Elementary group theory

GU4041, fall 2023
Columbia University

June 22, 2023

Outline

(1) Cyclic groups
(2) Subgroups
(3) Dihedral groups
(4) Homomorphisms

Definition of cyclic groups

So far we have seen the groups S_{3}, K_{4}, and \mathbb{Z}_{n}. The latter is an example of a cyclic group:

Definition

A group G is cyclic if it contains an element g, called a generator, such that every element is of the form
(1) $e, g, g^{2}, \ldots, g^{n-1}$, if G is finite and $|G|=n$;

> The group \mathbb{Z} is infinite cyclic under addition, with generator 1 . The identity is 0 and the inverse of 1 is $-1: 1+(-1)=0$. One avoids writing $1^{-1}=-1$ because the exponent -1 is reserved for multiplication.

Definition of cyclic groups

So far we have seen the groups S_{3}, K_{4}, and \mathbb{Z}_{n}. The latter is an example of a cyclic group:

Definition

A group G is cyclic if it contains an element g, called a generator, such that every element is of the form
(1) $e, g, g^{2}, \ldots, g^{n-1}$, if G is finite and $|G|=n$;
(2) $e, g, g^{-1}, g^{2}, g^{-2}, \ldots$, if G is infinite.

> The group \mathbb{Z} is infinite cyclic under addition, with generator 1 . The identity is 0 and the inverse of 1 is $-1: 1+(-1)=0$. One avoids writing $1^{-1}=-1$ because the exponent -1 is reserved for multiplication.

Definition of cyclic groups

So far we have seen the groups S_{3}, K_{4}, and \mathbb{Z}_{n}. The latter is an example of a cyclic group:

Definition

A group G is cyclic if it contains an element g, called a generator, such that every element is of the form
(1) $e, g, g^{2}, \ldots, g^{n-1}$, if G is finite and $|G|=n$;
(2) $e, g, g^{-1}, g^{2}, g^{-2}, \ldots$, if G is infinite.

The group \mathbb{Z} is infinite cyclic under addition, with generator 1 . The identity is 0 and the inverse of 1 is $-1: 1+(-1)=0$.
One avoids writing $1^{-1}=-1$ because the exponent -1 is reserved for multiplication.

Definition of cyclic groups

So far we have seen the groups S_{3}, K_{4}, and \mathbb{Z}_{n}. The latter is an example of a cyclic group:

Definition

A group G is cyclic if it contains an element g, called a generator, such that every element is of the form
(1) $e, g, g^{2}, \ldots, g^{n-1}$, if G is finite and $|G|=n$;
(2) $e, g, g^{-1}, g^{2}, g^{-2}, \ldots$, if G is infinite.

The group \mathbb{Z} is infinite cyclic under addition, with generator 1 . The identity is 0 and the inverse of 1 is $-1: 1+(-1)=0$. One avoids writing $1^{-1}=-1$ because the exponent -1 is reserved for multiplication.

Another example of cyclic groups

The set \mathbb{C}^{\times}of complex numbers $z \neq 0$ forms a group under multiplication.
It contains a cyclic subgroup C_{n}, with $\left|C_{n}\right|=n$, consisting of the numbers

The nth power of g is

Another example of cyclic groups

The set \mathbb{C}^{\times}of complex numbers $z \neq 0$ forms a group under multiplication.
It contains a cyclic subgroup C_{n}, with $\left|C_{n}\right|=n$, consisting of the numbers

$$
1, g=e^{\frac{2 \pi i}{n}}, g^{2}=e^{\frac{4 \pi i}{n}}, \ldots, g^{k}=e^{\frac{2 k \pi i}{n}}, \ldots g^{n-1}=e^{\frac{2(n-1) \pi i}{n}}
$$

The nth power of g is

Another example of cyclic groups

The set \mathbb{C}^{\times}of complex numbers $z \neq 0$ forms a group under multiplication.
It contains a cyclic subgroup C_{n}, with $\left|C_{n}\right|=n$, consisting of the numbers

$$
1, g=e^{\frac{2 \pi i}{n}}, g^{2}=e^{\frac{4 \pi i}{n}}, \ldots, g^{k}=e^{\frac{2 k \pi i}{n}}, \ldots g^{n-1}=e^{\frac{2(n-1) \pi i}{n}}
$$

The nth power of g is

$$
g^{n}=e^{\frac{2 n \pi i}{n}}=e^{2 \pi i}=1
$$

Multiplication in cyclic groups

Suppose $g \in G$ is a generator. Then every element of G is of the form g^{a}, where a can be negative if $|G|$ is infinite and $g^{0}=e$.

