# Modern Algebra I Problem Set 6 Answer Key 

Zheheng Xiao

Oct 28, 2023

## 1 Problem 1

(a). The cosets of $\{0,2,4\}$ in $\left(\mathbb{Z}_{6},+\right)$ are:

- $\{0,2,4\}+0=\{0,2,4\}$
- $\{0,2,4\}+1=\{1,3,5\}$

So the index of $\{0,2,4\}$ in $\left(\mathbb{Z}_{6},+\right)$ is 2 . (b). The cosets of $\mathbb{R}$ in $(\mathbb{C},+)$ are of the form

$$
\mathbb{R}+b i=\{a+b i \mid a \in \mathbb{R}\}
$$

where $b$ is any real number. So the index of $\mathbb{R}$ in $(\mathbb{C},+)$ is infinity. (c). The cosets of $3 \mathbb{Z}$ in $(\mathbb{Z},+)$ are:

- $3 \mathbb{Z}+0=\{\cdots,-6,-3,0,3,6, \cdots\}$
- $3 \mathbb{Z}+1=\{\cdots,-5,-2,1,4,7, \cdots\}$
- $3 \mathbb{Z}+2=\{\cdots,-4,-1,2,5,8, \cdots\}$ So the index of $3 \mathbb{Z}$ in $(\mathbb{Z},+)$ is 3 .


## 2 Problem 2

### 2.1 Exercise 1

(a). This is a subgroup of $S_{4}$, because it is closed under multiplication. However, it is not a normal subgroup because

$$
(12) \cdot\left(\begin{array}{ll}
1 & 3
\end{array}\right) \cdot(12)=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

(b). This is a subgroup of $S_{4}$ because it is closed under multiplication. Moreover, it is normal subgroup because it is closed under conjugation. Indeed, for any $\sigma \in S_{4}$, we have

$$
\sigma(i j)(k l) \sigma^{-1}=(\sigma(i) \sigma(j))(\sigma(k) \sigma(l))
$$

where $i, j, k, l$ is some permutation of $\{1,2,3,4\}$. Note that the right hand side of the equality is a product of two disjoint transpositions, and therefore lies in the subgroup.
(c). This is a subgroup, since one can check that it is closed under multiplication. However, it is not a normal subgroup because

$$
(12) \cdot\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right)
$$

i.e. it is not closed under conjugation.
(d). This is not a subgroup at all, because

$$
(123) \cdot(234)=(13)(24)
$$

i.e. it is not closed under multiplication.

In conclusion, (b) satisfies condition (i); (a) and (c) satisfy condition (ii); and (d) satisfies condition (iii).

### 2.2 Exercise 2

(a) The image of $f$ is

$$
\operatorname{Im}(f)=\{1, i,-1,-i\}
$$

(b). The kernel of $f$ is

$$
\operatorname{Ker}(f)=\{0,4,8\}
$$

(c). The quotient group is

$$
\mathbb{Z}_{12} / \operatorname{Ker}(f)=\{0+\operatorname{Ker}(f), 1+\operatorname{Ker}(f), 2+\operatorname{Ker}(f), 3+\operatorname{Ker}(f)\}
$$

You may write down the Cayley table for $\mathbb{Z}_{12} / \operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ yourself and see that they are isomorphic. Indeed, the two groups above are both isomoprhic to the cyclic group $\mathbb{Z}_{4}$.

## 3 Problem 3

Choose the order 2 subgroup of $S_{3}$ to be $H=\{$ id, (12) $\}$.
(a). Let $g=\left(\begin{array}{ll}2 & 3\end{array}\right)$. Then

$$
(23) \cdot(12) \cdot(23)=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \notin H
$$

Therefore, $H$ is not a normal subgroup.
(b) The left cosets $S_{3} / H$ are:

- id $\cdot H=\left\{\mathrm{id},\left(\begin{array}{ll}1 & 2)\end{array}\right\}\right.$
- $(13) \cdot H=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\}$
- $\left(\begin{array}{ll}2 & 3\end{array}\right) \cdot H=\left\{\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$

The representatives of the left cosets are $\{\mathrm{id},(13),(23)\}$.
Furthermore, the right cosets $H \backslash S_{3}$ are:

- $H \cdot \mathrm{id}=\left\{\mathrm{id},\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$
- $H \cdot\left(\begin{array}{ll}1 & 3\end{array}\right)=\left\{\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$
- $H \cdot(23)=\left\{\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$

The representatives of the right cosets are $\{\mathrm{id},(13),(23)\}$.

