MODERN ALGEBRA I GU4041

HOMEWORK 9, DUE APRIL 3: CLASSIFICATION OF ABELIAN GROUPS

1. List the isomorphism classes of abelian groups of the following orders: 27, 200, 605, 720.

2. Judson, section 13.4, exercises 6, 8. In problem 8, "not true in general" means "not necessarily true if G, H, K are not assumed to be abelian.

3. Find the smallest integer n > 42 such that there is exactly one isomorphism class of abelian groups of order n and exactly one isomorphism class of abelian groups of order n + 1. Justify your answer, including why there is no smaller n.

4. Let n > 1 and m > 1 be integers. In the next question, we recall that if $a \in \mathbb{Z}$ and $x \in \mathbb{Z}_n$, we can define $ax \in \mathbb{Z}_n$ by letting \tilde{x} be any element of \mathbb{Z} with residue class x modulo n and letting ax denote the residue class of $a\tilde{x}$ modulo n.

(a) Show that if a and d are integers such that (a, n) = (d, m) = 1, then there is an automorphism

 $\alpha_{a,d}: \mathbb{Z}_n \times \mathbb{Z}_m$

such that, for all $(x, y) \in \mathbb{Z}_n \times \mathbb{Z}_m$,

$$\alpha_{a,d}((x,y)) = (ax, dy).$$

(b) Suppose (n, m) = 1. Show that the group \mathbb{Z}_{nm} has a unique subgroup A_n of order n and a unique subgroup A_m of order m. Write down an isomorphism

$$A_n \times A_m \xrightarrow{\sim} \mathbb{Z}_{nm}.$$

(c) If (n, m) = 1, show that any automorphism of $\mathbb{Z}_n \times \mathbb{Z}_m$ is of the form $\alpha_{a,d}$ where a and d are as in part (a).

(d) Write down an automorphism of $\mathbb{Z}_3 \times \mathbb{Z}_9$ that is *not* of the form $\alpha_{a,d}$. (e) Suppose $a, b, c, d \in \mathbb{Z}$. Let $M : \mathbb{Z}_3 \times \mathbb{Z}_3$ be the function

M(x,y) = (ax + by, cx + dy).

For what a, b, c, d is this M an automorphism?

RECOMMENDED READING

Judson, Section 13.1.