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Definition of cyclic groups

So far we have seen the groups S3, K4, and Zn. The latter is an
example of a cyclic group:

Definition
A group G is cyclic if it contains an element g, called a generator,
such that every element is of the form

1 e, g, g2, . . . , gn−1, if G is finite and |G| = n;
2 e, g, g−1, g2, g−2, . . . , if G is infinite.

The group Z is infinite cyclic under addition, with generator 1. The
identity is 0 and the inverse of 1 is −1: 1 + (−1) = 0.
One avoids writing 1−1 = −1 because the exponent −1 is reserved
for multiplication.
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Another example of cyclic groups

The set C× of complex numbers z 6= 0 forms a group under
multiplication.
It contains a cyclic subgroup Cn, with |Cn| = n, consisting of the
numbers

1, g = e
2πi

n , g2 = e
4πi

n , . . . , gk = e
2kπi

n , . . . gn−1 = e
2(n−1)πi

n .

The nth power of g is

gn = e
2nπi

n = e2πi = 1.
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Multiplication in cyclic groups

Suppose g ∈ G is a generator. Then every element of G is of the form
ga, where a can be negative if |G| is infinite and g0 = e.

Fact

The product of ga and gb is ga+b.

The proof is the same as for addition of exponents in the
multiplication of real numbers. If a, b ≥ 0 then we just put them in
order. If a > 0and − b < 0 we write

ga · g−b = [g · g · · · · · g] · [g−1 · g−1 · · · · · g−1]

(a copies of g, b copies of g−1). Then we cancel the g · g−1 until there
are only a− b g’s or b− a g−1’s left.
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Generators in Zn

In Zn we write k · [a] for the k-th “power” [a]k to avoid confusion.
We know that [1] is a generator in Zn, the elements are

[0], [1], [2] = [1] + [1], [3] = 3 · [1], . . . [n− 1] = (n− 1) · [1].

What other elements can be generators? More precisely, which
elements [a] have the property that, for any [b] ∈ Zn, there is k such
that [b] = k · [a]? Think of this as solving an equation for k.
The answer: [a] is a generator if and only if gcd(a, n) = 1.
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Generators in Zn

We claim [a] is a generator if and only if gcd(a, n) = 1.

Proof.
Suppose gcd(a, n) = 1. Then by Bezout there is c such that ca ≡ 1
(mod n). Thus

c · [a] = [ca] = [1].

Then for any b, we can take k = bc:

bc · [a] = b · [ca] = b · [1] = [b].

Suppose gcd(a, n) = d > 1. Then for any k, k · [a] = [ka] and
gcd(ka, n) ≥ d. So ka can never be congruent to 1 (mod n).

Thus a cyclic group of order n has φ(n) generators, where φ(n) is
Euler’s φ function.

GU4041, fall 2023 Elementary group theory



Cyclic groups
Subgroups

Dihedral groups
Homomorphisms

Definition of subgroup

Definition
Let G be a group. The subset H ⊂ G is a subgroup if

e ∈ H,

for all h, h′ ∈ H, hh′ ∈ H;

for all h ∈ H, h−1 ∈ H.

Example: Any g ∈ G generates a subgroup denoted 〈g〉:

〈g〉 = {e, ga, g−b}.

It is the smallest subgroup containing g, and it is cyclic, because g is a
generator.
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Cyclic subgroups

Proposition
Suppose G is finite. Then for any g, the subset

H = {e, g, g2, . . . }

(positive powers only) is a subgroup.

Proof.
Since G is finite, so is any subset. Thus at some point the powers
repeat: there are i < j such that gi = gj. Then

e = (gi)−1 · gi = (gi)−1 · gj = gj−i = g · gj−i−1.

Thus gj−i−1 = g−1 and so every element of H has its inverse in
H.

GU4041, fall 2023 Elementary group theory



Cyclic groups
Subgroups

Dihedral groups
Homomorphisms

Cyclic subgroups

Proposition
Suppose G is finite. Then for any g, the subset

H = {e, g, g2, . . . }

(positive powers only) is a subgroup.

Proof.
Since G is finite, so is any subset. Thus at some point the powers
repeat: there are i < j such that gi = gj. Then

e = (gi)−1 · gi = (gi)−1 · gj = gj−i = g · gj−i−1.

Thus gj−i−1 = g−1 and so every element of H has its inverse in
H.

GU4041, fall 2023 Elementary group theory



Cyclic groups
Subgroups

Dihedral groups
Homomorphisms

Cyclic subgroups

Proposition
Suppose G is finite. Then for any g, the subset

H = {e, g, g2, . . . }

(positive powers only) is a subgroup.

Proof.
Since G is finite, so is any subset. Thus at some point the powers
repeat: there are i < j such that gi = gj. Then

e = (gi)−1 · gi = (gi)−1 · gj = gj−i = g · gj−i−1.

Thus gj−i−1 = g−1 and so every element of H has its inverse in
H.

GU4041, fall 2023 Elementary group theory



Cyclic groups
Subgroups

Dihedral groups
Homomorphisms

Order of an element

We see that in a finite group G, for every element g ∈ G there is a
positive integer a (it was j− i in the proof) such that ga = e.