## 4 Problem 4

We want to show the following statements are equivalent:
(i) $g_{1} H=g_{2} H$
(ii) $H g_{1}^{-1}=H g_{2}^{-1}$
(iii) $g_{1} H \subset g_{2} H$
(iv) $g_{1} \in g_{2} H$
(v) $g_{1}^{-1} g_{2} \in H$.

To proceed, we will show that $(i) \Longrightarrow(i i i) \Longrightarrow(i v) \Longrightarrow(v) \Longrightarrow(i i) \Longrightarrow(i)$.

- $(i) \Longrightarrow(i i i):$ Obvious.
- $(i i i) \Longrightarrow(i v):$ If $g_{1} H \subset g_{2} H$, then $g_{1}=g_{1} \cdot 1 \in g_{2} H$.
- $(i v) \Longrightarrow(v)$ : If $g_{1} \in g_{2} H$, then $g_{1}=g_{2} \cdot h$ for some $h \in H$. Hence $g_{1}^{-1} g_{2}=h^{-1} \in H$.
- $(v) \Longrightarrow(i i):$ If $g_{1}^{-1} g_{2} \in H$, then

$$
\begin{equation*}
g_{1}^{-1} g_{2}=h \tag{1}
\end{equation*}
$$

for some $h \in H$. We then have $g_{1}^{-1}=h g_{2}^{-1}$, implying that $g_{1}^{-1} \in H g_{2}^{-1}$, and therefore $H g_{1}^{-1} \subset \mathrm{Hg}_{2}^{-1}$. On the other hand, taking inverses on both sides of equation (11) gives us $g_{2}^{-1} g_{1}=h^{-1}$, so $g_{2}^{-1} \in H g_{1}^{-1}$. This shows that $H g_{2}^{-1} \subset H g_{1}^{-1}$, and therefore $H g_{1}^{-1}=H g_{2}^{-1}$.

- (ii) $\Longrightarrow(i)$ : If $H g_{1}^{-1}=H g_{2}^{-1}$, then $g_{1}^{-1}=h g_{2}^{-1}$ for some $h \in H$. Taking inverses on both sides, we get $g_{1}=g_{2} h^{-1}$. This means that $g_{1} \in g_{2} H$, and therefore $g_{1} H \subset g_{2} H$. Using a similar argument where we switch $g_{1}$ and $g_{2}$, we get $g_{2} H \subset g_{1} H$. Therefore, $g_{1} H=g_{2} H$.


## 5 Problem 5

(a) We check that $G$ satisfies all the group axioms:

- Closure: If $A=\left(\begin{array}{ccc}a & b & e \\ c & d & f \\ 0 & 0 & \lambda\end{array}\right)$ and $A^{\prime}=\left(\begin{array}{ccc}a^{\prime} & b^{\prime} & e^{\prime} \\ c^{\prime} & d^{\prime} & f^{\prime} \\ 0 & 0 & \lambda^{\prime}\end{array}\right)$, then we compute that

$$
A \cdot A^{\prime}=\left(\begin{array}{ccc}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} & a e^{\prime}+b f^{\prime}+e \lambda^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime} & c e^{\prime}+d f^{\prime}+f \lambda^{\prime} \\
0 & 0 & \lambda \lambda^{\prime}
\end{array}\right)
$$

and that

$$
\left(\left(a a^{\prime}+b c^{\prime}\right)\left(c b^{\prime}+d d^{\prime}\right)-\left(a b^{\prime}+b d^{\prime}\right)\left(c a^{\prime}+d c^{\prime}\right)\right) \lambda \lambda^{\prime}=1 .
$$

- Identity: The identity matrix $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ belongs to $G$.
- Inverse: Let $A=\left(\begin{array}{lll}a & b & e \\ c & d & f \\ 0 & 0 & \lambda\end{array}\right)$ be any element in $G$. Since $\operatorname{det}(A)=(a d-b c) \lambda=1$, it is invertible and its inverse $A^{-} 1$ also has determinant equal to 1 . Moreover, the $(1,3)$ minor and the $(2,3)$ minor of $A$ are 0 , so $A^{-1}$ has zeroes on its $(3,1)$ entry and $(3,2)$ entry. This shows that $A^{-} 1$ also belongs to $G$.
- Associativity: Holds because matrix multiplication is associative.

