Simplicity of A_{5}

GU4041

Columbia University

April 11, 2020

The alternating group A_{5} is simple

Theorem
The alternating group $A_{5} \subset S_{5}$ is a simple group of order 60 .
In fact we have the general theorem:
Theorem
For any $n \geq 5$, the alternating group $A_{n} \subset S_{n}$ is a simple group of order $\frac{n!}{2}$.

The alternating group A_{5} is simple

Theorem

The alternating group $A_{5} \subset S_{5}$ is a simple group of order 60 .
In fact we have the general theorem:
Theorem
For any $n \geq 5$, the alternating group $A_{n} \subset S_{n}$ is a simple group of order $\frac{n!}{2}$.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5-cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4 -cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$ a 3 -cycle is even
- $5=2+2+1$; an even product of two disjoint 2-cycles.
- $5=2+1+1+1$; a 2-cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4 -cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2 -cycles.
- $5=2+1+1+1$; a 2-cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4-cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2-cycles.
- $5=2+1+1+1$; a 2 -cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4-cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2-cycles.
- $5=2+1+1+1$; a 2 -cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4-cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2-cycles.
- $5=2+1+1+1$; a 2 -cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4 -cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2-cycles.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4 -cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2-cycles.
- $5=2+1+1+1$; a 2-cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in S_{5}

The conjugacy classes in S_{5} are determined by their cycle decomposition, The partitions of 5 are

- $5=5$; a 5 -cycle is the product of 4 transpositions, hence is even.
- $5=4+1$; a 4-cycle is the product of 3 transpositions, hence is odd.
- $5=3+2$; a 3-cycle is the product of 2 transpositions, hence its product with a disjoint transposition is odd.
- $5=3+1+1$; a 3-cycle is even.
- $5=2+2+1$; an even product of two disjoint 2-cycles.
- $5=2+1+1+1$; a 2-cycle is odd.
- $5=1+1+1+1+1$; the identity is even.

Conjugacy classes in A_{5}

There are thus $4 S_{5}$-conjugacy classes contained in A_{5} :

- $5=5$, with $4!=24$ elements (fix the first one, then the next four can be chosen freely).
- $5=3+1+1$; with $\binom{5}{3}=10$ triples, plus their inverses, for 20 elements
- $5=2+2+1$; with 5 choices of the fixed element, $\times\binom{ 4}{2}=6$,
for 30 pairs $(a b)(c d)$, divided by 2 because
$(a b)(c d)=(c d)(a b)$, to give 15 elements.
- $5=1+1+1+1+1$ for 1 identity element

And $24+20+15+1=60=\left|A_{5}\right|$. But the S_{5}-orbit of an element of A_{5} may be bigger than its A_{5} orbit!

Conjugacy classes in A_{5}

There are thus S_{5}-conjugacy classes δ ontained in A_{5} :

- $5=5$, with $4!=24$ elements (fix the first one, then the next four can be chosen freely).
- $5=3+1+1$; with $\binom{5}{3}=10$ triples, plus their inverses, for 20 elements
- $5=2+2+1$; with 5 choices of the fixed element, $\times\binom{ 4}{2}=6$,
for 30 pairs $(a b)(c d)$, divided by 2 because
$(a b)(c d)=(c d)(a b)$, to give 15 elements.
- $5=1+1+1+1+1$ for 1 identity element

And $24+20+15+1=60=\left|A_{5}\right|$. But the S_{5}-orbit of an element of A_{5} may be bigger than its A_{5} orbit!

Conjugacy classes in A_{5}

There are thus $4 S_{5}$-conjugacy classes contained in A_{5} :

- $5=5$, with $4!=24$ elements (fix the first one, then the next four can be chosen freely).
- $5=3+1+1$; with $\binom{5}{3}=10$ triples, plus their inverses, for 20 elements
- $5=2+2+1$; with 5 choices of the fixed element, $\times\binom{ 4}{2}=6$, for 30 pairs $(a b)(c d)$, divided by 2 because $(a b)(c d)=(c d)(a b)$, to give 15 elements.
- $5=1+1+1+1+1$ for 1 identity element A_{5} may be bigger than its A_{5} orbit!

Conjugacy classes in A_{5}

There are thus $4 S_{5}$-conjugacy classes contained in A_{5} :

- $5=5$, with $4!=24$ elements (fix the first one, then the next four can be chosen freely).
- $5=3+1+1$; with $\binom{5}{3}=10$ triples, plus their inverses, for 20 elements
- $5=2+2+1$; with 5 choices of the fixed element, $\times\binom{ 4}{2}=6$, for 30 pairs $(a b)(c d)$, divided by 2 because $(a b)(c d)=(c d)(a b)$, to give 15 elements.
- $5=1+1+1+1+1$ for 1 identity element

Conjugacy classes in A_{5}

There are thus $4 S_{5}$-conjugacy classes contained in A_{5} :

- $5=5$, with $4!=24$ elements (fix the first one, then the next four can be chosen freely).
- $5=3+1+1$; with $\binom{5}{3}=10$ triples, plus their inverses, for 20 elements
- $5=2+2+1$; with 5 choices of the fixed element, $\times\binom{ 4}{2}=6$, for 30 pairs $(a b)(c d)$, divided by 2 because $(a b)(c d)=(c d)(a b)$, to give 15 elements.
- $5=1+1+1+1+1$ for 1 identity element

And $24+20+15+1=60=\left|A_{5}\right|$. But the S_{5}-orbit of an element of A_{5} may be bigger than its A_{5} orbit!

