Semidirect products

GU4041

Columbia University
November 28, 2023

Outline

(1) Normal subgroups
(2) Semidirect products

Automorphisms of normal subgroups

Let $N \unlhd G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$
n \mapsto r_{g}(n):=g n g^{-1}, \quad n \in N
$$

is an automorphism of N.
This is because if $n_{1}, n_{2} \in N$

The set $\operatorname{Aut}(N)$ of automorphisms of N is a group under composition.
Lemma
The map $g \mapsto r_{g}$ is a homomorphism of groups:
$G \rightarrow \operatorname{Aut}(N)$.

Automorphisms of normal subgroups

Let $N \unlhd G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$
n \mapsto r_{g}(n):=g n g^{-1}, \quad n \in N
$$

is an automorphism of N.
This is because if $n_{1}, n_{2} \in N$

$$
r_{g}\left(n_{1} \cdot n_{2}\right)=g n_{1} \cdot n_{2} g^{-1}=g n_{1} g^{-1} \cdot g n_{2} g^{-1}=r_{g}\left(n_{1}\right) \cdot r_{g}\left(n_{2}\right) .
$$

The set $\operatorname{Aut}(N)$ of automorphisms of N is a group under composition.
Lemma
The map $g \mapsto r_{g}$ is a homomorphism of groups:
$G \rightarrow \operatorname{Aut}(N)$.

Automorphisms of normal subgroups

Let $N \unlhd G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$
n \mapsto r_{g}(n):=g n g^{-1}, \quad n \in N
$$

is an automorphism of N.
This is because if $n_{1}, n_{2} \in N$

$$
r_{g}\left(n_{1} \cdot n_{2}\right)=g n_{1} \cdot n_{2} g^{-1}=g n_{1} g^{-1} \cdot g n_{2} g^{-1}=r_{g}\left(n_{1}\right) \cdot r_{g}\left(n_{2}\right) .
$$

The set $\operatorname{Aut}(N)$ of automorphisms of N is a group under composition.

Lemma

The map $g \mapsto r_{g}$ is a homomorphism of groups:

$$
G \rightarrow \operatorname{Aut}(N) .
$$

Automorphisms of normal subgroups

Let $N \unlhd G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$
n \mapsto r_{g}(n):=g n g^{-1}, \quad n \in N
$$

is an automorphism of N.
This is because if $n_{1}, n_{2} \in N$

$$
r_{g}\left(n_{1} \cdot n_{2}\right)=g n_{1} \cdot n_{2} g^{-1}=g n_{1} g^{-1} \cdot g n_{2} g^{-1}=r_{g}\left(n_{1}\right) \cdot r_{g}\left(n_{2}\right) .
$$

The set $\operatorname{Aut}(N)$ of automorphisms of N is a group under composition.

Lemma

The map $g \mapsto r_{g}$ is a homomorphism of groups:

$$
G \rightarrow \operatorname{Aut}(N) .
$$

Proof of the lemma

Proof.
We need to show that if $g, h \in G$, then

$$
r_{g h}=r_{g} \circ r_{h}
$$

That is, for all $n \in N$,

$$
r_{g h}(n)=r_{g} \circ r_{h}(n)=r_{g}\left(r_{h}(n)\right)
$$

We check:

$$
r_{g}\left(r_{h}(n)\right)=r_{g}\left(h n h^{-1}\right)=g\left(h n h^{-1}\right) g^{-1}=(g h) n(g h)^{-1}=r_{g h}(n)
$$

Proof of the lemma

Proof.
We need to show that if $g, h \in G$, then

$$
r_{g h}=r_{g} \circ r_{h}
$$

That is, for all $n \in N$,

$$
r_{g h}(n)=r_{g} \circ r_{h}(n)=r_{g}\left(r_{h}(n)\right)
$$

We check:

$$
r_{g}\left(r_{h}(n)\right)=r_{g}\left(h n h^{-1}\right)=g\left(h n h^{-1}\right) g^{-1}=(g h) n(g h)^{-1}=r_{g h}(n)
$$

Proof of the lemma

Proof.

