INTRODUCTION TO MODERN ALGEBRA I, GU4041, SPRING 2020

PRACTICE MIDTERM 1

For any positive integer m, we denote by \mathbb{Z}_m a cyclic group with m elements.

- 1. True or False? If false, give a counterexample; if true, provide an explanation. The explanation can be brief but it is not enough to say that the statement was explained in the course.
 - (a) For any two sets A, B,

$$A \setminus (A \setminus B) = B.$$

- (b) Let G be a group and $g \in G$. If gh = hg for all $h \in G$ then $g^3h = hg^3$ for all $h \in G$.
 - (c) $75 \equiv -7 \pmod{17}$.
- (d) Let A, B, C be sets, and let $f: A \to B$ be injective and $g: B \to C$ be injective. Then $g \circ f: A \to C$ is injective.
- (e) Let G be a group and let $\iota: G \to G$ be the function $\iota(g) = g^{-1}$. Then $\iota(gh) = \iota(g)\iota(h)$ for all $g, h \in G$.
 - 2. (a) List all the generators of the groups \mathbb{Z}_7 and \mathbb{Z}_8 .
 - (b) In arithmetic modulo 9 find the number x between 1 and 9 such that $991^{13} \equiv x \pmod{9}$.
 - (c) Let $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ be the function defined by

$$f([a]_9) = [3a]_9.$$

Show that f is a homomorphism of groups and list the elements of its kernel.

- 3. Describe the set of equivalence classes for those of the following relations that are equivalence relations, or explain why the relation is not an equivalence relation:
- (a) X is the set of residents of the United States; we say $x \sim y$ if x and y live in the same state.
- (b) $X=\mathbb{R}^2$ is the set of points in the cartesian plane; $P\sim Q$ if the distance between P and Q is at most 1.

- (c) X is the set of 2×2 invertible matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{C}$. We say $A \sim B$ if $P_A(t) = \det(tI_2 A)$ and $P_B(t) = \det(tI_2 B)$ have the same roots, where I_2 is the identity matrix.
- 4. Which of these inclusions (i.e., injective homomorphisms) of groups are impossible? Justify your answer.
 - (a) $\mathbb{Z}_7 \subseteq \mathbb{Z}_{14}$.
 - (b) $\mathbb{Z}_6 \subseteq \mathbb{Z}_9$.
 - (c) The Klein group K_4 inside \mathbb{Z}_{32} .
- 5. (a) Show that the additive group \mathbb{R} of real numbers has no finite subgroups.
- (b) Show that $\mathbb Z$ is a subgroup of $\mathbb Q$ and find a subgroup $A\subseteq \mathbb Q$ such that $A\supset \mathbb Z$ but $A\neq \mathbb Z$.
- 6. Let G be a group with 5 elements, and let e denote the identity element. Prove that there is exactly one element $x \in G$ such that $x^2 = e$. Do not use Lagrange's theorem even if you know the statement.

(Hint: Suppose $x \neq e$ and $x^2 = e$. There is some element $y \in G$ such that $xy \neq e$ and $xy \neq y$.)