Modern Algebra I Problem Set 6 Answer Key

Zheheng Xiao

Oct 28, 2023

1 Problem 1

(a). The cosets of $\{0, 2, 4\}$ in $(\mathbb{Z}_6, +)$ are:

- $\{0, 2, 4\} + 0 = \{0, 2, 4\}$
- $\{0, 2, 4\} + 1 = \{1, 3, 5\}$

So the index of $\{0, 2, 4\}$ in $(\mathbb{Z}_6, +)$ is 2. (b). The cosets of \mathbb{R} in $(\mathbb{C}, +)$ are of the form

$$\mathbb{R} + bi = \{a + bi | a \in \mathbb{R}\},\$$

where b is any real number. So the index of \mathbb{R} in $(\mathbb{C}, +)$ is infinity. (c). The cosets of $3\mathbb{Z}$ in $(\mathbb{Z}, +)$ are:

- $3\mathbb{Z} + 0 = \{\cdots, -6, -3, 0, 3, 6, \cdots\}$
- $3\mathbb{Z} + 1 = \{\cdots, -5, -2, 1, 4, 7, \cdots\}$
- $3\mathbb{Z} + 2 = \{\dots, -4, -1, 2, 5, 8, \dots\}$ So the index of $3\mathbb{Z}$ in $(\mathbb{Z}, +)$ is 3.

2 Problem 2

2.1 Exercise 1

(a). This is a subgroup of S_4 , because it is closed under multiplication. However, it is not a normal subgroup because

$$(1\ 2) \cdot (1\ 3\ 4) \cdot (1\ 2) = (2\ 3\ 4).$$

(b). This is a subgroup of S_4 because it is closed under multiplication. Moreover, it is normal subgroup because it is closed under conjugation. Indeed, for any $\sigma \in S_4$, we have

$$\sigma(i \ j)(k \ l)\sigma^{-1} = \Big(\sigma(i) \ \sigma(j)\Big)\Big(\sigma(k) \ \sigma(l)\Big),$$

where i, j, k, l is some permutation of $\{1, 2, 3, 4\}$. Note that the right hand side of the equality is a product of two disjoint transpositions, and therefore lies in the subgroup.

(c). This is a subgroup, since one can check that it is closed under multiplication. However, it is not a normal subgroup because

$$(1\ 2) \cdot (1\ 2\ 3\ 4) \cdot (1\ 2) = (2\ 1\ 3\ 4),$$

i.e. it is not closed under conjugation.

(d). This is not a subgroup at all, because

$$(1\ 2\ 3)\cdot(2\ 3\ 4) = (1\ 3)(2\ 4)$$

i.e. it is not closed under multiplication.

In conclusion, (b) satisfies condition (i); (a) and (c) satisfy condition (ii); and (d) satisfies condition (iii).

2.2 Exercise 2

(a) The image of f is

$$Im(f) = \{1, i, -1, -i\}.$$

(b). The kernel of f is

$$Ker(f) = \{0, 4, 8\}.$$

(c). The quotient group is

$$\mathbb{Z}_{12}/Ker(f) = \{0 + Ker(f), 1 + Ker(f), 2 + Ker(f), 3 + Ker(f)\}.$$

You may write down the Cayley table for $\mathbb{Z}_{12}/Ker(f)$ and Im(f) yourself and see that they are isomorphic. Indeed, the two groups above are both isomorphic to the cyclic group \mathbb{Z}_4 .

3 Problem 3

Choose the order 2 subgroup of S_3 to be $H = \{id, (1 2)\}$. (a). Let g = (2 3). Then

 $(2\ 3) \cdot (1\ 2) \cdot (2\ 3) = (1\ 3) \notin H.$

Therefore, H is not a normal subgroup. (b) The left cosets S_3/H are:

- $\operatorname{id} \cdot H = {\operatorname{id}, (1 \ 2)}$
- $(1\ 3) \cdot H = \{(1\ 3), (1\ 2\ 3)\}$
- $(2\ 3) \cdot H = \{(2\ 3), (1\ 3\ 2)\}$

The representatives of the left cosets are $\{id, (1 \ 3), (2 \ 3)\}$. Furthermore, the right cosets $H \setminus S_3$ are:

• $H \cdot id = \{id, (1\ 2)\}$

- $H \cdot (1 \ 3) = \{(1 \ 3), (1 \ 3 \ 2)\}$
- $H \cdot (2 \ 3) = \{(2 \ 3), (1 \ 2 \ 3)\}$

The representatives of the right cosets are $\{id, (1 3), (2 3)\}$.