We need to show that if $g, h \in G$, then

$$
r_{g h}=r_{g} \circ r_{h}
$$

That is, for all $n \in N$,

$$
r_{g h}(n)=r_{g} \circ r_{h}(n)=r_{g}\left(r_{h}(n)\right) .
$$

We check:

$$
r_{g}\left(r_{h}(n)\right)=r_{g}\left(h n h^{-1}\right)=g\left(h n h^{-1}\right) g^{-1}=(g h) n(g h)^{-1}=r_{g h}(n) .
$$

Groups of order 6

Proposition
The only groups of order 6 are \mathbb{Z}_{6} and D_{6}.
Proof.
Let G be a group of order 6 . If G has an element of order 6 then it is cyclic.
So suppose G has no element of order 6. Suppose G has an element r of order 3 . Then the subgroup $N=\langle r\rangle \subset G$ is of index 2 , hence is normal. Let $r: G \rightarrow \operatorname{Aut}(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \xrightarrow{\sim} \mathbb{Z}_{6}$. Suppose r is not trivial. Then G is a non-abelian group of order 6 , with a commutative normal subgroup N of order 3 . Let $f \in G, f \notin N$. Then $r(f)$ is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_{6}.

Groups of order 6

Proposition

The only groups of order 6 are \mathbb{Z}_{6} and D_{6}.

Proof.

Let G be a group of order 6 . If G has an element of order 6 then it is cyclic.
So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N=\langle r\rangle \subset G$ is of index 2, hence is normal.
then G is abelian, hence isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \xrightarrow{\sim} \mathbb{Z}_{6}$. Suppose r is
not trivial. Then G is a non-abelian group of order 6 , with a
commutative normal subgroup N of order 3 . Let $f \in G, f \notin N$. Then
$r(f)$ is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_{6}.

Groups of order 6

Proposition

The only groups of order 6 are \mathbb{Z}_{6} and D_{6}.

Proof.

Let G be a group of order 6 . If G has an element of order 6 then it is cyclic.
So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N=\langle r\rangle \subset G$ is of index 2, hence is normal. Let $r: G \rightarrow \operatorname{Aut}(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \xrightarrow{\sim} \mathbb{Z}_{6}$.
not trivial. Then G is a non-abelian group of order 6 , with a
commutative normal subgroup N of order 3 . Let $f \in G, f \notin N$. Then
$r(f)$ is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_{6}.

Groups of order 6

Proposition

The only groups of order 6 are \mathbb{Z}_{6} and D_{6}.

Proof.

Let G be a group of order 6 . If G has an element of order 6 then it is cyclic.
So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N=\langle r\rangle \subset G$ is of index 2, hence is normal. Let $r: G \rightarrow \operatorname{Aut}(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \xrightarrow{\sim} \mathbb{Z}_{6}$. Suppose r is not trivial. Then G is a non-abelian group of order 6 , with a commutative normal subgroup N of order 3 . Let $f \in G, f \notin N$. Then $r(f)$ is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_{6}.

Groups of order 6

Proof.

Finally, if G has no element of order 3, then it has only elements of order 2. By a homework problem, G is abelian, but then by classification it must be \mathbb{Z}_{6} again.

Constructing new groups

Now suppose N and H are groups and

$$
r: H \rightarrow \operatorname{Aut}(N)
$$

is a homomorphism. We construct a new group $N \rtimes H$ as follows:
The elements of $N \rtimes H$ are ordered pairs (n, h), $n \in N, h \in H$. Mutliplication is given by

$$
\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)
$$

We can remove the parentheses if we take care:

$$
\left(n_{1} \cdot h_{1}\right)\left(n_{2} \cdot h_{2}\right)=n_{1}\left(h_{1} \cdot n_{2}\right) h_{2}
$$

and use the commutation rule

$$
h_{1} \cdot n_{2}=h_{1} n_{2} h_{1}^{-1} h_{1}=r\left(h_{1}\right)\left(n_{2}\right) \cdot h_{1} .
$$

so that
$\left(n_{1} \cdot h_{1}\right)\left(n_{2} \cdot h_{2}\right)=n_{1}\left(h_{1} \cdot n_{2}\right) h_{2}=n_{1} r\left(h_{1}\right)\left(n_{2}\right) \cdot h_{1} h_{2}$