Conjugacy classes in A_{5}

There are thus $4 S_{5}$-conjugacy classes contained in A_{5} :

- $5=5$, with $4!=24$ elements (fix the first one, then the next four can be chosen freely).
- $5=3+1+1$; with $\binom{5}{3}=10$ triples, plus their inverses, for 20 elements
- $5=2+2+1$; with 5 choices of the fixed element, $\times\binom{ 4}{2}=6$, for 30 pairs $(a b)(c d)$, divided by 2 because $(a b)(c d)=(c d)(a b)$, to give 15 elements.
- $5=1+1+1+1+1$ for 1 identity element

And $24+20+15+1=60=\left|A_{5}\right|$. But the S_{5}-orbit of an element of A_{5} may be bigger than its A_{5} orbit!

Conjugacy classes in A_{5}

More precisely, let $g \in A_{5}$, with centralizer $C_{g} \subset S_{5}, C_{g}^{\prime} \in A_{5}$. So Then the conjugacy class $[g] \subset S_{5}$ has order $\left|S_{5}\right| /\left|C_{g}\right|$, the A_{5}-conjugacy class $[g]^{\prime} \subset A_{5}$ has order $\left|A_{5}\right| /\left|C_{g}^{\prime}\right|$.
must divide $60=\left|A_{5}\right|$. This shows that not all 5 cycles are conjugate
in A_{5}.

Let $g \in A_{5}$. Then its conjugacy class $[g]$ in S_{5} is the union of either 1 or 2 conjugacy classes in A_{5}; if there are 2 then they are both of the same size.

Conjugacy classes in A_{5}

More precisely, let $g \in A_{5}$, with centralizer $C_{g} \subset S_{5}, C_{g}^{\prime} \in A_{5}$. So Then the conjugacy class $[g] \subset S_{5}$ has order $\left|S_{5}\right| /\left|C_{g}\right|$, the A_{5}-conjugacy class $[g]^{\prime} \subset A_{5}$ has order $\left|A_{5}\right| /\left|C_{g}\right|$. In particular, $\mid[g]^{\prime}$ must divide $60=\left|A_{5}\right|$. This shows that not all 5 cycles are conjugate in A_{5}.

Let $g \in A_{5}$. Then its conjugacy class $[g]$ in S_{5} is the union of either 1 or 2 conjugacy classes in A_{5}; if there are 2 then they are both of the same size.

Conjugacy classes in A_{5}

More precisely, let $g \in A_{5}$, with centralizer $C_{g} \subset S_{5}, C_{g}^{\prime} \in A_{5}$. So Then the conjugacy class $[g] \subset S_{5}$ has order $\left|S_{5}\right| /\left|C_{g}\right|$, the A_{5}-conjugacy class $[g]^{\prime} \subset A_{5}$ has order $\left|A_{5}\right| /\left|C_{g}\right|$. In particular, $\mid[g]^{\prime}$ must divide $60=\left|A_{5}\right|$. This shows that not all 5 cycles are conjugate in A_{5}.

Lemma

Let $g \in A_{5}$. Then its conjugacy class $[g]$ in S_{5} is the union of either 1 or 2 conjugacy classes in A_{5}; if there are 2 then they are both of the same size.

Conjugacy classes in A_{5}

Corollary

There are two conjugacy classes of 5-cycles in A_{5}, and one conjugacy class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a single conjugacy class.

Conjugacy classes in A_{5}

Corollary

There are two conjugacy classes of 5-cycles in A_{5}, and one conjugacy class of products of disjoint 2-cycles.

Proof of corollary: Since 24 does not divide 60, the 5 cycles form more than 1, thus 2 conjugacy classes; but 15 is not even, so it is a single conjugacy class.

Simplicity of A_{5}

We can now prove that A_{5} is simple. Let $N \subset A_{5}$ be a normal subgroup.
60 , and it must contain the identity. The partition of 60 into the orders of conjugacy classes is either

$$
60=1+12+12+15+20
$$

(which is in fact correct) or

$$
60=1+12+12+15+10+10 .
$$

The proper divisors of 60 bigger than 10 are $12,15,20,30$. No partial sum of these partitions adds up to one of these divisors. So the only possible N are A_{5} and the identity.

Simplicity of A_{5}

We can now prove that A_{5} is simple. Let $N \subset A_{5}$ be a normal subgroup. It is the union of conjugacy classes, and its order divides 60 , and it must contain the identity. The partition of 60 into the orders of conjugacy classes is either

$$
60=1+12+12+15+20
$$

(which is in fact correct) or

$$
60=1+12+12+15+10+10 .
$$

The proper divisors of 60 bigger than 10 are $12,15,20,30$. No partial sum of these partitions adds up to one of these divisors. So the only possible N are A_{5} and the identity.