4 Problem 4

We want to show the following statements are equivalent:

- (i) $g_1H = g_2H$
- (ii) $Hg_1^{-1} = Hg_2^{-1}$
- (iii) $g_1 H \subset g_2 H$
- (iv) $g_1 \in g_2 H$
- (v) $g_1^{-1}g_2 \in H$.

To proceed, we will show that $(i) \Longrightarrow (iii) \Longrightarrow (iv) \Longrightarrow (v) \Longrightarrow (ii) \Longrightarrow (ii)$.

- $(i) \Longrightarrow (iii)$: Obvious.
- $(iii) \Longrightarrow (iv)$: If $g_1 H \subset g_2 H$, then $g_1 = g_1 \cdot 1 \in g_2 H$.
- $(iv) \Longrightarrow (v)$: If $g_1 \in g_2H$, then $g_1 = g_2 \cdot h$ for some $h \in H$. Hence $g_1^{-1}g_2 = h^{-1} \in H$.
- $(v) \Longrightarrow (ii)$: If $g_1^{-1}g_2 \in H$, then

$$g_1^{-1}g_2 = h (1)$$

for some $h \in H$. We then have $g_1^{-1} = hg_2^{-1}$, implying that $g_1^{-1} \in Hg_2^{-1}$, and therefore $Hg_1^{-1} \subset Hg_2^{-1}$. On the other hand, taking inverses on both sides of equation (1) gives us $g_2^{-1}g_1 = h^{-1}$, so $g_2^{-1} \in Hg_1^{-1}$. This shows that $Hg_2^{-1} \subset Hg_1^{-1}$, and therefore $Hg_1^{-1} = Hg_2^{-1}$.

• $(ii) \implies (i)$: If $Hg_1^{-1} = Hg_2^{-1}$, then $g_1^{-1} = hg_2^{-1}$ for some $h \in H$. Taking inverses on both sides, we get $g_1 = g_2 h^{-1}$. This means that $g_1 \in g_2 H$, and therefore $g_1 H \subset g_2 H$. Using a similar argument where we switch g_1 and g_2 , we get $g_2 H \subset g_1 H$. Therefore, $g_1 H = g_2 H$.

5 Problem 5

(a) We check that G satisfies all the group axioms:

• Closure: If
$$A = \begin{pmatrix} a & b & e \\ c & d & f \\ 0 & 0 & \lambda \end{pmatrix}$$
 and $A' = \begin{pmatrix} a' & b' & e' \\ c' & d' & f' \\ 0 & 0 & \lambda' \end{pmatrix}$, then we compute that
$$A \cdot A' = \begin{pmatrix} aa' + bc' & ab' + bd' & ae' + bf' + e\lambda' \\ ca' + dc' & cb' + dd' & ce' + df' + f\lambda' \\ 0 & 0 & \lambda\lambda' \end{pmatrix},$$

and that

$$((aa' + bc')(cb' + dd') - (ab' + bd')(ca' + dc'))\lambda\lambda' = 1.$$

- Identity: The identity matrix $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ belongs to G.
- Inverse: Let $A = \begin{pmatrix} a & b & e \\ c & d & f \\ 0 & 0 & \lambda \end{pmatrix}$ be any element in G. Since $\det(A) = (ad bc)\lambda = 1$, it is

invertible and its inverse A^{-1} also has determinant equal to 1. Moreover, the (1,3) minor and the (2,3) minor of A are 0, so A^{-1} has zeroes on its (3,1) entry and (3,2) entry. This shows that A^{-1} also belongs to G.

• Associativity: Holds because matrix multiplication is associative.

Therefore, G is a group.

