Modern Algebra I Problem Set 3 Answer Key

Zheheng Xiao

Oct 7, 2023

1 Problem 1

1.1 Part (a)

Yes. For example, we can define the binary operation \star to be

$$
e \star e=f, \quad e \star f=f, \quad f \star e=f, \quad f \star f=e .
$$

On one hand we have

$$
(e \star e) \star f=f \star f=e,
$$

while on the other hand we have

$$
e \star(e \star f)=e \star f=f .
$$

Therefore \star is not associative.

1.2 Part (b)

No, \star is not necessarily associative. Similar to part (a), we may define \star to satisfy $f \star f=g, f \star g=g$, $g \star f=g, g \star g=f$. Then $(f \star f) \star g \neq f \star(f \star g)$.

2 Problem 2

The group $\mathbb{Z} / 5 \mathbb{Z}$ has two subgroups: the trivial subgroup $\{0\}$, and the group $\mathbb{Z} / 5 \mathbb{Z}$ itself. In this case, there are no subrgoups of 3 elements.

The group $\mathbb{Z} / 6 \mathbb{Z}$ has four subgroups: the trivial subgroup $\{0\}$, the subgroup $\{0,3\}$, the subgroup $\{0,2,4\}$, and $\mathbb{Z} / 6 \mathbb{Z}$ itself. In this case, there is 1 subgroup that contains 3 elements.

3 Problem 3

3.1 Part(a)

In exponential function, the coordinates of the points in μ_{n} are $e^{2 k \pi i / n}$, where $k \in\{0,1, \cdots, n-1\}$. In trignometric functions, they are $\cos (2 k \pi / n)+i \sin (2 k \pi / n)$, where where $k \in\{0,1, \cdots, n-1\}$.

3.2 Part (b)

Note that for $k_{1}, k_{2} \in\{0,1, \cdots, n-1\}$, we have

$$
e^{2 k_{1} \pi i / n} \cdot e^{2 k_{2} \pi i / n}=e^{2 k^{\prime} \pi i / n} \in \mu_{n}
$$

where $k^{\prime} \equiv k_{1}+k_{2}(\bmod n)$ and $k^{\prime} \in\{1,2, \cdots, n\}$. This shows that multiplication is a binary operation on the set μ_{n}. It remains to check that μ_{n} satisfies the group axioms:

- Identity: Note that $1=e^{2.0 \pi i / n} \in \mu_{n}$, and for any k, we have

$$
1 \cdot e^{2 k \pi i / n}=e^{2 k \pi i / n} \cdot 1=e^{2 k \pi i / n} .
$$

- Inverse: Any $e^{2 k \pi i / n} \in \mu_{n}$ has inverse $e^{2(n-k) \pi i / n} \in \mu_{n}$, satisfying $e^{2 k \pi i / n} \cdot e^{2(n-k) \pi i / n}=1$.
- Associativity: This is true because for any $e^{2 k_{1} \pi i / n}, e^{2 k_{2} \pi i / n}, e^{2 k_{3} \pi i / n} \in \mu_{n}$, we have

$$
\left(e^{2 k_{1} \pi i / n} \cdot e^{2 k_{2} \pi i / n}\right) \cdot e^{2 k_{3} \pi i / n}=e^{2 k_{1} \pi i / n} \cdot\left(e^{2 k_{2} \pi i / n} \cdot e^{2 k_{3} \pi i / n}\right)=e^{2\left(k_{1}+k_{2}+k_{3}\right) \pi i / n} .
$$

Therefore, μ_{n} is a group under multiplication.

3.3 Part (c)

Define $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mu_{n}$, where $f(k)=e^{2 k \pi i / n}$. We can find an inverse map $g: \mu_{n} \rightarrow \mathbb{Z} / n \mathbb{Z}$ by setting $g\left(e^{2 k \pi i / n}\right)=k$, and noting that

$$
f \circ g\left(e^{2 k \pi i / n}\right)=f(k)=e^{2 k \pi i / n}, \quad g \circ f(k)=g\left(e^{2 k \pi i / n}\right)=k .
$$

This shows that f is a bijection. Moreover, f is a group homomorphism because for $k_{1}, k_{2} \in \mathbb{Z} / n \mathbb{Z}$, we have

$$
f\left(k_{1}\right) \cdot f\left(k_{2}\right)=e^{2 k_{1} \pi i / n} \cdot e^{2 k_{2} \pi i / n}=e^{2\left(k_{1}+k_{2}\right) \pi i / n}=f\left(k_{1}+k_{2}\right) .
$$

Therefore, the map f is an isomorphism of groups.