Simplicity of A_{5}

We can now prove that A_{5} is simple. Let $N \subset A_{5}$ be a normal subgroup. It is the union of conjugacy classes, and its order divides 60 , and it must contain the identity. The partition of 60 into the orders of conjugacy classes is either

$$
60=1+12+12+15+20
$$

(which is in fact correct) or

$$
60=1+12+12+15+10+10 .
$$

The proper divisors of 60 bigger than 10 are $12,15,20,30$. No partial sum of these partitions adds up to one of these divisors.

Simplicity of A_{5}

We can now prove that A_{5} is simple. Let $N \subset A_{5}$ be a normal subgroup. It is the union of conjugacy classes, and its order divides 60 , and it must contain the identity. The partition of 60 into the orders of conjugacy classes is either

$$
60=1+12+12+15+20
$$

(which is in fact correct) or

$$
60=1+12+12+15+10+10 .
$$

The proper divisors of 60 bigger than 10 are $12,15,20,30$. No partial sum of these partitions adds up to one of these divisors. So the only possible N are A_{5} and the identity.

Proof of the Lemma

Let X be the set of A_{5} conjugacy classes contained in $[g]$. We let S_{5} act on X by conjugation: clearly $[h]^{\prime} \subset[g]$ if and only h is conjugate to g in S_{5}.
stabilizer $S_{[g]^{\prime}} \subset S_{5}$ contains A_{5}, again by definition. Thus either

If $S_{[g]^{\prime}}=S_{5}$ then $[g]^{\prime}=[g]$, and $[g]$ contains only one A_{5}-conjugacy class. Otherwise, $[g]=[g]^{\prime} \coprod[h]^{\prime}$ for some $h=s g s^{-1}, s \in S_{5} \backslash A_{5}$.

Proof of the Lemma

Let X be the set of A_{5} conjugacy classes contained in $[g]$. We let S_{5} act on X by conjugation: clearly $[h]^{\prime} \subset[g]$ if and only h is conjugate to g in S_{5}. Moreover, the action of S_{5} on X is transitive, by definition. The stabilizer $S_{[g]^{\prime}} \subset S_{5}$ contains A_{5}, again by definition. Thus either $S_{[g]^{\prime}}=A_{5}$ or $S_{[g]^{\prime}}=S_{5}$.

Proof of the Lemma

Let X be the set of A_{5} conjugacy classes contained in $[g]$. We let S_{5} act on X by conjugation: clearly $[h]^{\prime} \subset[g]$ if and only h is conjugate to g in S_{5}. Moreover, the action of S_{5} on X is transitive, by definition. The stabilizer $S_{[g]^{\prime}} \subset S_{5}$ contains A_{5}, again by definition. Thus either $S_{[g]^{\prime}}=A_{5}$ or $S_{[g]^{\prime}}=S_{5}$.
If $S_{[g]^{\prime}}=S_{5}$ then $[g]^{\prime}=[g]$, and $[g]$ contains only one A_{5}-conjugacy class.

Proof of the Lemma

Let X be the set of A_{5} conjugacy classes contained in $[g]$. We let S_{5} act on X by conjugation: clearly $[h]^{\prime} \subset[g]$ if and only h is conjugate to g in S_{5}. Moreover, the action of S_{5} on X is transitive, by definition. The stabilizer $S_{[g]^{\prime}} \subset S_{5}$ contains A_{5}, again by definition. Thus either $S_{[g]^{\prime}}=A_{5}$ or $S_{[g]^{\prime}}=S_{5}$.
If $S_{[g]^{\prime}}=S_{5}$ then $[g]^{\prime}=[g]$, and $[g]$ contains only one A_{5}-conjugacy class. Otherwise, $[g]=[g]^{\prime} \coprod[h]^{\prime}$ for some $h=s g s^{-1}, s \in S_{5} \backslash A_{5}$.

Proof of the Lemma, concluded

It remains to show that

$$
\left|[h]^{\prime}\right|=\left|\left[s g s^{-1}\right]^{\prime}\right|=\left|[g]^{\prime}\right|,
$$

in other words, that

$$
s:[g]^{\prime} \rightarrow[h]^{\prime} ; a g a^{-1} \mapsto s\left(a g a^{-1}\right) s^{-1}=\left(s a s^{-1}\right) s g s^{-1}\left(\operatorname{sas}^{-1}\right)^{-1}
$$

is a bijection.
But conjugation by s^{-1} is the inverse bijection, so we are done.

Proof of the Lemma, concluded

It remains to show that

$$
\left|[h]^{\prime}\right|=\left|\left[s g s^{-1}\right]^{\prime}\right|=\left|[g]^{\prime}\right|,
$$

in other words, that

$$
s:[g]^{\prime} \rightarrow[h]^{\prime} ; a g a^{-1} \mapsto s\left(a g a^{-1}\right) s^{-1}=\left(s a s^{-1}\right) s g s^{-1}\left(\operatorname{sas}^{-1}\right)^{-1}
$$

is a bijection.
But conjugation by s^{-1} is the inverse bijection, so we are done.