The product of g^{a} and g^{b} is g^{a+b}.
The proof is the same as for addition of exponents in the
multiplication of real numbers. If $a, b \geq 0$ then we just put them in order. If $a>0$ and $-b<0$ we write
(a copies of g, b copies of g^{-1}). Then we cancel the $g \cdot g^{-1}$ until there are only $a-b g^{\prime}$'s or $b-a g^{-1}$'s left.

Multiplication in cyclic groups

Suppose $g \in G$ is a generator. Then every element of G is of the form g^{a}, where a can be negative if $|G|$ is infinite and $g^{0}=e$.

Fact
The product of g^{a} and g^{b} is g^{a+b}.

> The proof is the same as for addition of exponents in the multiplication of real numbers. If $a, b \geq 0$ then we just put them in order. If $a>0$ and $-b<0$ we write (a copies of g, b copies of g^{-1}). Then we cancel the $g \cdot g^{-1}$ until there are only $a-b g$'s or $b-a g^{-1}$'s left.

Multiplication in cyclic groups

Suppose $g \in G$ is a generator. Then every element of G is of the form g^{a}, where a can be negative if $|G|$ is infinite and $g^{0}=e$.

Fact

The product of g^{a} and g^{b} is g^{a+b}.
The proof is the same as for addition of exponents in the multiplication of real numbers. If $a, b \geq 0$ then we just put them in order. If $a>0$ and $-b<0$ we write

$$
g^{a} \cdot g^{-b}=[g \cdot g \cdots \cdot g] \cdot\left[g^{-1} \cdot g^{-1} \cdots \cdot g^{-1}\right]
$$

(a copies of g, b copies of g^{-1}). Then we cancel the $g \cdot g^{-1}$ until there are only $a-b g^{\prime}$'s or $b-a g^{-1}$'s left.

Multiplication in cyclic groups

Suppose $g \in G$ is a generator. Then every element of G is of the form g^{a}, where a can be negative if $|G|$ is infinite and $g^{0}=e$.

Fact

The product of g^{a} and g^{b} is g^{a+b}.
The proof is the same as for addition of exponents in the multiplication of real numbers. If $a, b \geq 0$ then we just put them in order. If $a>0$ and $-b<0$ we write

$$
g^{a} \cdot g^{-b}=[g \cdot g \cdots \cdot g] \cdot\left[g^{-1} \cdot g^{-1} \cdots \cdots g^{-1}\right]
$$

(a copies of g, b copies of g^{-1}). Then we cancel the $g \cdot g^{-1}$ until there are only $a-b g^{\prime}$ s or $b-a g^{-1}$'s left.

Generators in \mathbb{Z}_{n}

In \mathbb{Z}_{n} we write $k \cdot[a]$ for the k-th "power" $[a]^{k}$ to avoid confusion. We know that $[1]$ is a generator in \mathbb{Z}_{n}, the elements are

$$
[0],[1],[2]=[1]+[1],[3]=3 \cdot[1], \ldots[n-1]=(n-1) \cdot[1] .
$$

What other elements can be generators? More precisely, which elements $[a]$ have the property that, for any $[b] \in \mathbb{Z}_{n}$, there is k such that $[b]=k \cdot[a]$? Think of this as solving an equation for k. The answer: $[a]$ is a generator if and only if $\operatorname{gcd}(a, n)=1$.

