset of σ ∈ R such that
σ(U) = X. Then RU is the subgroup of rotations around the z axis (U
stands for “up”), and we will write H = RU to avoid confusion.

For each X, choose rX ∈ RX ; so rX(U) = X. Suppose r′ is another
element of RX . Thus

r′(U) = X = rX(U)

which implies
(r−1X · r

′)(U) = U ;

in other words r′ ∈ rX ·H. Thus for any X, RX is the left coset rX ·H.
It follows that |RX | = |H| = 4 for each X. On the other hand,

R =
∐
X

RX = RF

∐
RB

∐
RU

∐
RD

∐
RL

∐
Rr

and thus
|R| =

∑
X

|RX | = 4 + 4 + 4 + 4 + 4 + 4 = 24,

which concludes the proof. �

Now we think of the symmetric group S4 as the group of permutations
of the long diagonals. The group R permutes the long diagonals, and this
defines a homomorphism

h : R → S4.

Proposition 1.2. The homomorphism h is an isomorphism.

Proof. Since both groups have order 24, it suffices to show that h is surjec-
tive. (One could also try to prove that it’s injective, but this requires more
visual imagination.) The proof in Judson’s book shows that the image of
h contains a transposition, which is obtained by rotating around the line
between opposite midpoints. But this is also tricky to visualize. Here is an
easier argument. Let J = h(R) be the image of R.

Step 1. Show that J contains all the 4-cycles.
Step 2. Show that J contains all the products of two disjoint 2-cycles.
Step 3. Show that J contains at least two disjoint 3-cycles.
Step 4. Count.

Step 1 is easy. Any 4-cycle can be written to start with 1, so in the
form

(
1 a b c

)
, where (a, b, c) is some permutation of (2, 3, 4). There are

six such permutations, and thus six 4-cycles. On the other hand, rotation
clockwise 90◦ around each of the axes defines three 4-cycles, and rotation
counterclockwise defines the other 3. (Here you should check with a cube,
with the long diagonals numbered as in Figure 5.28 of Judson’s book, that
these are all distinct.)

Step 2 is just as easy: the square of any 90◦ rotation is a 180◦ rotation,
which exchanges opposite corners. Again, checking on the cube, you see
that all three such elements of S4 are contained in J .
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Step 3 can be computed: if σ =
(
1 2 3 4

)
and τ =

(
1 4 2 3

)
are

two 4-cycles, then στ =
(
2 4 3

)
; thus R contains both

(
2 4 3

)
and its

inverse
(
2 3 4

)
. Similarly,(
1 2 3 4

)
·
(
1 3 2 4

)
=
(
1 4 2

)
Now we see that J contains six 4-cycles, three elements of the form

(ab)(cd) with a, b, c, and d all distinct; and at least four 3-cycles, as well as
the identity. Thus |J | ≥ 6 + 3 + 4 + 1 = 14 and the only such number that
divides 24 is 24.

�

The octahedron. The regular octahedron (eight-faced polyhedron) has
six vertices and eight faces, so by Euler’s formula it must have twelve edges.
You can construct a regular octahedron starting with a cube as follows. The
vertices are the centers of the six faces of the cube. There are fifteen ways
to choose two out of six vertices. Draw the corresponding fifteen segments
connecting pairs of vertices, then remove the three that join opposite faces of
the cube. Twelve edges remain, forming eight triangles. Fill in the triangles:
this is the octahedron. Since every rotation of the cube preserves the vertices
of the octahedron, we see that S4 is a subgroup of the group of rotations of
the octahedron; but it is easy to see that every rotation of the octahedron
also preserves the faces of the cube, so the two figures have the same rotation
group.

The symmetries of the remaining regular polyhedra are discussed in the
notes http://www.math.columbia.edu/~harris/website/content/2-courses1/
1-mathematics-gu4041-spring-2020/platonic-solids.pdf.


