Modern Algebra I Problem Set 9 Answer Key

Zheheng Xiao

Nov 15, 2023

1 Problem 1

By the classification of finite abelian groups, the isomorphism classes abelian groups of the following orders $27,200,605,720$ are:

- Order 27:

$$
\begin{aligned}
& -\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
& -\mathbb{Z}_{3} \times \mathbb{Z}_{9} \\
& -\mathbb{Z}_{27}
\end{aligned}
$$

- Order 200:
$-\mathbb{Z}_{8} \times \mathbb{Z}_{25}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{25}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$
$-\mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
- Order 605 :
- $\mathbb{Z}_{5} \times \mathbb{Z}_{121}$
$-\mathbb{Z}_{5} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}$
- Order 720:
$-\mathbb{Z}_{16} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$-\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$-\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$-\mathbb{Z}_{16} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

$$
\begin{aligned}
& -\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
& -\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
& -\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \\
& -\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}
\end{aligned}
$$

2 Problem 2

2.1 Judson Section 13.4 Exercise 6

By the Fundamental theorem of finite abelian groups, we have

$$
G \cong \mathbb{Z}_{p_{1}^{r_{1}}} \times \mathbb{Z}_{p_{2}^{r_{2}}} \times \cdots \times \mathbb{Z}_{p_{k}^{r_{k}}}
$$

where $m=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$, and p_{1}, \cdots, p_{k} are primes (not necessarily distinct). Since $n \mid m$, we can write

$$
n=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}
$$

where $0 \leq s_{i} \leq r_{i}$ for all $1 \leq i \leq k$. For each i, pick $a_{i} \in \mathbb{Z}_{p_{i}^{r_{i}}}$ with order $\left|a_{i}\right|=p_{i}^{s_{i}}$. Then the element $a=a_{1} a_{2} \cdots a_{k} \in G$ has order $p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}=n$. The subgroup of G generated by a is then a subgroup of order n.

2.2 Judson Section 14.3 Exercise 8

By the Fundamental Theorem of finitely generated abelian group, we know that the groups G, H, K are of the form

$$
\begin{aligned}
& G \cong \mathbb{Z}^{a} \times \mathbb{Z}_{p_{1} a_{1}} \times \mathbb{Z}_{p_{2} a_{2}} \times \cdots \mathbb{Z}_{p_{n} a_{n}}, \\
& H \cong \mathbb{Z}^{b} \times \mathbb{Z}_{q_{1} b_{1}} \times \mathbb{Z}_{q_{2} b_{2}} \times \cdots \mathbb{Z}_{q_{k}{ }^{b_{k}}} \\
& K \cong \mathbb{Z}^{c} \times \mathbb{Z}_{r_{1} c_{1}} \times \mathbb{Z}_{r_{2} c_{2}} \times \cdots \mathbb{Z}_{r_{l} c_{l}},
\end{aligned}
$$

where the p_{i}, q_{i}, r_{i} 's are primes (not necessarily distinct). Since $G \times H \cong G \times K$, we have

$$
\mathbb{Z}^{a+b} \times \mathbb{Z}_{p_{1} a_{1}} \times \cdots \mathbb{Z}_{p_{n} a_{n}} \times \mathbb{Z}_{q_{1} b_{1}} \times \cdots \mathbb{Z}_{q_{k} b_{k}} \cong \mathbb{Z}^{a+c} \times \mathbb{Z}_{p_{1} a_{1}} \times \cdots \mathbb{Z}_{p_{n} a_{n}} \times \mathbb{Z}_{r_{1} c_{1}} \times \cdots \mathbb{Z}_{r_{l} c_{l}}
$$

Since the Fundamental theorem of finitely generated abelian group provides a unique (up to permutation of terms) representation for a finitely generated abelian group, we must have that $b=c$, and the prime powers $q_{1}^{b_{1}}, \cdots, q_{k}^{b_{k}}$ match up with $r_{1}^{c_{1}}, \cdots r_{l}^{c_{l}}$, up to permutation. After reordering of terms, we get $H \cong K$, as desired.

Note that this result is not true for general abelian groups. For example, let $G=\prod_{i=1}^{\infty} \mathbb{Z}$ be a product of infinite copies of $\mathbb{Z}, H=\mathbb{Z}$ and $K=\mathbb{Z} \times \mathbb{Z}$. Then we have

$$
G \times H \cong \prod_{i=1}^{\infty} \mathbb{Z} \cong G \times K
$$

but $H \not \approx K$.

3 Problem 3

For $n=43,44$, note that there are two isomorphism classes of $\mathbb{Z}_{44}: \mathbb{Z}_{4} \times \mathbb{Z}_{11}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{11}$. For $n=45$, there are two isomorphism classes of $\mathbb{Z}_{45}: \mathbb{Z}_{9} \times \mathbb{Z}_{5}$ and $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$. When $n=46$, there is exactly one isomorphism class of \mathbb{Z}_{46}, since $\mathbb{Z}_{46} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{23}$, and one isomorphism class of \mathbb{Z}_{47}, since 47 is prime. Therefore, the smallest $n>42$ that satisfies the given condition is $n=46$.