Generators in \mathbb{Z}_{n}

In \mathbb{Z}_{n} we write $k \cdot[a]$ for the k-th "power" $[a]^{k}$ to avoid confusion. We know that $[1]$ is a generator in \mathbb{Z}_{n}, the elements are

$$
[0],[1],[2]=[1]+[1],[3]=3 \cdot[1], \ldots[n-1]=(n-1) \cdot[1] .
$$

What other elements can be generators? More precisely, which elements $[a]$ have the property that, for any $[b] \in \mathbb{Z}_{n}$, there is k such that $[b]=k \cdot[a]$?
The answer: $[a]$ is a generator if and only if $\operatorname{gcd}(a, n)=1$

Generators in \mathbb{Z}_{n}

In \mathbb{Z}_{n} we write $k \cdot[a]$ for the k-th "power" $[a]^{k}$ to avoid confusion. We know that $[1]$ is a generator in \mathbb{Z}_{n}, the elements are

$$
[0],[1],[2]=[1]+[1],[3]=3 \cdot[1], \ldots[n-1]=(n-1) \cdot[1] .
$$

What other elements can be generators? More precisely, which elements $[a]$ have the property that, for any $[b] \in \mathbb{Z}_{n}$, there is k such that $[b]=k \cdot[a]$? Think of this as solving an equation for k. The answer: $[a]$ is a generator if and only if $\operatorname{gcd}(a, n)=1$.

Generators in \mathbb{Z}_{n}

We claim $[a]$ is a generator if and only if $\operatorname{gcd}(a, n)=1$.

Proof.

Suppose $\operatorname{gcd}(a, n)=1$. Then by Bezout there is c such that $c a \equiv 1$ $(\bmod n)$. Thus

$$
c \cdot[a]=[c a]=[1] .
$$

Then for any b, we can take $k=b c$:

$$
b c \cdot[a]=b \cdot[c a]=b \cdot[1]=[b] .
$$

Suppose $\operatorname{gcd}(a, n)=d>1$. Then for any $k, k \cdot[a]=[k a]$ and $\operatorname{gcd}(k a, n) \geq d$. So $k a$ can never be congruent to $1(\bmod n)$.

Thus a cyclic group of order n has $\phi(n)$ generators, where $\phi(n)$ is Euler's ϕ function.

Definition of subgroup

Definition

Let G be a group. The subset $H \subset G$ is a subgroup if

- $e \in H$,
- for all $h, h^{\prime} \in H, h h^{\prime} \in H$;
- for all $h \in H, h^{-1} \in H$.

Example: Any $g \in G$ generates a subgroup denoted $\langle g\rangle$:

It is the smallest subgroup containing g, and it is cyclic, because g is a generator.

Definition of subgroup

Definition

Let G be a group. The subset $H \subset G$ is a subgroup if

- $e \in H$,
- for all $h, h^{\prime} \in H, h h^{\prime} \in H$;
- for all $h \in H, h^{-1} \in H$.

Example: Any $g \in G$ generates a subgroup denoted $\langle g\rangle$:

$$
\langle g\rangle=\left\{e, g^{a}, g^{-b}\right\} .
$$

It is the smallest subgroup containing g, and it is cyclic, because g is a generator.

Cyclic subgroups

Proposition
Suppose G is finite. Then for any g, the subset

$$
H=\left\{e, g, g^{2}, \ldots\right\}
$$

(positive powers only) is a subgroup.
Proof.
Since G is finite, so is any subset. Thus at some point the powers repeat: there are $i<j$ such that $g^{i}=g^{j}$. Then

Thus $g^{j-i-1}=g^{-1}$ and so every element of H has its inverse in H.

Cyclic subgroups

Proposition

Suppose G is finite. Then for any g, the subset

$$
H=\left\{e, g, g^{2}, \ldots\right\}
$$

(positive powers only) is a subgroup.
Proof.
Since G is finite, so is any subset. Thus at some point the powers repeat: there are $i<j$ such that $g^{i}=g^{j}$. Then

Cyclic subgroups

Proposition

Suppose G is finite. Then for any g, the subset

$$
H=\left\{e, g, g^{2}, \ldots\right\}
$$

(positive powers only) is a subgroup.
Proof.
Since G is finite, so is any subset. Thus at some point the powers repeat: there are $i<j$ such that $g^{i}=g^{j}$. Then

$$
e=\left(g^{i}\right)^{-1} \cdot g^{i}=\left(g^{i}\right)^{-1} \cdot g^{j}=g^{j-i}=g \cdot g^{j-i-1} .
$$

Thus $g^{j-i-1}=g^{-1}$ and so every element of H has its inverse in H.

