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Permutations

By a permutation of the set S, we mean a bijective function σ : S→ S.
This definition will only be used when S is a finite set.
Let n ∈ N. The symmetric group on n letters is the group of all
permutations of the set {1, 2, . . . , n}. (The terminology is classical;
the “letters” are in fact numbers, although they could be any objects
whatsoever.)
It is well known that there are
n! = n · (n− 1) · (n− 2) · · · · (3) · (2) · (1) permutations of a
collection X = {x0, . . . , xn−1} of n elements.
Here is the argument: let σ be a permutation of X. There are n choices
for σ(x0). Then σ(x1) ∈ X \ {σ(x0)}, which has n− 1 elements.
Similarly, at the ith stage, there are n− i choices for σ(xi). Thus the
total number of choices is precisely n!.
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Notation for permutations

We see that the symmetric group has n! elements. However, it is
denoted Sn – or Sn, if we want to be old-fashioned. This is the only
exception to our rule that a group denoted Hm has m elements.

An element σ ∈ Sn is traditionally denoted by a matrix with n
columns and 2 rows, where the top row is always(
1 2 . . . n− 1 n

)
, and the second row shows the effect of the

permutation, like this:

σ =

(
1 2 . . . n− 1 n

σ(1) σ(2) . . . σ(n− 1) σ(n)

)
Thus if n = 4, the permutation

σ =

(
1 2 3 4
2 4 1 3

)
takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3.GU4041, fall 2023 Permutation groups
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A cycle

σ =

(
1 2 3 4
2 4 1 3

)
takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3.
Another way to represent this permutation is

1→ 2→ 4→ 3→ 1,

but this notation only works if all the numbers are in a single cycle.
This leads to the introduction of cycle notation. The above cycle is
written (

1 2 4 3
)

This is a 4-cycle because it has to be repeated 4 times to return to the
initial state.
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Some examples

In the permutation

σ =

(
1 2 3 4
3 4 1 2

)
we observe that 1→ 3→ 1 and 2→ 4→ 2.
So its cycle decomposition is(

1 3
) (

2 4
)

IMPORTANT POINT The cycles
(
1 3

)
and

(
3 1

)
are equal. In

fact
(
1 2 4 3

)
can also be written(

2 4 3 1
)

or (
4 3 1 2

)
(and in one more way).
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Notation that is best read at leisure

Suppose X is the set {1, 2, . . . , n}. Let X1 ⊂ X, with |X1| = n1.
Suppose σ ∈ Sn is a permutation with the following property: we can
label the elements of X1 a1, . . . , an1 in such a way that

σ(a1) = a2;σ(a2) = a3; . . . σ(ai) = ai+1 . . . σ(an1) = a1;

and σ(a) = a if a ∈ X \ X1.
Then σ is said to be a cycle, or an n1-cycle, and can be written

σ = (a1 a2 . . . an1).
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Theorem best read at leisure

Theorem
Any permutation σ ∈ Sn has a cycle decomposition. Precisely, there is
a unique partition X = X1∐X2∐ · · ·∐Xr of X into r disjoint
subsets, with nj = |Xj| and

n = n1 + n2 + · · ·+ nr,

and for each j, an nj-cycle

σj = (aj
1 aj

2 . . . aj
nj
)

where Xj = {aj
1, a

j
2, . . . , a

j
nj}, such that

σ = σ1 · σ2 · · · · · σr.
GU4041, fall 2023 Permutation groups
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Another example

If

σ =

(
1 2 3 4 5 6
3 1 6 4 5 2

)
we see

1→ 3→ 6→ 2→ 1; 4→ 4; 5→ 5

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

σ =
(
1 3 6 2

)
·
(
4
)
·
(
5
)
.

For simplicity we ALWAYS leave out the 1-cycles and just write

σ =
(
1 3 6 2

)
GU4041, fall 2023 Permutation groups
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Disjoint cycles commute!

For example if
ρ =

(
1 4 2

) (
3 5

)
,

we can also write
ρ =

(
3 5

) (
1 4 2

)
;

it doesn’t matter how the cycles are ordered.
In the above example,

τ =
(
1 3

) (
2 4

)
=
(
2 4

) (
1 3

)
.

Above we wrote
σ = σ1 · σ2 · · · · · σr

but we could write
σ = σi1 · σi2 · · · · · σir

for any reordering (permutation!) of the indices 1, 2, . . . , r.
GU4041, fall 2023 Permutation groups
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Orbit of a permutation

Let X be a finite set and σ a permutation of X.
The orbits of σ are the subsets Xj ∈ X such that,

1 for any x 6= y ∈ Xj, there is an integer m > 0 such that
σm(x) = y, and

2 if x ∈ Xj then σ(x) ∈ Xj.

In other words, setting nj = |Xj|, for for any x ∈ Xj, σnj(x) = x and Xj

is a set of the form

{x, σ(x), σ2(x), . . . σnj−1(x)}

for any x ∈ Xj.
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Any permutation defines an equivalence relation

We define a relation on X: we say xRσy if there exists some m > 0
such that σm(x) = y. This is an equivalence relation:

(reflexive) Since Sn is a finite group, σM = e for some M > 0;
then σM(x) = x for all x.