So there is a smallest positive integer n such that gn = e. This element
is the order of g, and the subgroup 〈g〉 ⊂ G is then a cyclic group of
order n.
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The dihedral group

Let n ≥ 3 be an integer. The dihedral group D2n (often written Dn,
but not in this class) is the group of symmetries of the regular n-gon.
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Properties of the dihedral group

The group D2n contains a cyclic subgroup of rotations of order n. If
we think of the n-gon inscribed in the unit circle around 0, then the
rotations are by elements of Cn, the n-th roots of unity; or
equivalently, by multiples of 2π

n .
Let s ∈ D2n be rotation (counterclockwise) by 2π

n , f (for flip)
reflection in the y-axis.
Then sn = f 2 = e. But

fsf = s−1; fs = s−1f = sn−1f .
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Picture of the formula fsf = s−1
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Multliplication in D2n

So the elements of D2n are all of the form e, s, s2, . . . , sn−1 and
f , fs, fs2, . . . , fsn−1.
Thus there are 2n elements. Any two elements can be multiplied
using the relations we know:

sa · f = sa−1 · f · s−1 = sa−2 · f · s−2 · · · = f · s−a;

sa · fsb = f · sb−a.
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Multliplication in D2n

Lemma

For any G and g, h ∈ G, (gh)−1 = h−1g−1.

The proof is: h−1g−1 · (gh) = h−1 · h = e.
Now we compute

(fsi)−1 = (si)−1f−1 = s−if = fsi.

Thus for any i,
(fsi)2 = e.

Indeed, each fsi is a reflection around some axis. (Check
geometrically.)
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Every subgroup of a cyclic group is cyclic

The following theorem will be used constantly.

Theorem
Let G be a cyclic group, H ⊂ G a subgroup. Then H is cyclic.

Proof: Let g ∈ G be a generator. Let a be the smallest integer > 0
such that γ = ga ∈ H. If there is no such integer then H = {e}.
Otherwise, let h ∈ H. Then h = gc for some c. We may assume
c > 0; if not, replace h by h−1.
Thus ga and gc ∈ H. So for any r, s ∈ Z,

(ga)r · (gc)s = gra+sc ∈ H.

By Bezout’s theorem, if d = gcd(a, c), then d = ra + sc for some r, s,
so gd ∈ H. Moreover d | a and so d ≤ a.
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Subgroups of cyclic groups

By Bezout’s theorem, if d = gcd(a, c), then d = ra + sc for some r, s,
so gd ∈ H. Moreover d | a and so d ≤ a.
Since a is chosen to be minimum, d = a. But since we also know
d | c, b = c/d means h = γb. Thus γ is a generator of H. This
completes the proof.

Theorem
Let G be a finite cyclic group, |G| = n. Then for every divisor d of n,
there is exactly one subgroup H ⊂ G with |H| = d.
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Proof of the theorem on subgroups of cyclic groups

Proof of existence Let d | n, so n = md for some m. Let g be a
generator of G. Consider the subset {e, gm, g2m, . . . , g(d−1)m} ⊂ G. It
has d elements and it’s easy to see it’s a subgroup.

Proof of uniqueness Suppose H ⊂ G is a subgroup, |H| = d. We
know H is cyclic. Let h be a generator of H, so hd = e. But h = ga for
some minimal a > 0. (Unless |H| = 1, in which case H = {e}.) Then

gad = hd = e

so ad is a multiple of n = md. Thus a is a multiple of m. Since a is
minimal, a = m, and we are done.
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Proof of existence Let d | n, so n = md for some m. Let g be a
generator of G. Consider the subset {e, gm, g2m, . . . , g(d−1)m} ⊂ G. It
has d elements and it’s easy to see it’s a subgroup.

Proof of uniqueness Suppose H ⊂ G is a subgroup, |H| = d. We
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Homomorphisms

Let G and H be groups, with identity elements eG and eH . A
homomorphism from G to H is a function f : G→ H such that, for all
g, g′ ∈ G,

f (gg′) = f (g)f (g′).

This already implies that

f (eG) = f (eH).

Indeed, let f (eG) = h. Now eG · eG = eG by definition, so

f (eG) = f (eG · eG) = f (eG) · f (eG)⇒ h = h · h.

Now multiply both sides by h−1:

eH = h−1h = h−1h · h = h.

In the same way, we prove that, for all g, f (g−1) = f (g)−1.
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Examples of homomorphisms

Example

Suppose m | n are positive integers. Then reduction modulo n can be
followed by reduction modulo m:

f : Zn→ Zm; f ([a]n) = [a]m.

Example

If G = GL(n,R), H = R×, det : G→ H is a homomorphism. This is
the familiar fact:

det(AB) = det(A) · det(B)

if A and B are invertible n× n matrices.

Example
Let G = Rn, H = Rm. Then a linear transformation T : Rn → Rm is a
homomorphism

T(v + v′) = T(v) + T(v′).
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Properties of homomorphisms

A bijective homomorphism f : G→ H. is called an isomorphism. If
G = H it is called an automorphism.

Proposition

Let f : G→ H be a bijective homomorphism. Let f−1 : H→ G be the
inverse function. Then f−1 is also a homomorphism (thus an
isomorphism).

Proof: Let h1, h2 ∈ H. By assumption, there are unique g1, g2 ∈ G
such that f (g1) = h1, f (g2) = h2. Thus

f (g1g2) = f (g1)f (g2) = h1 · h2.

Hence
f−1(h1 · h2) = g1g2 = f−1(h1) · f−1(h2).
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Examples of homomorphisms

Example
Let G = D2n, with generators s, f ; H = Z2. Define φ : G→ H by the
formula

φ(sa) = [0];φ(fsb) = [1].

Then for example

φ(fsb · fsc) = φ(f 2sc−b) = φ(sc−b) = [0] = [1]+ [1] = φ(fsb)+φ(fsc).
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More on equivalence relations
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