Order of an element

We see that in a finite group G, for every element $g \in G$ there is a positive integer a (it was $j-i$ in the proof) such that $g^{a}=e$.

So there is a smallest positive integer n such that $g^{n}=e$. This element is the order of g, and the subgroup $\langle g\rangle \subset G$ is then a cyclic group of order n.

Order of an element

We see that in a finite group G, for every element $g \in G$ there is a positive integer a (it was $j-i$ in the proof) such that $g^{a}=e$.

So there is a smallest positive integer n such that $g^{n}=e$. This element is the order of g, and the subgroup $\langle g\rangle \subset G$ is then a cyclic group of order n.

The dihedral group

Let $n \geq 3$ be an integer. The dihedral group $D_{2 n}$ (often written D_{n}, but not in this class) is the group of symmetries of the regular n-gon.

* Symmetry group of a regular hexagon

Posted by hexnet - 2010-04-18 04:16

The dihedral group

Let $n \geq 3$ be an integer. The dihedral group $D_{2 n}$ (often written D_{n}, but not in this class) is the group of symmetries of the regular n-gon.

* Symmetry group of a regular hexagon

Posted by hexnet - 2010-04-18 04:16

Properties of the dihedral group

The group $D_{2 n}$ contains a cyclic subgroup of rotations of order n. If we think of the n-gon inscribed in the unit circle around 0 , then the rotations are by elements of C_{n}, the n-th roots of unity; or equivalently, by multiples of $\frac{2 \pi}{n}$.
Let $s \in D_{2 n}$ be rotation (counterclockwise) by $\frac{2 \pi}{n}, f$ (for flip)
reflection in the y-axis.
Then $s^{n}=f^{2}=e$. But

Properties of the dihedral group

The group $D_{2 n}$ contains a cyclic subgroup of rotations of order n. If we think of the n-gon inscribed in the unit circle around 0 , then the rotations are by elements of C_{n}, the n-th roots of unity; or equivalently, by multiples of $\frac{2 \pi}{n}$.
Let $s \in D_{2 n}$ be rotation (counterclockwise) by $\frac{2 \pi}{n}$, f (for flip) reflection in the y-axis.
Then $s^{n}=f^{2}=e$. But

$$
f s f=s^{-1} ; \quad f s=s^{-1} f=s^{n-1} f
$$

Picture of the formula $f s f=s^{-1}$

Multliplication in $D_{2 n}$

So the elements of $D_{2 n}$ are all of the form $e, s, s^{2}, \ldots, s^{n-1}$ and $f, f s, f s^{2}, \ldots, f s^{n-1}$.
Thus there are $2 n$ elements. Any two elements can be multiplied using the relations we know:

Multliplication in $D_{2 n}$

So the elements of $D_{2 n}$ are all of the form $e, s, s^{2}, \ldots, s^{n-1}$ and $f, f s, f s^{2}, \ldots, f s^{n-1}$.
Thus there are $2 n$ elements. Any two elements can be multiplied using the relations we know:

$$
s^{a} \cdot f=s^{a-1} \cdot f \cdot s^{-1}=s^{a-2} \cdot f \cdot s^{-2} \cdots=f \cdot s^{-a}
$$

Multliplication in $D_{2 n}$

So the elements of $D_{2 n}$ are all of the form $e, s, s^{2}, \ldots, s^{n-1}$ and $f, f s, f s^{2}, \ldots, f s^{n-1}$.
Thus there are $2 n$ elements. Any two elements can be multiplied using the relations we know:

$$
\begin{gathered}
s^{a} \cdot f=s^{a-1} \cdot f \cdot s^{-1}=s^{a-2} \cdot f \cdot s^{-2} \cdots=f \cdot s^{-a} \\
s^{a} \cdot f s^{b}=f \cdot s^{b-a}
\end{gathered}
$$

Multliplication in $D_{2 n}$

Lemma

For any G and $g, h \in G,(g h)^{-1}=h^{-1} g^{-1}$.
The proof is: $h^{-1} g^{-1} \cdot(g h)=h^{-1} \cdot h=e$.

