Intro Modern Algebra I HW8 Solution

Zhaocheng Dong

November 11, 2023

Problem 1

(a)

$\operatorname{ker}(f \times g)=\{x \in \mathbb{Z} \mid f(x)=0$ and $g(x)=0\} \stackrel{\text { def of } f \text { and } g}{=}\{x \in \mathbb{Z} \mid$ $n \mid x$ and $m \mid x\} \stackrel{\text { def of } \mathrm{lcm}}{=}\{x \in \mathbb{Z}|\operatorname{lcm}(m, n)| x\} \stackrel{(m, n)=1}{=}\{x \in \mathbb{Z}|m n| x\} \stackrel{\text { def }}{=}$ $\{m n k \mid k \in \mathbb{Z}\}$. equivalently this is the set $m n \mathbb{Z}$.

(b)

By first isomorphism theorem, $\mathbb{Z} / \operatorname{ker}(f \times g) \cong \operatorname{Im}(f \times g)$, so $\mathbb{Z} / m n \mathbb{Z} \cong$ $\operatorname{Im}(f \times g)$ by (a). But $\mathbb{Z} / m n \mathbb{Z}=\mathbb{Z}_{m n}$ by definition(or, from the fact that $\mathbb{Z} / m n \mathbb{Z}$ is a cyclic group of $m n$ elements), so $\mathbb{Z}_{m n} \cong \operatorname{Im}(f \times g) \subseteq \mathbb{Z}_{n} \times \mathbb{Z}_{m}$. Since their cardinalities are equal we claim that indeed $\operatorname{Im}(f \times g)=\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ and $\mathbb{Z}_{m n} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m}$.

(c)

Since $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is surjective, the image $\operatorname{Im}(f \times f)=\{(f(x), f(x)) \mid x \in$ $\mathbb{Z}\}=\left\{(x, x) \mid x \in \mathbb{Z}_{n}\right\}=\Delta \subseteq \mathbb{Z}_{n} \times \mathbb{Z}_{n}$ is the set of diagonal elements. Also, $\operatorname{ker}(f)=n \mathbb{Z}$ is the multiples of n. We note that this is indeed consistent with the first isomorphism theorem by observing that $\Delta \cong \mathbb{Z}_{n} \cong \mathbb{Z} / n \mathbb{Z}$.

Problem 2

(a)

Bezout's theorem says that $a m+b n=d$ for some $a, b \in \mathbb{Z}$, so any $k d \in<d>$ can be written as $a k m+b k n$ and thus $k d \in H N$. On the other hand, given any $a m+b n \in H N$ we have $k \mid a m+b n$ since $k \mid m$ and $k \mid n$, so indeed $a m+b n \in\langle d\rangle$. Therefore $H N=\langle d\rangle$.
(b)
$H \cap N=\{x \in \mathbb{Z}|m| x, n \mid x\}=\{x \in \mathbb{Z}|c| x\}$ by definition of lcm, and the last set is evidently $\langle c\rangle$.

(c)

The second isomorphism theorem says that $H N / N \cong H /(H \cap N)$ which translates to $\langle d\rangle /\langle n\rangle \cong<m\rangle /\langle c\rangle$. To show this is equivalent to $\mathbb{Z}_{c / m} \cong \mathbb{Z}_{n / d}$ we just need to prove the following statement:

For $a \mid b,\langle a\rangle /\langle b\rangle \cong \mathbb{Z}_{b / a}$.
Proof. $\mathbb{Z} \cong<a>$ by multiplication by $a($ from the hint), and the subgroup $<b / a>\subset \mathbb{Z}$ is mapped to $\subset<a>$ via this isomorphism. Therefore $\cong<b / a>$ and $\mathbb{Z} /<b / a>\cong<a>/$, and the left side is equivalent to $\mathbb{Z}_{b / a}$ as we have illustrated many times before.

Problem 3

Proof. First noice that either $H \subseteq N$ or not. If $H \subseteq N$ we are done. If not then consider the group $H N \supsetneq N$ in G. Since $H N$ is strictly larger than N and $G \supseteq H N \supsetneq N$ we have $[G: H N] \cdot[H N: N]=[G: N]=p$ and $[H N: N]>1$. Because p is prime, it must be that $[H N: N]=p$ and $[G: H N]=1$. This implies that $G=H N$, and by the second isomorphism theorem we know $[H: H \cap N]=[H N: N]=[G: N]=p$.

Problem 4

(a)

Consider the quotient maps $f: G \rightarrow G / N$ and $g: G \rightarrow G / M$, using the same trick in problem 1 they induce a map

$$
f \times g: G \rightarrow G / N \times G / M
$$

and $\operatorname{ker}(f \times g)=\{x \in G \mid f(x)=e, g(x)=e\}=\operatorname{ker}(f) \cap \operatorname{ker}(g)=N \cap M$. This is a normal subgroup of G and is a subgroup of both N and M because it is contained in both.

Next we show that $f \times g$ is surjective. Since $G=M N$, it follows that any $x \in G$ has a (not necessarily unique) decomposition $x=a_{x} b_{x}, a_{x} \in M, b_{x} \in$ N.

Therefore by the first isomorphism theorem we have $G / N \cap M \cong G / N \times$ G / M as desired. Now given any $(a N, b M) \in G / N \times G / M$, we claim $f \times$ $g(a b)=(a N, b M)$. When $a=b=e$ this is trivial, so WLOG let $a \neq e$, so $a \notin N$. But since $G=M N, a \in M$ so $f \times g(a b)=(a b N, b M)$. Now if $b=e$ the claim is satisfied trivially so we furthermore let $b \neq e$, then by the same reasoning $b \in N$ so indeed $f \times g(a b)=(a N, b M)$.

This tells us that the image of $f \times g$ is $G / N \times G / M$, and by the first isomorphism theorem $G / N \cap M \cong G / N \times G / M$.
(b)

If $G=M N$ and $M \cap N=\{e\}$, by the second isomorphism theorem we have $M N / N \cong M / M \cap N$ and $M N / M \cong N / N \cap M$ which means $G / N \cong M$ and $G / M \cong N$. Therefore $G \cong M \times N$ from part (a).

Problem 5

$\phi^{-1}(H)$ is indeed a subgroup: since H is a subgroup of $G / N, N \in H$ so $e \in \phi^{-1}(H)$ since $e \in N=\phi^{-1}(N)$. If $a \in \phi^{-1}(H)$ then $a N \in H$ so $a^{-1} N \in H$ and $a^{-1} \in \phi^{-1}(H)$. If $a, b \in \phi^{-1}(H)$ then $a N, b N \in H$ and $a b N \in H$ so $a b \in \phi^{-1}(H)$.

Now $\left.\phi\right|_{\phi^{-1}(H)}: \phi^{-1}(H) \rightarrow H$ is a surjective group homomorphism with kernel N, and therefore $\left|\phi^{-1}(H)\right|=|H| \cdot|N|$.
(17)

Let $G_{1}=\mathbb{Z}, G_{2}=\mathbb{Z}_{2}$ and ϕ be the canonical map. Let $H_{1}=\{0\}$, then $H_{2}=\phi\left(H_{1}\right)=\{0\}$, but $\mathbb{Z} /\{0\}=\mathbb{Z} \not \approx \mathbb{Z}_{2}=\mathbb{Z}_{2} /\{0\}$.