(b). For any
$$B = \begin{pmatrix} 1 & 0 & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix} \in H$$
 and $B' = \begin{pmatrix} 1 & 0 & e' \\ 0 & 1 & f' \\ 0 & 0 & 1 \end{pmatrix} \in H$, we have $B \cdot B' = \begin{pmatrix} 1 & 0 & e + e' \\ 0 & 1 & f + f' \\ 0 & 0 & 1 \end{pmatrix} \in H$,

so H is closed under multiplication. Furthermore, note that

$$B^{-}1 = \begin{pmatrix} 1 & 0 & -e \\ 0 & 1 & -f \\ 0 & 0 & 1 \end{pmatrix} \in H,$$

so H is also closed under inverses. This shows that H is a subgroup of G, as desired.

(c) We need to check that for any $q \in G$ and $h \in H$, we have $qhq^{-1} \in H$. Using the block matrix notation, we write

$$g = \left(\begin{array}{c|c} X & * \\ \hline 0 & \lambda \end{array}\right), \quad h = \left(\begin{array}{c|c} \operatorname{id} & * \\ \hline 0 & 1 \end{array}\right),$$

where the top left corner of g and h is a 2 by 2 submatrix. Then

$$ghg^{-1} = \left(\begin{array}{c|c} X & * \\ \hline 0 & \lambda \end{array}\right) \left(\begin{array}{c|c} \operatorname{id} & * \\ \hline 0 & 1 \end{array}\right) \left(\begin{array}{c|c} X^{-1} & * \\ \hline 0 & \lambda^{-1} \end{array}\right) = \left(\begin{array}{c|c} \operatorname{id} & * \\ \hline 0 & 1 \end{array}\right) \in H.$$

Therefore, H is a normal subgroup of G.

(d). For any $\begin{pmatrix} a & b & e \\ c & d & f \\ 0 & 0 & \lambda \end{pmatrix}$ and $A' = \begin{pmatrix} a' & b' & e' \\ c' & d' & f' \\ 0 & 0 & \lambda' \end{pmatrix}$ in G, we check that $\phi(A \cdot A') = \phi(A) \cdot \phi(A')$. On

one hand,

$$\phi(A \cdot A') = \phi\left(\begin{pmatrix} aa' + bc' & ab' + bd' & ae' + bf' + e\lambda' \\ ca' + dc' & cb' + dd' & ce' + df' + f\lambda' \\ 0 & 0 & \lambda\lambda' \end{pmatrix} \right) = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}.$$

On the other hand,

$$\phi(A) \cdot \phi(A') = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$$

Thus, $\phi(A \cdot A') = \phi(A) \cdot \phi(A')$ as desired, giving us that ϕ is a group homomorphism.

Moreover, $\phi(A)$ is the identity matrix if and only if a = d = 1 and b = c = 0, which is exactly the condition for which $\phi(A) \in H$.

6 Problem 6

The group of rotations of the regular *n*-gon is $S = \{e, s, s^2, \dots, s^{n-1}\}$. Note that this is a subset of the dihedral group $D_{2n} = \{e, s, s^2, \dots, s^{n-1}, f, fs, fs^2, \dots, fs^{n-1}\}$. It is a subgroup because it contains the identity element, and for any elements $s^i, s^j \in S$, we have $s^i \cdot s^{-j} = s^{i-j} \in S$. To show that it is a normal subgroup, it suffices to check that for any $g = fs^k \in D_{2n}$, we have $gHg^{-1} \subset H$. Indeed, for every $s^i \in S$,

$$gs^{i}g^{-1} = fs^{k}s^{i}(fs^{k})^{-1} = fs^{k}s^{i}s^{-k}f = s^{-k}s^{i}s^{k}ff = s^{-k}s^{i}s^{k} \in H.$$

Therefore, S is a normal subgroup of D_{2n} . The quotient group D_{2n}/S consists of two elements: $eH = \{e, s, s^2, \dots, s^{n-1}\}$, and $fH = \{f, fs, fs^2, \dots, fs^{n-1}\}$, with representatives e and f. It is isomorphic to \mathbb{Z}_2 .