(symmetric) If σm(x) = y then σ−m(y) = x, but
σ−m = σM−m = σdM−m for any d, and for d sufficiently large
dM − m > 0.

(transitive) If σm(x) = y and σm′
(y) = z then σm+m′

(x) = z.
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The orbits define a partition

Theorem
The equivalence classes for the relation Rσ are precisely the orbits of
σ. They define a partition of X.

Proof.

For each j σ induces a permutation σj of Xj that ignores the elements
of the Xi, i 6= j. The word “induces” means: the bijection σ : X→ X
restricts to a bijection σj : Xj→ Xj.

Then σ =
∏

j σj (in any order).
We check this by looking more closely at the group structure.
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The group structure

The product of the permutations σ · τ is: first apply τ , then apply σ.
In other words: Then σ · τ is the permutation in Sn, with the property
that, for any i ∈ {1, 2, . . . , n}

σ · τ(i) = σ(τ(i)).

In other words, multiplication in Sn is just composition of (bijective)
functions from {1, 2, . . . , n} to {1, 2, . . . , n}: σ · τ = σ ◦ τ . This is
associative:

σ ◦ (τ ◦ ρ) = (σ ◦ τ) ◦ ρ.
Since any σ ∈ Sn is bijective, it has an inverse σ−1. And of course the
identity is the permutation that doesn’t move anything.
So Sn is indeed a group.
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Since any σ ∈ Sn is bijective, it has an inverse σ−1. And of course the
identity is the permutation that doesn’t move anything.
So Sn is indeed a group.
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Matrix notation is bad for writing the inverse

If

σ =

(
1 2 3 4 5 6
3 1 6 4 5 2

)
then obviously you get σ−1 by exchanging the two rows:

σ−1 =

(
3 1 6 4 5 2
1 2 3 4 5 6

)
But just as obviously this is not written in standard form: you have to
move the columns around:

σ−1 =

(
1 2 3 4 5 6
2 6 1 4 5 3

)
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Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example.
Suppose n = 4,

σ =

(
1 2 3 4
2 4 1 3

)
;

τ =

(
1 2 3 4
4 1 3 2

)
.

We compute: σ · τ(1) = σ(τ(1)) = σ(4) = 3. Similarly,
σ · τ(2) = σ(1) = 2; σ · τ(3) = σ(3) = 1; and σ · τ(4) = σ(2) = 4.

Thus

σ · τ =

(
1 2 3 4
3 2 1 4

)
.
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It’s not easier in cycle notation

We have
σ =

(
1 2 4 3

)
; τ =

(
1 4 2

)
and

σ · τ =
(
1 3

)
(=
(
1 3

) (
2
) (

4
)
).

Howie’s notes also suggests a shortcut for computing σ−1 on p. 28.
Here the cycle notation can be more helpful.
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An equivalence relation on Sn

We can define an equivalence relation ∼ on Sn: two permutations
σ, σ′ ∈ Sn satisfy σ ∼ σ′ if and only if their cycle decompositions
have the same lengths.

Theorem
Suppose σ, σ′ ∈ Sn both have cycle decompositions with partition
n = n1 + n2 + · · ·+ nr. Then there exists λ ∈ Sn such that

σ′ = λσλ−1.

Thus the set Sn has a partition according to the shape of the cycle
decomposition.
The relation σ′ = λσλ−1 is called conjugacy.
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Proof

The proof of the theorem is in the online notes. It will be sketched on
the board with an example.
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Transpositions

A transposition in Sn is a cycle of the form τij =
(
i j
)

where
1 ≤ i 6= j ≤ n. In other words, τij exchanges i and j and leaves the
other numbers unchanged. It is a cycle of length 2.

Then obviously τij · τij is the identity element e.
We will see later in the course that every σ ∈ Sn can be written as a
product of transpositions.

This product expression is not unique – for example, the identity
element e can be written τij · τij · τij · τij and in infinitely many other
ways – it suffices to keep adding pairs of τij.

What is unique, however, is the sign of σ.
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Sign of a transposition

Theorem
If σ can be written in one way as a product of an even number of
transpositions, then every such expression for σ has an even number
of transpositions.

It follows that if σ can be written in one way as an odd number of
transpositions then every such expression for σ has an odd number of
transpositions.
We define the sign of σ, denoted sgn(σ) to be 1 if it can be written as
a product of an even number of transpositions, and −1 if it can be
written as a product of an odd number of transpositions.
In particular sgn(τij) = −1 for any i 6= j.
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Adjacent transpositions

We say τij is an adjacent transposition if j = i+1. It can be shown that
every σ ∈ Sn can be written as a product of adjacent transpositions.

The length of σ is then the shortest expression of σ as a product of
adjacent transpositions. We will not be discussing length in this
course.
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Factorization in transpositions

Proposition
Any element of Sn can be wntten as the product of transpositions.

