Modern Algebra I Problem Set 3 Answer Key

Zheheng Xiao

Oct 7, 2023

1 Problem 1

1.1 Part (a)

Yes. For example, we can define the binary operation \star to be

$$e \star e = f$$
, $e \star f = f$, $f \star e = f$, $f \star f = e$.

On one hand we have

$$(e \star e) \star f = f \star f = e,$$

while on the other hand we have

$$e \star (e \star f) = e \star f = f.$$

Therefore \star is not associative.

1.2 Part (b)

No, \star is not necessarily associative. Similar to part (a), we may define \star to satisfy $f \star f = g$, $f \star g = g$, $g \star f = g, g \star g = f$. Then $(f \star f) \star g \neq f \star (f \star g)$.

2 Problem 2

The group $\mathbb{Z}/5\mathbb{Z}$ has two subgroups: the trivial subgroup $\{0\}$, and the group $\mathbb{Z}/5\mathbb{Z}$ itself. In this case, there are no subgroups of 3 elements.

The group $\mathbb{Z}/6\mathbb{Z}$ has four subgroups: the trivial subgroup $\{0\}$, the subgroup $\{0,3\}$, the subgroup $\{0,2,4\}$, and $\mathbb{Z}/6\mathbb{Z}$ itself. In this case, there is 1 subgroup that contains 3 elements.

3 Problem 3

$3.1 \quad Part(a)$

In exponential function, the coordinates of the points in μ_n are $e^{2k\pi i/n}$, where $k \in \{0, 1, \dots, n-1\}$. In trignometric functions, they are $\cos(2k\pi/n) + i\sin(2k\pi/n)$, where where $k \in \{0, 1, \dots, n-1\}$.

3.2 Part (b)

Note that for $k_1, k_2 \in \{0, 1, \dots, n-1\}$, we have

$$e^{2k_1\pi i/n} \cdot e^{2k_2\pi i/n} = e^{2k'\pi i/n} \in \mu_n,$$

where $k' \equiv k_1 + k_2 \pmod{n}$ and $k' \in \{1, 2, \dots, n\}$. This shows that multiplication is a binary operation on the set μ_n . It remains to check that μ_n satisfies the group axioms:

• Identity: Note that $1 = e^{2 \cdot 0\pi i/n} \in \mu_n$, and for any k, we have

$$1 \cdot e^{2k\pi i/n} = e^{2k\pi i/n} \cdot 1 = e^{2k\pi i/n}$$

- Inverse: Any $e^{2k\pi i/n} \in \mu_n$ has inverse $e^{2(n-k)\pi i/n} \in \mu_n$, satisfying $e^{2k\pi i/n} \cdot e^{2(n-k)\pi i/n} = 1$.
- Associativity: This is true because for any $e^{2k_1\pi i/n}$, $e^{2k_2\pi i/n}$, $e^{2k_3\pi i/n} \in \mu_n$, we have

$$(e^{2k_1\pi i/n} \cdot e^{2k_2\pi i/n}) \cdot e^{2k_3\pi i/n} = e^{2k_1\pi i/n} \cdot (e^{2k_2\pi i/n} \cdot e^{2k_3\pi i/n}) = e^{2(k_1+k_2+k_3)\pi i/n}$$

Therefore, μ_n is a group under multiplication.

3.3 Part (c)

Define $f: \mathbb{Z}/n\mathbb{Z} \to \mu_n$, where $f(k) = e^{2k\pi i/n}$. We can find an inverse map $g: \mu_n \to \mathbb{Z}/n\mathbb{Z}$ by setting $g(e^{2k\pi i/n}) = k$, and noting that

$$f \circ g(e^{2k\pi i/n}) = f(k) = e^{2k\pi i/n}, \quad g \circ f(k) = g(e^{2k\pi i/n}) = k.$$

This shows that f is a bijection. Moreover, f is a group homomorphism because for $k_1, k_2 \in \mathbb{Z}/n\mathbb{Z}$, we have

$$f(k_1) \cdot f(k_2) = e^{2k_1\pi i/n} \cdot e^{2k_2\pi i/n} = e^{2(k_1+k_2)\pi i/n} = f(k_1+k_2).$$

Therefore, the map f is an isomorphism of groups.