Thus for any i,

Indeed, each $f s^{i}$ is a reflection around some axis. (Check geometrically.)

Multliplication in $D_{2 n}$

Lemma

For any G and $g, h \in G,(g h)^{-1}=h^{-1} g^{-1}$.
The proof is: $h^{-1} g^{-1} \cdot(g h)=h^{-1} \cdot h=e$.
Now we compute

$$
\left(f s^{i}\right)^{-1}=\left(s^{i}\right)^{-1} f^{-1}=s^{-i} f=f s^{i}
$$

Thus for any i,

Indeed, each $f s^{i}$ is a reflection around some axis. (Check
geometrically.)

Multliplication in $D_{2 n}$

Lemma

For any G and $g, h \in G,(g h)^{-1}=h^{-1} g^{-1}$.
The proof is: $h^{-1} g^{-1} \cdot(g h)=h^{-1} \cdot h=e$.
Now we compute

$$
\left(f s^{i}\right)^{-1}=\left(s^{i}\right)^{-1} f^{-1}=s^{-i} f=f s^{i}
$$

Thus for any i,

$$
\left(f s^{i}\right)^{2}=e
$$

Indeed, each $f s^{i}$ is a reflection around some axis. (Check geometrically.)

Every subgroup of a cyclic group is cyclic

The following theorem will be used constantly.
Theorem
Let G be a cyclic group, $H \subset G$ a subgroup. Then H is cyclic.
Proof: Let $g \in G$ be a generator. Let a be the smallest integer >0 such that $\gamma=g^{a} \in H$. If there is no such integer then $H=\{e\}$.
$c>0$; if not, replace h by h^{-1}
Thus g^{a} and $g^{c} \in H$. So for any $r, s \in \mathbb{Z}$,

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d \leq a$.

Every subgroup of a cyclic group is cyclic

The following theorem will be used constantly.

Theorem

Let G be a cyclic group, $H \subset G$ a subgroup. Then H is cyclic.
Proof: Let $g \in G$ be a generator. Let a be the smallest integer >0 such that $\gamma=g^{a} \in H$. If there is no such integer then $H=\{e\}$. Otherwise, let $h \in H$. Then $h=g^{c}$ for some c. We may assume $c>0$; if not, replace h by h^{-1}.
Thus g^{a} and $g^{c} \in H$. So for any $r, s \in \mathbb{Z}$,

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d<a$.

Every subgroup of a cyclic group is cyclic

The following theorem will be used constantly.

Theorem

Let G be a cyclic group, $H \subset G$ a subgroup. Then H is cyclic.
Proof: Let $g \in G$ be a generator. Let a be the smallest integer >0 such that $\gamma=g^{a} \in H$. If there is no such integer then $H=\{e\}$. Otherwise, let $h \in H$. Then $h=g^{c}$ for some c. We may assume $c>0$; if not, replace h by h^{-1}.
Thus g^{a} and $g^{c} \in H$. So for any $r, s \in \mathbb{Z}$,

$$
\left(g^{a}\right)^{r} \cdot\left(g^{c}\right)^{s}=g^{r a+s c} \in H .
$$

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d<a$.

Every subgroup of a cyclic group is cyclic

The following theorem will be used constantly.

Theorem

Let G be a cyclic group, $H \subset G$ a subgroup. Then H is cyclic.
Proof: Let $g \in G$ be a generator. Let a be the smallest integer >0 such that $\gamma=g^{a} \in H$. If there is no such integer then $H=\{e\}$. Otherwise, let $h \in H$. Then $h=g^{c}$ for some c. We may assume $c>0$; if not, replace h by h^{-1}.
Thus g^{a} and $g^{c} \in H$. So for any $r, s \in \mathbb{Z}$,

$$
\left(g^{a}\right)^{r} \cdot\left(g^{c}\right)^{s}=g^{r a+s c} \in H .
$$

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d \leq a$.

Subgroups of cyclic groups

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d \leq a$.
Since a is chosen to be minimum, $d=a$. But since we also know $d \mid c, b=c / d$ means $h=\gamma^{b}$. Thus γ is a generator of H. This completes the proof.

Theorem
Let G be a finite cyclic group, $|G|=n$. Then for every divisor d of n, there is exactly one subgroup $H \subset G$ with $|H|=d$.