Constructing new groups

Now suppose N and H are groups and

$$
r: H \rightarrow \operatorname{Aut}(N)
$$

is a homomorphism. We construct a new group $N \rtimes H$ as follows: The elements of $N \rtimes H$ are ordered pairs $(n, h), n \in N, h \in H$. Mutliplication is given by

$$
\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)
$$

We can remove the parentheses if we take care:

$$
\left(n_{1} \cdot h_{1}\right)\left(n_{2} \cdot h_{2}\right)=n_{1}\left(h_{1} \cdot n_{2}\right) h_{2}
$$

and use the commutation rule

$$
h_{1} \cdot \pi_{2}=h_{1} \pi_{2} h_{1}^{-1} h_{1}=r\left(h_{1}\right)\left(n_{2}\right) \cdot h_{1} .
$$

so that

Constructing new groups

Now suppose N and H are groups and

$$
r: H \rightarrow \operatorname{Aut}(N)
$$

is a homomorphism. We construct a new group $N \rtimes H$ as follows: The elements of $N \rtimes H$ are ordered pairs $(n, h), n \in N, h \in H$. Mutliplication is given by

$$
\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)
$$

We can remove the parentheses if we take care:

$$
\left(n_{1} \cdot h_{1}\right)\left(n_{2} \cdot h_{2}\right)=n_{1}\left(h_{1} \cdot n_{2}\right) h_{2}
$$

and use the commutation rule

$$
h_{1} \cdot n_{2}=h_{1} n_{2} h_{1}^{-1} h_{1}=r\left(h_{1}\right)\left(n_{2}\right) \cdot h_{1} .
$$

so that

Constructing new groups

Now suppose N and H are groups and

$$
r: H \rightarrow \operatorname{Aut}(N)
$$

is a homomorphism. We construct a new group $N \rtimes H$ as follows: The elements of $N \rtimes H$ are ordered pairs $(n, h), n \in N, h \in H$. Mutliplication is given by

$$
\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)
$$

We can remove the parentheses if we take care:

$$
\left(n_{1} \cdot h_{1}\right)\left(n_{2} \cdot h_{2}\right)=n_{1}\left(h_{1} \cdot n_{2}\right) h_{2}
$$

and use the commutation rule

$$
h_{1} \cdot n_{2}=h_{1} n_{2} h_{1}^{-1} h_{1}=r\left(h_{1}\right)\left(n_{2}\right) \cdot h_{1} .
$$

so that

$$
\left(n_{1} \cdot h_{1}\right)\left(n_{2} \cdot h_{2}\right)=n_{1}\left(h_{1} \cdot n_{2}\right) h_{2}=n_{1} r\left(h_{1}\right)\left(n_{2}\right) \cdot h_{1} h_{2}
$$

Examples of semidirect products

In other words, inside $N \rtimes H$ the homomorphism $r: H \rightarrow \operatorname{Aut}(N)$ corresponds to conjugation of N by H.
The group $N \rtimes H$ is called the semidirect product of N and H. The roles of N and H cannot be exchanged.

Example
For any cyclic group \mathbb{Z}_{n}, there is a homomorphism
$r:\{ \pm 1\} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{n}\right):$
$r(-1)(x)=-x$.
The semidirect product $\mathbb{Z}_{n} \rtimes\{ \pm 1\}$ is just the dihedral group $D_{2 n}$.

Examples of semidirect products

In other words, inside $N \rtimes H$ the homomorphism $r: H \rightarrow \operatorname{Aut}(N)$ corresponds to conjugation of N by H.
The group $N \rtimes H$ is called the semidirect product of N and H. The roles of N and H cannot be exchanged.

Example

For any cyclic group \mathbb{Z}_{n}, there is a homomorphism $r:\{ \pm 1\} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$:

$$
r(-1)(x)=-x .
$$

The semidirect product $\mathbb{Z}_{n} \rtimes\{ \pm 1\}$ is just the dihedral group $D_{2 n}$.