3.4 Part (d)

Part (c) has $\phi(n)$ solutions, where $\phi(n)$ is Euler's totient function of n. To see why, observe that the isomorphism f must map generators to generators; in particular, once we determine where the generator $1 \in \mathbb{Z}/n\mathbb{Z}$ maps to, we determine the entire map f from the group homomorphism property

$$f(k) = kf(1),$$

for each $k \in \mathbb{Z}/n\mathbb{Z}$. Finally, note that the generators of μ_n are the primitive roots of unity, and there are $\phi(n)$ of them. Therefore, the number of isomorphisms from $\mathbb{Z}/n\mathbb{Z}$ to μ_n is $\phi(n)$.

4 Problem 4

4.1 Part (a)

For any $A, B \in GL(2, \mathbb{R})$, their product AB is a 2×2 matrix with determinant

$$\det(AB) = \det(A) \cdot \det(B) \neq 0,$$

and so $AB \in GL(2, \mathbb{R})$. This shows that multiplication is a binary operation on $GL(2, \mathbb{R})$. Next, we check that $GL(2, \mathbb{R})$ satisfies the group axioms:

- Identity: The identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in GL(2, \mathbb{R}).$
- Inverse: For any $M \in GL(2,\mathbb{R})$, its inverse M^{-1} exists because $\det(M) \neq 0$. Moreover, the matrix M^{-1} is also a 2 by 2 matrix with nonzero determinant, i.e., $M^{-1} \in GL(2,\mathbb{R})$.
- Associativity: This is obvious since matrix multiplication is associative. In other words, we have

 $(AB)C = A(BC), \quad \forall A, B, C \in GL(2, \mathbb{R}).$

Therefore, the set $GL(2,\mathbb{R})$ forms a group under matrix multiplication.

Next, we give an example that shows matrix multiplication is not commutative. Let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

The matrices A, B are in $GL(2, \mathbb{R})$ since their determinants are both 1. On the one hand, we have

$$A \cdot B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

On the other hand, we have

$$B \cdot A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

We see then that $A \cdot B \neq B \cdot A$.

4.2 Part(b)

We define subgroups H_n of $GL(2, \mathbb{R})$ of a general order n as follows:

$$H_n := \left\{ \begin{bmatrix} \cos(2\pi k/n) & -\sin(2\pi k/n) \\ \sin(2\pi k/n) & \cos(2\pi k/n) \end{bmatrix} : k \in \{0, 1, \cdots, n\} \right\}.$$

Geometrically, this is the group generated by rotations of \mathbb{R}^2 by degree $2\pi k/n$, so H_n indeed has order n. Thus, H_2, H_3, H_4 are subgroups of order 2, 3, 4, respectively.

5 Problem 5

5.1 Exercise 2

- (a) G is not a group, since it doesn't have an identity element.
- (b) G is a group, and is isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. The identity element is a. The inverses are given by

$$a^{-1} = a, b^{-1} = b, c^{-1} = c, d^{-1} = d.$$

Associativity can be checked from the table.

• (c) G is a group, and is isomorphic to $\mathbb{Z}/4\mathbb{Z}$. The identity element is a. The inverses are given by

$$a^{-1} = a, b^{-1} = d, c^{-1} = a, d^{-1} = b.$$

Associativity can be checked from the table.

• (d) G is not a group, since the operation \circ is not associative:

$$(bc)b = cb = b, \quad b(cb) = bb = a.$$

5.2 Exercise 10

We check that the Heisenberg group satisfies the group axioms:

- Identity: The identity matrix $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ belongs to the Heisenberg group.
- Inverse: We check that

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{bmatrix},$$

which belongs to the Heisenberg group.

• Associativity: Holds because matrix multiplication is associative. Therefore, matrices of the form

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}$$

is a group under matrix multiplication.