Intro Modern Algebra I HW11 Solution

Zhaocheng Dong

December 6, 2023

Problem 1

Exercise 13.12

Proof. Denote the descending central series of N and G/N by

$$N \triangleright N_1 \triangleright \ldots \triangleright N_n \triangleright \{1\}$$

and

$$G/N \triangleright H_1 \triangleright \ldots \triangleright H_m \triangleright \{1\}$$

By correspondence theorem we can lift the subgroups $H_1, ..., H_m$ of G/Nuniquely to subgroups $G_1, ..., G_m$ of G such that

$$G \triangleright G_1 \triangleright \ldots \triangleright G_m \triangleright N$$

is a sequence of normal subgroups. Furthermore each $G_i/G_{i+1} = H_i/H_{i+1}$ is abelian. Therefore G has a subnormal series

$$G \triangleright G_1 \triangleright \ldots \triangleright G_m \triangleright N \triangleright N_1 \triangleright \ldots \triangleright N_n \triangleright \{1\}$$

where each quotient is abelian.

Problem 2

Proof. Let G be a solvable group with subnormal series

$$G \triangleright G_1 \triangleright \ldots \triangleright G_n \triangleright \{1\}$$

Let H be any subgroup of G. For every i = 1, 2, ..., n we have:

$$(H \cap G_i) \cap G_{i-1} = H \cap G_{i-1}$$

From the Second Isomorphism Theorem for Groups:

$$\frac{\left(H \cap G_{i}\right)G_{i-1}}{G_{i-1}} \cong \frac{H \cap G_{i}}{\left(H \cap G_{i}\right) \cap G_{i-1}} = \frac{H \cap G_{i}}{H \cap G_{i-1}}$$

In particular, $H \cap G_{i-1}$ is a normal subgroup of $H \cap G_i$. We have that:

$$(H \cap G_i) G_{i-1} \subseteq G_i$$

and so from the Correspondence Theorem:

$$\frac{(H \cap G_i) \, G_{i-1}}{G_{i-1}} \le G_i / G_{i-1}$$

We have that G_i/G_{i-1} is abelian. Thus from Subgroup of Abelian Group is Abelian:

$$\frac{(H \cap G_i) G_{i-1}}{G_{i-1}}$$
 is abelian

Hence $\frac{H\cap G_i}{H\cap G_{i-1}}$ is abelian. Therefore, the series :

 $\{e\} = H \cap G_0 \triangleleft H \cap G_1 \triangleleft \cdots \triangleleft H \cap G_n = H$

is a normal series with abelian factor groups for H. Therefore H is solvable. $\hfill \Box$

Problem 3

 $S_3 \triangleright \mathbb{Z}_2 \triangleright \{1\}$ is solvable but it is not abelian, and in particular the center of S_3 is just the identity element since any permutation that commutes with (1 2 3) is disjoint from (1 2 3) and thus can only be the identity.

Problem 4

(a)

Obviously the identity matrix is in H. Given any

$$\left(\begin{array}{rrrr} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{array}\right) \in H,$$

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x + x' & z + z' + xy' \\ 0 & 1 & y + y' \\ 0 & 0 & 1 \end{pmatrix} \in H$$

so ${\cal H}$ is closed under multiplication. Also one can verify that

$$\left(\begin{array}{rrrr} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{rrrr} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{array}\right)$$

is also in H. Therefore H is a group.

For an element
$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$
 to be in the center,
 $\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix}$

so z + z' + xy' = z' + z + x'y and xy' = x'y. For this to hold for all $x', y' \in \mathbb{R}$, it must be that x = y = 0, so the center is the set of

$$\left(\begin{array}{rrrr}1 & 0 & z\\0 & 1 & 0\\0 & 0 & 1\end{array}\right), z \in \mathbb{R}.$$

(c)	
	۱
	1
$\langle - \rangle$	

Let the subnormal series be $H \triangleright Z(H) \triangleright \{1\}$. Obviously $Z(H)/\{1\} \subseteq Z(H/\{1\})$, so we just have to show $H/Z(H) \subseteq Z(H/Z(H))$ or equivalently $[H, H] \subseteq Z(H)$. Indeed,

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x' & z' \\ 0 & 1 & y' \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -x & xy - z \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -x' & x'y' - z' \\ 0 & 1 & -y' \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & xy' - xy - x'y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in Z(H)$$

So H is nilpotent.

(d)

The subgroup

$$\left(\begin{array}{rrrr} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), z \in \mathbb{Z}.$$

Is an abelian group that is different from Z(H).

Problem 5

Proof. Let G be a group of order 2p, then it has a p-Sylow subgroup H of order p, and since it has index 2 it is normal. Also since |H| = p it is isomorphic to \mathbb{Z}_p . Write $H = \langle y \mid y^p = 1 \rangle$ and pick $x \in G \setminus H$. Since [G : H] = p and $H \subsetneq \langle x, y \rangle \subset G$ it must be that $\langle x, y \rangle = G$, and since x does not have order p it must have order 2. So $G = \langle x, y \mid x^2 = y^p = 1 \rangle$. Since H is normal we know $xyx^{-1} \in H$ so $xyx^{-1} = y^t$ for some t.

Now

$$x = e^{-1}xe = (y^2)^{-1}xy^2 = y^{-1}(y^{-1}xy)y = y^{-1}x^ty$$
$$= \underbrace{(y^{-1}xy) \cdot (y^{-1}xy) \cdots (y^{-1}xy)}_{\text{t times}} = (x^t)^t = x^{t^2}$$

So $p|t^2 - 1 = (t+1)(t-1)$ and either p|t+1 or p|t-1. The only possibilities then are t = 1 or t = p - 1, which gives us \mathbb{Z}_p or D_{2p} respectively.

Optional Problem

Proof. We know any composition factor must have order p^k for some k < r. Now pick any composition factor H, since H is a p-group, Z(H) has order at least p which is nontrivial. But since H has to be simple we know H = Z(H) is abelian. Now take any $e \neq h \in H$ we know that $\langle h \rangle \triangleright H$ is nontrivial so $H = \langle h \rangle$ is cyclic, but a cyclic group is only simple when the order is prime, so it must be that $H \cong \mathbb{Z}_p$.