Subgroups of cyclic groups

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d \leq a$.
Since a is chosen to be minimum, $d=a$. But since we also know
$d \mid c, b=c / d$ means $h=\gamma^{b}$. Thus γ is a generator of H. This
completes the proof.
Theoren
Let G be a finite cyclic group, $|G|=n$. Then for every divisor d of n, there is exactly one subgroup $H \subset G$ with $|H|=d$.

Subgroups of cyclic groups

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d \leq a$.
Since a is chosen to be minimum, $d=a$. But since we also know $d \mid c, b=c / d$ means $h=\gamma^{b}$. Thus γ is a generator of H. This completes the proof.

Let G be a finite cyclic group, $|G|=n$. Then for every divisor d of n, there is exactly one subgroup $H \subset G$ with $|H|=d$.

Subgroups of cyclic groups

By Bezout's theorem, if $d=\operatorname{gcd}(a, c)$, then $d=r a+s c$ for some r, s, so $g^{d} \in H$. Moreover $d \mid a$ and so $d \leq a$.
Since a is chosen to be minimum, $d=a$. But since we also know $d \mid c, b=c / d$ means $h=\gamma^{b}$. Thus γ is a generator of H. This completes the proof.

Theorem

Let G be a finite cyclic group, $|G|=n$. Then for every divisor d of n, there is exactly one subgroup $H \subset G$ with $|H|=d$.

Proof of the theorem on subgroups of cyclic groups

Proof of existence Let $d \mid n$, so $n=m d$ for some m. Let g be a generator of G.
has d elements and it's easy to see it's a subgroup.
Proof of uniqueness Suppose $H \subset G$ is a subgroup, $|H|=d$. We
know H is cyclic. Let h be a generator of H, so $h^{d}=e$. But $h=g^{a}$ for some minimal $a>0$. (Unless $|H|=1$, in which case $H=\{e\}$.) Then

$$
g^{a d}=h^{d}=e
$$

so $a d$ is a multiple of $n=m d$. Thus a is a multiple of m. Since a is
minimal, $a=m$, and we are done.

Proof of the theorem on subgroups of cyclic groups

Proof of existence Let $d \mid n$, so $n=m d$ for some m. Let g be a generator of G. Consider the subset $\left\{e, g^{m}, g^{2 m}, \ldots, g^{(d-1) m}\right\} \subset G$. It has d elements and it's easy to see it's a subgroup.

Proof of uniqueness Suppose $H \subset G$ is a subgroup, $|H|=d$. We
know H is cyclic. Let h be a generator of H, so $h^{d}=e$. But $h=g^{a}$ for some minimal $a>0$. (Unless $|H|=1$, in which case $H=\{e\}$.) Then
so $a d$ is a multiple of $n=m d$. Thus a is a multiple of m. Since a is minimal, $a=m$, and we are done.

Proof of the theorem on subgroups of cyclic groups

Proof of existence Let $d \mid n$, so $n=m d$ for some m. Let g be a generator of G. Consider the subset $\left\{e, g^{m}, g^{2 m}, \ldots, g^{(d-1) m}\right\} \subset G$. It has d elements and it's easy to see it's a subgroup.

Proof of uniqueness Suppose $H \subset G$ is a subgroup, $|H|=d$. We know H is cyclic. Let h be a generator of H, so $h^{d}=e$. But $h=g^{a}$ for some minimal $a>0$. (Unless $|H|=1$, in which case $H=\{e\}$.)
so $a d$ is a multiple of $n=m d$. Thus a is a multiple of m. Since a is minimal, $a=m$, and we are done.

Proof of the theorem on subgroups of cyclic groups

Proof of existence Let $d \mid n$, so $n=m d$ for some m. Let g be a generator of G. Consider the subset $\left\{e, g^{m}, g^{2 m}, \ldots, g^{(d-1) m}\right\} \subset G$. It has d elements and it's easy to see it's a subgroup.