The semidirect product is a group

We need to prove that multiplication in $N \rtimes H$ is associative and that the identity and inverses exist.
$e=\left(e_{N}, e_{H}\right)$, then
$\left.\left(e_{N}, e_{H}\right)(n, h)=\left(e_{N} \cdot r\left(e_{H}\right)(n), e_{H} \cdot h\right)\right)=\left(e_{N} \cdot n, e_{H} \cdot h\right)=(n, h)$
because $r\left(e_{H}\right)$ is the identity in $\operatorname{Aut}(N)$.
The identity relation of multiplication on the right is verified in the
same way.
Finding the inverse involves solving an equation. Given (n, h), we need to find $\left(n^{\prime}, h^{\prime}\right)$ such that

$$
\left(n^{\prime}, h^{\prime}\right)(n, h)=\left(e_{N}, e_{H}\right)
$$

The semidirect product is a group

We need to prove that multiplication in $N \rtimes H$ is associative and that the identity and inverses exist. The identity is obvious: if we set $e=\left(e_{N}, e_{H}\right)$, then

$$
\left.\left(e_{N}, e_{H}\right)(n, h)=\left(e_{N} \cdot r\left(e_{H}\right)(n), e_{H} \cdot h\right)\right)=\left(e_{N} \cdot n, e_{H} \cdot h\right)=(n, h)
$$

because $r\left(e_{H}\right)$ is the identity in $\operatorname{Aut}(N)$.
The identity relation of multiplication on the right is verified in the
same way.
Finding the inverse involves solving an equation. Given (n, h), we need to find $\left(n^{\prime}, h^{\prime}\right)$ such that

$$
\left(n^{\prime}, h^{\prime}\right)(n, h)=\left(e_{N}, e_{H}\right)
$$

The semidirect product is a group

We need to prove that multiplication in $N \rtimes H$ is associative and that the identity and inverses exist. The identity is obvious: if we set $e=\left(e_{N}, e_{H}\right)$, then

$$
\left.\left(e_{N}, e_{H}\right)(n, h)=\left(e_{N} \cdot r\left(e_{H}\right)(n), e_{H} \cdot h\right)\right)=\left(e_{N} \cdot n, e_{H} \cdot h\right)=(n, h)
$$

because $r\left(e_{H}\right)$ is the identity in $\operatorname{Aut}(N)$.
The identity relation of multiplication on the right is verified in the same way.
Finding the inverse involves solving an equation. Given (n, h), we need to find $\left(n^{\prime}, h^{\prime}\right)$ such that

$$
\left(n^{\prime}, h^{\prime}\right)(n, h)=\left(e_{N}, e_{H}\right)
$$

The semidirect product is a group

We need to prove that multiplication in $N \rtimes H$ is associative and that the identity and inverses exist. The identity is obvious: if we set $e=\left(e_{N}, e_{H}\right)$, then

$$
\left.\left(e_{N}, e_{H}\right)(n, h)=\left(e_{N} \cdot r\left(e_{H}\right)(n), e_{H} \cdot h\right)\right)=\left(e_{N} \cdot n, e_{H} \cdot h\right)=(n, h)
$$

because $r\left(e_{H}\right)$ is the identity in $\operatorname{Aut}(N)$.
The identity relation of multiplication on the right is verified in the same way.
Finding the inverse involves solving an equation. Given (n, h), we need to find $\left(n^{\prime}, h^{\prime}\right)$ such that

$$
\left(n^{\prime}, h^{\prime}\right)(n, h)=\left(e_{N}, e_{H}\right)
$$

The semidirect product is a group

Now if

$$
\left(e_{N}, e_{H}\right)=\left(n^{\prime}, h^{\prime}\right)(n, h)=\left(n^{\prime} \cdot r\left(h^{\prime}\right) n, h^{\prime} \cdot h\right)
$$

then we must have $h^{\prime}=h^{-1}$. So the equation we need to solve is

$$
n^{\prime} \cdot r\left(h^{-1}\right)(n)=e_{N} ; \quad n^{\prime}=\left(r\left(h^{-1}\right) n\right)^{-1}
$$

and this gives the solution. You can check that

$$
(n, h)\left(\left(r\left(h^{-1}\right) n\right)^{-1}, h^{-1}\right)=\left(e_{N}, e_{H}\right)
$$