Proof: Suppose σ has a cycle decomposition

σ = σ1 · σ2 · · · · · σr

with σi a ki-cycle. It suffices to check that each σi can be written as
the product of transpositions. So we may assume σ is itself a k-cycle:

σ = (a1 . . . ak) .

We induct on k, clearly all right if k ≤ 2. So we assume k > 2.
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Factorization in transpositions

Consider

τ1 = (a1 a2), τ2 = (a2 . . . ak), τ = τ1 · τ2.

By induction τ2 of length k − 1 is a product of transpositions, and
therefore so is τ .
So we want to show σ = τ . But τ(a1) = τ1(a1) = a2,

3 ≤ i ≤ k − 1⇒ τ(ai) = τ2(ai) = ai+1.

τ(a2) = τ1(τ2(a2)) = τ1(a3) = a3.

τ(ak) = τ1(τ2(ak)) = τ1(a2) = a1.

Thus σ = τ and we conclude.
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The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of
transpositions is not unique. For example the identity in Sn can be
written

e = (1 2)(1 2).

But we can restate the theorem:

Theorem
Suppose σ can be written in two different ways as the product

σ = τ1 · · · · · τk = α1 · · · · · αk′

where all the τi and αj are transpositions.
Then k ≡ k′ (mod 2).
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The sign homomorphism

Corollary
There is a homomorphism

sgn : Sn→ {±1}

sgn(σ) = (−1)k

if σ is the product of k transpositions.

The kernel of sgn is a subgroup An ⊂ Sn of index 2 called the
alternating group.
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Proof of the theorem, I

Suppose
σ = β1 · · · · · βk = α1 · · · · · αk′ .

Then e =
∏k

i=1 βi · [
∏

j α1 · · · · · αk′ ]
−1 or

e = β1 · · · · · βk · α−1
k′ · . . . α

−1
2 · α

−1
1

e = β1 · · · · · βk · αk′ · . . . α−1
2 · α1

because each transposition is its own inverse.
So e is the product of m = k + k′ transpositions. It suffices to show
that m = k + k′ is even.
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Proof of the theorem, II

The theorem is thus equivalent to

Theorem
Suppose e ∈ Sn is the product of m transpositions e = τ1 · · · · · τm.
Then m is even.

The proof is an induction on m. We have

e = [τ1 · · · · · τm−2]τm−1 · τm.
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Proof of the theorem, III

e = [τ1 · · · · · τm−2]τm−1 · τm.

There are four possibilities.
1 τm−1 = τm = (a b);
2 τm−1 = (c d), τm = (a b) all different.
3 τm−1 = (a c), τm = (a b), a, b, c distinct.
4 τm−1 = (b c), τm = (a b)

Case (1) is easy: τm−1 · τm = e so m ≡ m− 2 (mod 2) and we
conclude by induction. In the other cases we aim to move a to the left
until there is no more room.
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Proof of the theorem, IV

In case (2) (c d) · (a b) = (a b) · (c d).
In case (3) (a c) · (a b) = (a b) · (b c). (CHECK!)
In case (4) (b c) · (a b) = (a c) · (b c). (CHECK!)
In any case a is in τm−1 and is NOT in τm. Now continue with the pair
τm−2, τm−1. We again have four cases.
We repeat the analysis. After each step a moves to the left and is
absent from the subsequent transpositions: either a cancels as in case
(1), which concludes by induction, or

e = τ1 · . . . (a b′) · τi · τi+1 · · · · · τm

for some b′ 6= a, where a is NOT in τi, τi+1, . . . τm.
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Proof of the theorem, conclusion

So if a survives to the end, we have

e = (a b′) ·
m∏

i=2

τi

where τi(a) = a for i ≥ 2.
Apply both sides to a:

a = e(a) = [(a b′) ·
m∏

i=2

τi](a) = (a b′)(a) = b′.

This is a contradiction, so we conclude by induction.
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A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

A4

The alternating group An is of index 2 in Sn, hence is normal.
However, the kernel of any homomorphism f : G→ G′ is always
normal. Indeed, if N = ker f , n ∈ N, g ∈ G, then

f (gng−1) = f (g)f (n)f (g−1) = f (g) · e · f (g−1) = e.

The order of A4 is |S4|/2 = 4!/2 = 12. We can write all the elements
as products (a b)(c d).

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

(1 2 3), (1 2 4), (1 3 4), (2 3 4)

and their squares. This makes 3 + 2 · 4 = 11, and the identity is the
last one.

GU4041, fall 2023 Permutation groups



Definitions
Cycle decomposition of a permutation

Proof of the cycle decomposition of permutations
Multiplying permutations

Conjugacy classes
Transpositions

Proof of the theorem

S4 \ A4

The complement of A4 is S4 is the coset of elements whose sign is −1.

There are 6 transpositions corresponding to the choice of any pair of
two elements, and 6 4-cycles.
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