Proof of uniqueness Suppose $H \subset G$ is a subgroup, $|H|=d$. We know H is cyclic. Let h be a generator of H, so $h^{d}=e$. But $h=g^{a}$ for some minimal $a>0$. (Unless $|H|=1$, in which case $H=\{e\}$.) Then

$$
g^{a d}=h^{d}=e
$$

so $a d$ is a multiple of $n=m d$. Thus a is a multiple of m. Since a is minimal, $a=m$, and we are done.

Homomorphisms

Let G and H be groups，with identity elements e_{G} and e_{H} ．A homomorphism from G to H is a function $f: G \rightarrow H$ such that，for all $g, g^{\prime} \in G$ ，

$$
f\left(g g^{\prime}\right)=f(g) f\left(g^{\prime}\right)
$$

This already implies that

$$
f\left(e_{G}\right)=f\left(e_{H}\right) .
$$

Indeed，let $f\left(e_{G}\right)=h$ ．Now $e_{G} \cdot e_{G}=e_{G}$ by definition，so

$$
f\left(e_{G}\right)=f\left(e_{G} \cdot e_{G}\right)=f\left(e_{G}\right) \cdot f\left(e_{G}\right) \Rightarrow h=h \cdot h .
$$

Now multiply both sides by h^{-1} ，

$$
e_{H}=h^{-1} h=h^{-1} h \cdot h=h .
$$

In the same way，we prove that，for all $\left.g, f\left(g^{-1}\right)_{\overline{\bar{I}}}^{\bar{\square}} f\left(g_{⿹ 勹 䶹}\right)\right)^{-1}$

Homomorphisms

Let G and H be groups, with identity elements e_{G} and e_{H}. A homomorphism from G to H is a function $f: G \rightarrow H$ such that, for all $g, g^{\prime} \in G$,

$$
f\left(g g^{\prime}\right)=f(g) f\left(g^{\prime}\right)
$$

This already implies that

$$
f\left(e_{G}\right)=f\left(e_{H}\right)
$$

Indeed, let $f\left(e_{G}\right)=h$. Now $e_{G} \cdot e_{G}=e_{G}$ by definition, so

$$
f\left(e_{G}\right)=f\left(e_{G} \cdot e_{G}\right)=f\left(e_{G}\right) \cdot f\left(e_{G}\right) \Rightarrow h=h \cdot h
$$

Now multiply both sides by h^{-1}
$e_{H}=h^{-1} h=h^{-1} h \cdot h=h$.

Homomorphisms

Let G and H be groups, with identity elements e_{G} and e_{H}. A homomorphism from G to H is a function $f: G \rightarrow H$ such that, for all $g, g^{\prime} \in G$,

$$
f\left(g g^{\prime}\right)=f(g) f\left(g^{\prime}\right)
$$

This already implies that

$$
f\left(e_{G}\right)=f\left(e_{H}\right)
$$

Indeed, let $f\left(e_{G}\right)=h$. Now $e_{G} \cdot e_{G}=e_{G}$ by definition, so

$$
f\left(e_{G}\right)=f\left(e_{G} \cdot e_{G}\right)=f\left(e_{G}\right) \cdot f\left(e_{G}\right) \Rightarrow h=h \cdot h
$$

Now multiply both sides by h^{-1} :

$$
e_{H}=h^{-1} h=h^{-1} h \cdot h=h
$$

In the same way, we prove that, for all $g, f\left(g^{-1}\right)_{4} \overline{\bar{a}} f(g)^{-1} \cdot(\bar{Q})^{-1}$

Homomorphisms

Let G and H be groups, with identity elements e_{G} and e_{H}. A homomorphism from G to H is a function $f: G \rightarrow H$ such that, for all $g, g^{\prime} \in G$,

$$
f\left(g g^{\prime}\right)=f(g) f\left(g^{\prime}\right)
$$

This already implies that

$$
f\left(e_{G}\right)=f\left(e_{H}\right)
$$

Indeed, let $f\left(e_{G}\right)=h$. Now $e_{G} \cdot e_{G}=e_{G}$ by definition, so

$$
f\left(e_{G}\right)=f\left(e_{G} \cdot e_{G}\right)=f\left(e_{G}\right) \cdot f\left(e_{G}\right) \Rightarrow h=h \cdot h
$$

Now multiply both sides by h^{-1} :

$$
e_{H}=h^{-1} h=h^{-1} h \cdot h=h
$$

In the same way, we prove that, for all $g, f\left(g^{-1}\right)=f(g)^{-1}$.