Therefore, $G$ is a group.
(b). For any $B=\left(\begin{array}{lll}1 & 0 & e \\ 0 & 1 & f \\ 0 & 0 & 1\end{array}\right) \in H$ and $B^{\prime}=\left(\begin{array}{lll}1 & 0 & e^{\prime} \\ 0 & 1 & f^{\prime} \\ 0 & 0 & 1\end{array}\right) \in H$, we have

$$
B \cdot B^{\prime}=\left(\begin{array}{ccc}
1 & 0 & e+e^{\prime} \\
0 & 1 & f+f^{\prime} \\
0 & 0 & 1
\end{array}\right) \in H,
$$

so $H$ is closed under multiplication. Furthermore, note that

$$
B^{-} 1=\left(\begin{array}{ccc}
1 & 0 & -e \\
0 & 1 & -f \\
0 & 0 & 1
\end{array}\right) \in H,
$$

so $H$ is also closed under inverses. This shows that $H$ is a subgroup of $G$, as desired.
(c) We need to check that for any $g \in G$ and $h \in H$, we have $g h g^{-1} \in H$. Using the block matrix notation, we write

$$
g=\left(\begin{array}{c|c}
X & * \\
\hline 0 & \lambda
\end{array}\right), \quad h=\left(\begin{array}{c|c}
\mathrm{id} & * \\
\hline 0 & 1
\end{array}\right),
$$

where the top left corner of $g$ and $h$ is a 2 by 2 submatrix. Then

$$
g h g^{-1}=\left(\begin{array}{c|c}
X & * \\
\hline 0 & \lambda
\end{array}\right)\left(\begin{array}{c|c}
\mathrm{id} & * \\
\hline 0 & 1
\end{array}\right)\left(\begin{array}{c|c}
X^{-1} & * \\
\hline 0 & \lambda^{-1}
\end{array}\right)=\left(\begin{array}{c|c}
\mathrm{id} & * \\
\hline 0 & 1
\end{array}\right) \in H .
$$

Therefore, $H$ is a normal subgroup of $G$.
(d). For any $\left(\begin{array}{lll}a & b & e \\ c & d & f \\ 0 & 0 & \lambda\end{array}\right)$ and $A^{\prime}=\left(\begin{array}{ccc}a^{\prime} & b^{\prime} & e^{\prime} \\ c^{\prime} & d^{\prime} & f^{\prime} \\ 0 & 0 & \lambda^{\prime}\end{array}\right)$ in $G$, we check that $\phi\left(A \cdot A^{\prime}\right)=\phi(A) \cdot \phi\left(A^{\prime}\right)$. On one hand,

$$
\phi\left(A \cdot A^{\prime}\right)=\phi\left(\left(\begin{array}{ccc}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} & a e^{\prime}+b f^{\prime}+e \lambda^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime} & c e^{\prime}+d f^{\prime}+f \lambda^{\prime} \\
0 & 0 & \lambda \lambda^{\prime}
\end{array}\right)\right)=\left(\begin{array}{cc}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right) .
$$

On the other hand,

$$
\phi(A) \cdot \phi\left(A^{\prime}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right) .
$$

Thus, $\phi\left(A \cdot A^{\prime}\right)=\phi(A) \cdot \phi\left(A^{\prime}\right)$ as desired, giving us that $\phi$ is a group homomorphism.
Moreover, $\phi(A)$ is the identity matrix if and only if $a=d=1$ and $b=c=0$, which is exactly the condition for which $\phi(A) \in H$.

## 6 Problem 6

The group of rotations of the regular $n$-gon is $S=\left\{e, s, s^{2}, \cdots, s^{n-1}\right\}$. Note that this is a subset of the dihedral group $D_{2 n}=\left\{e, s, s^{2}, \cdots, s^{n-1}, f, f s, f s^{2}, \cdots, f s^{n-1}\right\}$. It is a subgroup because it contains the identity element, and for any elements $s^{i}, s^{j} \in S$, we have $s^{i} \cdot s^{-j}=s^{i-j} \in S$. To show that it is a normal subgroup, it suffices to check that for any $g=f s^{k} \in D_{2 n}$, we have $g H^{-1} \subset H$. Indeed, for every $s^{i} \in S$,

$$
g s^{i} g^{-1}=f s^{k} s^{i}\left(f s^{k}\right)^{-1}=f s^{k} s^{i} s^{-k} f=s^{-k} s^{i} s^{k} f f=s^{-k} s^{i} s^{k} \in H .
$$

Therefore, $S$ is a normal subgroup of $D_{2 n}$. The quotient group $D_{2 n} / S$ consists of two elements: $e H=\left\{e, s, s^{2}, \cdots, s^{n-1}\right\}$, and $f H=\left\{f, f s, f s^{2}, \cdots, f s^{n-1}\right\}$, with representatives $e$ and $f$. It is isomorphic to $\mathbb{Z}_{2}$.