3.4 Part (d)

Part (c) has $\phi(n)$ solutions, where $\phi(n)$ is Euler's totient function of n. To see why, observe that the isomorphism f must map generators to generators; in particular, once we determine where the generator $1 \in \mathbb{Z} / n \mathbb{Z}$ maps to, we determine the entire map f from the group homomorphism property

$$
f(k)=k f(1),
$$

for each $k \in \mathbb{Z} / n \mathbb{Z}$. Finally, note that the generators of μ_{n} are the primitive roots of unity, and there are $\phi(n)$ of them. Therefore, the number of isomorphisms from $\mathbb{Z} / n \mathbb{Z}$ to μ_{n} is $\phi(n)$.

4 Problem 4

4.1 Part (a)

For any $A, B \in G L(2, \mathbb{R})$, their product $A B$ is a 2×2 matrix with determinant

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B) \neq 0
$$

and so $A B \in G L(2, \mathbb{R})$. This shows that multiplication is a binary operation on $G L(2, \mathbb{R})$. Next, we check that $G L(2, \mathbb{R})$ satisfies the group axioms:

- Identity: The identity matrix $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in G L(2, \mathbb{R})$.
- Inverse: For any $M \in G L(2, \mathbb{R})$, its inverse M^{-1} exists because $\operatorname{det}(M) \neq 0$. Moreover, the matrix M^{-1} is also a 2 by 2 matrix with nonzero determinant, i.e., $M^{-1} \in G L(2, \mathbb{R})$.
- Associativity: This is obvious since matrix multiplication is associative. In other words, we have

$$
(A B) C=A(B C), \quad \forall A, B, C \in G L(2, \mathbb{R}) .
$$

Therefore, the set $G L(2, \mathbb{R})$ forms a group under matrix multiplication.
Next, we give an example that shows matrix multiplication is not commutative. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

The matrices A, B are in $G L(2, \mathbb{R})$ since their determinants are both 1 . On the one hand, we have

$$
A \cdot B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

On the other hand, we have

$$
B \cdot A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] .
$$

We see then that $A \cdot B \neq B \cdot A$.

4.2 Part(b)

We define subgroups H_{n} of $G L(2, \mathbb{R})$ of a general order n as follows:

$$
H_{n}:=\left\{\left[\begin{array}{cc}
\cos (2 \pi k / n) & -\sin (2 \pi k / n) \\
\sin (2 \pi k / n) & \cos (2 \pi k / n)
\end{array}\right]: k \in\{0,1, \cdots, n\}\right\} .
$$

Geometrically, this is the group generated by rotations of \mathbb{R}^{2} by degree $2 \pi k / n$, so H_{n} indeed has order n. Thus, H_{2}, H_{3}, H_{4} are subgroups of order $2,3,4$, respectively.

5 Problem 5

5.1 Exercise 2

- (a) G is not a group, since it doesn't have an identity element.
- (b) G is a group, and is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. The identity element is a. The inverses are given by

$$
a^{-1}=a, \quad b^{-1}=b, \quad c^{-1}=c, \quad d^{-1}=d .
$$

Associativity can be checked from the table.

- (c) G is a group, and is isomorphic to $\mathbb{Z} / 4 Z$. The identity element is a. The inverses are given by

$$
a^{-1}=a, \quad b^{-1}=d, \quad c^{-1}=a, \quad d^{-1}=b .
$$

Associativity can be checked from the table.

- (d) G is not a group, since the operation \circ is not associative:

$$
(b c) b=c b=b, \quad b(c b)=b b=a .
$$

5.2 Exercise 10

We check that the Heisenberg group satisfies the group axioms:

- Identity: The identity matrix $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ belongs to the Heisenberg group.
- Inverse: We check that

$$
\left[\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & -x & x z-y \\
0 & 1 & -z \\
0 & 0 & 1
\end{array}\right]
$$

which belongs to the Heisenberg group.

- Associativity: Holds because matrix multiplication is associative. Therefore, matrices of the form

$$
\left[\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right]
$$

is a group under matrix multiplication.

