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1 Problem 1

1.1 Part (a)

Yes. For example, we can define the binary operation ⋆ to be

e ⋆ e = f, e ⋆ f = f, f ⋆ e = f, f ⋆ f = e.

On one hand we have
(e ⋆ e) ⋆ f = f ⋆ f = e,

while on the other hand we have
e ⋆ (e ⋆ f) = e ⋆ f = f.

Therefore ⋆ is not associative.

1.2 Part (b)

No, ⋆ is not necessarily associative. Similar to part (a), we may define ⋆ to satisfy f ⋆f = g, f ⋆g = g,
g ⋆ f = g,g ⋆ g = f . Then (f ⋆ f) ⋆ g ̸= f ⋆ (f ⋆ g).

2 Problem 2

The group Z/5Z has two subgroups: the trivial subgroup {0}, and the group Z/5Z itself. In this
case, there are no subrgoups of 3 elements.

The group Z/6Z has four subgroups: the trivial subgroup {0}, the subgroup {0, 3}, the subgroup
{0, 2, 4}, and Z/6Z itself. In this case, there is 1 subgroup that contains 3 elements.

3 Problem 3

3.1 Part(a)

In exponential function, the coordinates of the points in µn are e2kπi/n, where k ∈ {0, 1, · · · , n− 1}.
In trignometric functions, they are cos(2kπ/n) + i sin(2kπ/n), where where k ∈ {0, 1, · · · , n− 1}.
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3.2 Part (b)

Note that for k1, k2 ∈ {0, 1, · · · , n− 1}, we have

e2k1πi/n · e2k2πi/n = e2k
′πi/n ∈ µn,

where k′ ≡ k1 + k2 (mod n) and k′ ∈ {1, 2, · · · , n}. This shows that multiplication is a binary
operation on the set µn. It remains to check that µn satisfies the group axioms:

• Identity: Note that 1 = e2·0πi/n ∈ µn, and for any k, we have

1 · e2kπi/n = e2kπi/n · 1 = e2kπi/n.

• Inverse: Any e2kπi/n ∈ µn has inverse e2(n−k)πi/n ∈ µn, satisfying e2kπi/n · e2(n−k)πi/n = 1.

• Associativity: This is true because for any e2k1πi/n, e2k2πi/n, e2k3πi/n ∈ µn, we have

(e2k1πi/n · e2k2πi/n) · e2k3πi/n = e2k1πi/n · (e2k2πi/n · e2k3πi/n) = e2(k1+k2+k3)πi/n.

Therefore, µn is a group under multiplication.

3.3 Part (c)

Define f : Z/nZ → µn, where f(k) = e2kπi/n. We can find an inverse map g : µn → Z/nZ by setting
g(e2kπi/n) = k, and noting that

f ◦ g(e2kπi/n) = f(k) = e2kπi/n, g ◦ f(k) = g(e2kπi/n) = k.

This shows that f is a bijection. Moreover, f is a group homomorphism because for k1, k2 ∈ Z/nZ,
we have

f(k1) · f(k2) = e2k1πi/n · e2k2πi/n = e2(k1+k2)πi/n = f(k1 + k2).

Therefore, the map f is an isomorphism of groups.

3.4 Part (d)

Part (c) has ϕ(n) solutions, where ϕ(n) is Euler’s totient function of n. To see why, observe that
the isomorphism f must map generators to generators; in particular, once we determine where the
generator 1 ∈ Z/nZ maps to, we determine the entire map f from the group homomorphism property

f(k) = kf(1),

for each k ∈ Z/nZ. Finally, note that the generators of µn are the primitive roots of unity, and there
are ϕ(n) of them. Therefore, the number of isomorphisms from Z/nZ to µn is ϕ(n).
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4 Problem 4

4.1 Part (a)

For any A,B ∈ GL(2,R), their product AB is a 2× 2 matrix with determinant

det(AB) = det(A) · det(B) ̸= 0,

and so AB ∈ GL(2,R). This shows that multiplication is a binary operation on GL(2,R). Next, we
check that GL(2,R) satisfies the group axioms:

• Identity: The identity matrix I =

[
1 0
0 1

]
∈ GL(2,R).

• Inverse: For any M ∈ GL(2,R), its inverse M−1 exists because det(M) ̸= 0. Moreover, the
matrix M−1 is also a 2 by 2 matrix with nonzero determinant, i.e., M−1 ∈ GL(2,R).

• Associativity: This is obvious since matrix multiplication is associative. In other words, we
have

(AB)C = A(BC), ∀A,B,C ∈ GL(2,R).

Therefore, the set GL(2,R) forms a group under matrix multiplication.
Next, we give an example that shows matrix multiplication is not commutative. Let

A =

[
1 1
0 1

]
, B =

[
1 0
1 1

]
.

The matrices A,B are in GL(2,R) since their determinants are both 1. On the one hand, we have

A ·B =

[
1 1
0 1

]
·
[
1 0
1 1

]
=

[
2 1
1 1

]
.

On the other hand, we have

B ·A =

[
1 0
1 1

]
·
[
1 1
0 1

]
=

[
1 1
1 2

]
.

We see then that A ·B ̸= B ·A.

4.2 Part(b)

We define subgroups Hn of GL(2,R) of a general order n as follows:

Hn :=

{[
cos(2πk/n) − sin(2πk/n)
sin(2πk/n) cos(2πk/n)

]
: k ∈ {0, 1, · · · , n}

}
.

Geometrically, this is the group generated by rotations of R2 by degree 2πk/n, so Hn indeed has
order n. Thus, H2, H3, H4 are subgroups of order 2, 3, 4, respectively.
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5 Problem 5

5.1 Exercise 2

• (a) G is not a group, since it doesn’t have an identity element.

• (b) G is a group, and is isomorphic to Z/2Z⊕ Z/2Z. The identity element is a. The inverses
are given by

a−1 = a, b−1 = b, c−1 = c, d−1 = d.

Associativity can be checked from the table.

• (c) G is a group, and is isomorphic to Z/4Z. The identity element is a. The inverses are given
by

a−1 = a, b−1 = d, c−1 = a, d−1 = b.

Associativity can be checked from the table.

• (d) G is not a group, since the operation ◦ is not associative:

(bc)b = cb = b, b(cb) = bb = a.

5.2 Exercise 10

We check that the Heisenberg group satisfies the group axioms:

• Identity: The identity matrix I =

1 0 0
0 1 0
0 0 1

 belongs to the Heisenberg group.

• Inverse: We check that 1 x y
0 1 z
0 0 1

−1

=

1 −x xz − y
0 1 −z
0 0 1

 ,

which belongs to the Heisenberg group.

• Associativity: Holds because matrix multiplication is associative. Therefore, matrices of the
form 1 x y

0 1 z
0 0 1


is a group under matrix multiplication.
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