4 Problem 4

(a). The map $\alpha_{a, d}: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is defined as

$$
\alpha_{a, d}((x, y))=(a x, d y)
$$

for all $(x, y) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$. Its kernel is the set of (x, y) such that $a x=0$ in \mathbb{Z}_{n} and $d y=0$ in \mathbb{Z}_{m}. Noting that $\operatorname{gcd}(a, n)=\operatorname{gcd}(d, m)=1$, we conclude that $a=d=1$; in other words, the kernel of $\alpha_{a, d}$ is trivial, so $\alpha_{a, d}$ is injective. Moreover, since $\operatorname{gcd}(a, n)=\operatorname{gcd}(d, m)=1$, there exists integers x, y such that $a x=1$ in \mathbb{Z}_{n} and $d y=1$ in \mathbb{Z}_{m}. In particular, we have

$$
\alpha_{a, d}(x, 0)=(1,0), \quad \alpha_{a, d}(0, y)=(0,1) .
$$

Since $(1,0)$ and $(0,1)$ span the codomain, $\alpha_{a, d}$ is surjective. It remains to check that $\alpha_{a, d}$ is a group homomorphism. Indeed, for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$, we have

$$
\begin{aligned}
\alpha_{a, d}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) & =\alpha_{a, d}\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right) \\
& =\left(a\left(x_{1}+x_{2}\right), d\left(y_{1}+y_{2}\right)\right) \\
& =\left(a x_{1}, d y_{1}\right)+\left(a x_{2}, d y_{2}\right) \\
& =\alpha_{a, d}\left(\left(x_{1}, y_{1}\right)\right)+\alpha_{a, d}\left(\left(x_{2}, y_{2}\right)\right) .
\end{aligned}
$$

(b). Since $\operatorname{gcd}(n, m)=1$, we may identify $\mathbb{Z}_{n m}$ with $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ via the isomorphism $[x]_{n m} \mapsto$ $\left([x]_{n},[x]_{m}\right)$. From now on, we denote the congruence class $[x]$ by x if the context is clear. Let

$$
\begin{align*}
A_{n} & =\left\{(x, y) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}: y=0\right\} \tag{1}\\
A_{m} & =\left\{(x, y) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}: x=0\right\} \tag{2}
\end{align*}
$$

It is clear that A_{n}, A_{m} are subgroups of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ of order n, m, repsectively. We want to show that they are unique subgroups with such order.

Let $(a, b) \in A_{n} \subset \mathbb{Z}_{n} \times \mathbb{Z}_{m}$. Since A_{n} has order n, we have

$$
(0,0)=n(a, b)=(n a, n b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m},
$$

which gives us $n b=0$ in \mathbb{Z}_{m}. Given that $\operatorname{gcd}(n, m)=1$, we conclude that $b=0$ in \mathbb{Z}_{m}. Therefore, A_{n} must take the form in (1). Similarly, we conclude that A_{m} must take the form in (2).

Finally, we define a map $f: A_{n} \times A_{m} \rightarrow \mathbb{Z}_{n m}$ by

$$
f((a, 0),(0, b))=(a, b) .
$$

One may easily check that f is a bijective group homomorphism, and therefore a group isomorphism.
(c). Let $f: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ be an automorphism. Let $f((1,0))=(a, b), f((0,1))=(c, d)$. This determines the entire map f. Indeed, since f is a group homomorphism, we have

$$
f((x, y))=f(x(1,0)+y(0,1))=x f(1,0)+y f(0,1)=(a x+c y, b x+d y)
$$

for any $(x, y) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$. We want to show that $b=c=0$, and that $\operatorname{gcd}(a, n)=\operatorname{gcd}(d, m)=1$. Observe that

$$
(0,0)=f(0,0)=f(n, 0)=n f(1,0)=(n a, n b),
$$

which tells us that $n b=0$ in \mathbb{Z}_{m}. Since $\operatorname{gcd}(n, m)=1$, we have that $b=0$. By a similar argument, we know that $c=0$.

Next, suppose for the sake of contradiction that $\operatorname{gcd}(a, n)=k>1$. Then

$$
f\left(\frac{n}{k}, 0\right)=\frac{n}{k} f(1,0)=\frac{n}{k}(a, b)=\left(n \cdot \frac{a}{k}, 0\right)=(0,0) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m} .
$$

We then have $f(0,0)=(0,0)=f\left(\frac{n}{k}, 0\right)$ and $\left(\frac{n}{k}, 0\right) \neq(0,0)$. This contradicts with the surjectivity of f. Hence, we must have $\operatorname{gcd}(a, n)=1$. By a similar argument, we also have $\operatorname{gcd}(d, m)=1$. This concludes the proof.
(d). Define $f: \mathbb{Z}_{3} \times \mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{9}$ by

$$
f(x, y)=(x, 3 x+y) .
$$

The map f is not of the form $\alpha_{a, d}$. We want to show that f is an autmorphism. In particular, we check that

- f is injective: if $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$, then $(x, y+3 x)=\left(x^{\prime}, y+3 x\right)$, so $x=x^{\prime}$ and $y=y^{\prime}$.
- f is surjective: for all $\left(z_{1}, z_{2}\right) \in \mathbb{Z}_{3} \times \mathbb{Z}_{9}$, there exists $\left(z_{1}, z_{2}-3 z_{1}\right) \in \mathbb{Z}_{3} \times \mathbb{Z}_{9}$ such that $f\left(z_{1}, z_{2}-3 z_{1}\right)=\left(z_{1}, z_{2}\right)$.
- f is a homomorphism: for all $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}_{3} \times \mathbb{Z}_{9}$, we have

$$
f\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right)=f\left(\left(x+x^{\prime}, y+y^{\prime}\right)\right)=\left(x+x^{\prime}, 3\left(x+x^{\prime}\right)+y+y^{\prime}\right)=(x, 3 x+y)+\left(x^{\prime}, 3 x^{\prime}+y^{\prime}\right)=f(x, y)+f\left(x^{\prime}, y^{\prime}\right) .
$$

Therefore, f is an automorphism that is not of the form $\alpha_{a, d}$.
(e) Since $M(x, y)=(a x+b y, c x+d y)$, the matrix representation of M is

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

and so M is an automorphism if and only if the determinant of M is nonzero, that is, $a d-b c \neq 0$.