Examples of homomorphisms

Example

Suppose $m \mid n$ are positive integers. Then reduction modulo n can be followed by reduction modulo m :

$$
f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m} ; f\left([a]_{n}\right)=[a]_{m} .
$$

Example
If $G=G L(n, \mathbb{R}), H=\mathbb{R}^{\times}$, det : $G \rightarrow H$ is a homomorphism. This is the familiar fact:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

if A and B are invertible $n \times n$ matrices.

\square
Example

Examples of homomorphisms

Example

Suppose $m \mid n$ are positive integers. Then reduction modulo n can be followed by reduction modulo m :

$$
f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m} ; f\left([a]_{n}\right)=[a]_{m} .
$$

Example

If $G=G L(n, \mathbb{R}), H=\mathbb{R}^{\times}$, det : $G \rightarrow H$ is a homomorphism. This is the familiar fact:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

if A and B are invertible $n \times n$ matrices.

[^0]
Examples of homomorphisms

Example

Suppose $m \mid n$ are positive integers. Then reduction modulo n can be followed by reduction modulo m :

$$
f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m} ; f\left([a]_{n}\right)=[a]_{m}
$$

Example

If $G=G L(n, \mathbb{R}), H=\mathbb{R}^{\times}$, det : $G \rightarrow H$ is a homomorphism. This is the familiar fact:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

if A and B are invertible $n \times n$ matrices.

Example

Let $G=\mathbb{R}^{n}, H=\mathbb{R}^{m}$. Then a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a

Properties of homomorphisms

A bijective homomorphism $f: G \rightarrow H$. is called an isomorphism. If $G=H$ it is called an automorphism.

> Proposition
> Let $f: G \rightarrow \boldsymbol{H}$ be a bijective homomorphism. Let $f^{-1}: H \rightarrow G$ be the inverse function. Then f^{-1} is also a homomorphism (thus an isomorphism).

Proof: Let $h_{1}, h_{2} \in H$. By assumption, there are unique $g_{1}, g_{2} \in G$ such that $f\left(g_{1}\right)=h_{1}, f\left(g_{2}\right)=h_{2}$. Thus

$$
f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)=h_{1} \cdot h_{2}
$$

Hence

Properties of homomorphisms

A bijective homomorphism $f: G \rightarrow H$. is called an isomorphism. If $G=H$ it is called an automorphism.

Proposition

Let $f: G \rightarrow H$ be a bijective homomorphism. Let $f^{-1}: H \rightarrow G$ be the inverse function. Then f^{-1} is also a homomorphism (thus an isomorphism).

Proof: Let $h_{1}, h_{2} \in H$. By assumption, there are unique $g_{1}, g_{2} \in G$ such that $f\left(g_{1}\right)=h_{1}, f\left(g_{2}\right)=h_{2}$. Thus

$$
f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)=h_{1} \cdot h_{2} .
$$

Hence

$$
f^{-1}\left(h_{1} \cdot h_{2}\right)=g_{1} g_{2}=f^{-1}\left(h_{1}\right) \cdot f^{-1}\left(h_{2}\right) .
$$

Examples of homomorphisms

Example
Let $G=D_{2 n}$, with generators $s, f ; H=\mathbb{Z}_{2}$. Define $\phi: G \rightarrow H$ by the formula

$$
\phi\left(s^{a}\right)=[0] ; \phi\left(f s^{b}\right)=[1] .
$$

Then for example

Examples of homomorphisms

Example
Let $G=D_{2 n}$, with generators $s, f ; H=\mathbb{Z}_{2}$. Define $\phi: G \rightarrow H$ by the formula

$$
\phi\left(s^{a}\right)=[0] ; \phi\left(f s^{b}\right)=[1] .
$$

Then for example
$\phi\left(f s^{b} \cdot f s^{c}\right)=\phi\left(f^{2} s^{c-b}\right)=\phi\left(s^{c-b}\right)=[0]=[1]+[1]=\phi\left(f s^{b}\right)+\phi\left(f s^{c}\right)$.

More on equivalence relations

[^0]: Example

