# Intro Modern Algebra I HW11 Solution 

Zhaocheng Dong

December 6, 2023

## Problem 1

## Exercise 13.12

Proof. Denote the descending central series of $N$ and $G / N$ by

$$
N \triangleright N_{1} \triangleright \ldots \triangleright N_{n} \triangleright\{1\}
$$

and

$$
G / N \triangleright H_{1} \triangleright \ldots \triangleright H_{m} \triangleright\{1\}
$$

By correspondence theorem we can lift the subgroups $H_{1}, \ldots, H_{m}$ of $G / N$ uniquely to subgroups $G_{1}, \ldots, G_{m}$ of $G$ such that

$$
G \triangleright G_{1} \triangleright \ldots \triangleright G_{m} \triangleright N
$$

is a sequence of normal subgroups. Furthermore each $G_{i} / G_{i+1}=H_{i} / H_{i+1}$ is abelian. Therefore $G$ has a subnormal series

$$
G \triangleright G_{1} \triangleright \ldots \triangleright G_{m} \triangleright N \triangleright N_{1} \triangleright \ldots \triangleright N_{n} \triangleright\{1\}
$$

where each quotient is abelian.

## Problem 2

Proof. Let $G$ be a solvable group with subnormal series

$$
G \triangleright G_{1} \triangleright \ldots \triangleright G_{n} \triangleright\{1\}
$$

Let $H$ be any subgroup of $G$. For every $i=1,2, \ldots, n$ we have:

$$
\left(H \cap G_{i}\right) \cap G_{i-1}=H \cap G_{i-1}
$$

From the Second Isomorphism Theorem for Groups:

$$
\frac{\left(H \cap G_{i}\right) G_{i-1}}{G_{i-1}} \cong \frac{H \cap G_{i}}{\left(H \cap G_{i}\right) \cap G_{i-1}}=\frac{H \cap G_{i}}{H \cap G_{i-1}}
$$

In particular, $H \cap G_{i-1}$ is a normal subgroup of $H \cap G_{i}$. We have that:

$$
\left(H \cap G_{i}\right) G_{i-1} \subseteq G_{i}
$$

and so from the Correspondence Theorem:

$$
\frac{\left(H \cap G_{i}\right) G_{i-1}}{G_{i-1}} \leq G_{i} / G_{i-1}
$$

We have that $G_{i} / G_{i-1}$ is abelian. Thus from Subgroup of Abelian Group is Abelian:

$$
\frac{\left(H \cap G_{i}\right) G_{i-1}}{G_{i-1}} \text { is abelian. }
$$

Hence $\frac{H \cap G_{i}}{H \cap G_{i-1}}$ is abelian. Therefore, the series :

$$
\{e\}=H \cap G_{0} \triangleleft H \cap G_{1} \triangleleft \cdots \triangleleft H \cap G_{n}=H
$$

is a normal series with abelian factor groups for $H$. Therefore $H$ is solvable.

## Problem 3

$S_{3} \triangleright \mathbb{Z}_{2} \triangleright\{1\}$ is solvable but it is not abelian, and in particular the center of $S_{3}$ is just the identity element since any permutation that commutes with (1 23 ) is disjoint from (123) and thus can only be the identity.

## Problem 4

(a)

Obviously the identity matrix is in $H$. Given any

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right) \in H,
$$

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & x^{\prime} & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & x+x^{\prime} & z+z^{\prime}+x y^{\prime} \\
0 & 1 & y+y^{\prime} \\
0 & 0 & 1
\end{array}\right) \in H
$$

so $H$ is closed under multiplication. Also one can verify that

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{lll}
1 & -x & x y-z \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right)
$$

is also in $H$. Therefore $H$ is a group.
(b)

For an element $\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right)$ to be in the center,

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x^{\prime} & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

so $z+z^{\prime}+x y^{\prime}=z^{\prime}+z+x^{\prime} y$ and $x y^{\prime}=x^{\prime} y$. For this to hold for all $x^{\prime}, y^{\prime} \in \mathbb{R}$, it must be that $x=y=0$, so the center is the set of

$$
\left(\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), z \in \mathbb{R}
$$

## (c)

Let the subnormal series be $H \triangleright Z(H) \triangleright\{1\}$. Obviously $Z(H) /\{1\} \subseteq Z(H /\{1\})$, so we just have to show $H / Z(H) \subseteq Z(H / Z(H))$ or equivalently $[H, H] \subseteq$ $Z(H)$. Indeed,

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & x^{\prime} & z^{\prime} \\
0 & 1 & y^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & -x & x y-z \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & -x^{\prime} & x^{\prime} y^{\prime}-z^{\prime} \\
0 & 1 & -y^{\prime} \\
0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{lll}
1 & 0 & x y^{\prime}-x y-x^{\prime} y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in Z(H)
\end{gathered}
$$

So $H$ is nilpotent.
(d)

The subgroup

$$
\left(\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), z \in \mathbb{Z}
$$

Is an abelian group that is different from $Z(H)$.

## Problem 5

Proof. Let $G$ be a group of order $2 p$, then it has a $p$-Sylow subgroup $H$ of order $p$, and since it has index 2 it is normal. Also since $|H|=p$ it is isomorphic to $\mathbb{Z}_{p}$. Write $H=\left\langle y \mid y^{p}=1\right\rangle$ and pick $x \in G \backslash H$. Since $[G: H]=p$ and $H \subsetneq\langle x, y\rangle \subset G$ it must be that $\langle x, y\rangle=G$, and since $x$ does not have order $p$ it must have order 2 . So $G=\left\langle x, y \mid x^{2}=y^{p}=1\right\rangle$. Since $H$ is normal we know $x y x^{-1} \in H$ so $x y x^{-1}=y^{t}$ for some $t$.

Now

$$
\begin{aligned}
x & =e^{-1} x e=\left(y^{2}\right)^{-1} x y^{2}=y^{-1}\left(y^{-1} x y\right) y=y^{-1} x^{t} y \\
& =\underbrace{\left(y^{-1} x y\right) \cdot\left(y^{-1} x y\right) \cdots\left(y^{-1} x y\right)}_{\mathrm{t} \text { times }}=\left(x^{t}\right)^{t}=x^{t^{2}}
\end{aligned}
$$

So $p \mid t^{2}-1=(t+1)(t-1)$ and either $p \mid t+1$ or $p \mid t-1$. The only possibilities then are $t=1$ or $t=p-1$, which gives us $\mathbb{Z}_{p}$ or $D_{2 p}$ respectively.

## Optional Problem

Proof. We know any composition factor must have order $p^{k}$ for some $k<r$. Now pick any composition factor $H$, since $H$ is a $p$-group, $Z(H)$ has order at least $p$ which is nontrivial. But since $H$ has to be simple we know $H=Z(H)$ is abelian. Now take any $e \neq h \in H$ we know that $\langle h\rangle \triangleright H$ is nontrivial so $H=\langle h\rangle$ is cyclic, but a cyclic group is only simple when the order is prime, so it must be that $H \cong \mathbb{Z}_{p}$.

