MODERN ALGEBRA I GU4041

Homework 9, due April 3: Classification of abelian groups

1. List the isomorphism classes of abelian groups of the following orders: 27, 200, 605, 720.
2. Judson, section 13.4, exercises 6,8 . In problem 8, "not true in general" means "not necessarily true if G, H, K are not assumed to be abelian.
3. Find the smallest integer $n>42$ such that there is exactly one isomorphism class of abelian groups of order n and exactly one isomorphism class of abelian groups of order $n+1$. Justify your answer, including why there is no smaller n.
4. Let $n>1$ and $m>1$ be integers. In the next question, we recall that if $a \in \mathbb{Z}$ and $x \in \mathbb{Z}_{n}$, we can define $a x \in \mathbb{Z}_{n}$ by letting \tilde{x} be any element of \mathbb{Z} with residue class x modulo n and letting $a x$ denote the residue class of $a \tilde{x}$ modulo n.
(a) Show that if a and d are integers such that $(a, n)=(d, m)=1$, then there is an automorphism

$$
\alpha_{a, d}: \mathbb{Z}_{n} \times \mathbb{Z}_{m}
$$

such that, for all $(x, y) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$,

$$
\alpha_{a, d}((x, y))=(a x, d y) .
$$

(b) Suppose $(n, m)=1$. Show that the group $\mathbb{Z}_{n m}$ has a unique subgroup A_{n} of order n and a unique subgroup A_{m} of order m. Write down an isomorphism

$$
A_{n} \times A_{m} \xrightarrow{\sim} \mathbb{Z}_{n m} .
$$

(c) If $(n, m)=1$, show that any automorphism of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is of the form $\alpha_{a, d}$ where a and d are as in part (a).
(d) Write down an automorphism of $\mathbb{Z}_{3} \times \mathbb{Z}_{9}$ that is not of the form $\alpha_{a, d}$.
(e) Suppose $a, b, c, d \in \mathbb{Z}$. Let $M: \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ be the function

$$
M(x, y)=(a x+b y, c x+d y) .
$$

For what a, b, c, d is this M an automorphism?

Recommended reading

Judson, Section 13.1.