The semidirect product is a group

Now if

$$
\left(e_{N}, e_{H}\right)=\left(n^{\prime}, h^{\prime}\right)(n, h)=\left(n^{\prime} \cdot r\left(h^{\prime}\right) n, h^{\prime} \cdot h\right)
$$

then we must have $h^{\prime}=h^{-1}$. So the equation we need to solve is

$$
n^{\prime} \cdot r\left(h^{-1}\right)(n)=e_{N} ; \quad n^{\prime}=\left(r\left(h^{-1}\right) n\right)^{-1}
$$

and this gives the solution. You can check that

$$
(n, h)\left(\left(r\left(h^{-1}\right) n\right)^{-1}, h^{-1}\right)=\left(e_{N}, e_{H}\right)
$$

as well.

The semidirect product is associative

This is a calculation:

$$
\begin{aligned}
{\left[\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)\right]\left(n_{3}, h_{3}\right) } & =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)\left(n_{3}, h_{3}\right) \\
& =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}, h_{1} h_{2} h_{3}\right)
\end{aligned}
$$

On the other hand

So we need to check
$n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=n_{1} \cdot r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.$
or even $r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.$.

The semidirect product is associative

This is a calculation:

$$
\begin{aligned}
{\left[\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)\right]\left(n_{3}, h_{3}\right) } & =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)\left(n_{3}, h_{3}\right) \\
& =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}, h_{1} h_{2} h_{3}\right)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(n_{1}, h_{1}\right)\left[\left(n_{2}, h_{2}\right)\left(n_{3}, h_{3}\right)\right] & =\left(n_{1}, h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right), h_{2} \cdot h_{3}\right) \\
& =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right), h_{1} h_{2} h_{3}\right)\right.
\end{aligned}
$$

So we need to check

$$
n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=n_{1} \cdot r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.
$$

or even $r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.$.

The semidirect product is associative

This is a calculation:

$$
\begin{aligned}
{\left[\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)\right]\left(n_{3}, h_{3}\right) } & =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)\left(n_{3}, h_{3}\right) \\
& =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}, h_{1} h_{2} h_{3}\right)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\left(n_{1}, h_{1}\right)\left[\left(n_{2}, h_{2}\right)\left(n_{3}, h_{3}\right)\right] & =\left(n_{1}, h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right), h_{2} \cdot h_{3}\right) \\
& =\left(n_{1} \cdot r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right), h_{1} h_{2} h_{3}\right)\right.
\end{aligned}
$$

So we need to check

$$
\begin{aligned}
& n_{1} \cdot r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=n_{1} \cdot r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right. \\
& \text { or even } r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.
\end{aligned}
$$

The semidirect product is associative, end of the calculation

We need to show

$$
r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.
$$

But $r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(r\left(h_{2}\right)\left(n_{3}\right)\right)$ by the definition of $r: H \rightarrow \operatorname{Aut}(N)$.

$$
r\left(h_{1}\right)(n) \cdot r\left(h_{1}\right)\left(n^{\prime}\right)=r\left(h_{1}\right)\left(n \cdot n^{\prime}\right)
$$

because $r\left(h_{1}\right)$ is an automorphism. So
$r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1}\right)\left(r\left(h_{2}\right)\left(n_{3}\right)\right)=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.$
which is what we needed to prove.

The semidirect product is associative, end of the calculation

We need to show

$$
r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.
$$

But $r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(r\left(h_{2}\right)\left(n_{3}\right)\right)$ by the definition of $r: H \rightarrow \operatorname{Aut}(N)$. And for any n, n^{\prime},

$$
r\left(h_{1}\right)(n) \cdot r\left(h_{1}\right)\left(n^{\prime}\right)=r\left(h_{1}\right)\left(n \cdot n^{\prime}\right)
$$

because $r\left(h_{1}\right)$ is an automorphism.
$r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1}\right)\left(r\left(h_{2}\right)\left(n_{3}\right)\right)=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.$
which is what we needed to prove.

The semidirect product is associative, end of the calculation

We need to show

$$
r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.
$$

But $r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(r\left(h_{2}\right)\left(n_{3}\right)\right)$ by the definition of $r: H \rightarrow \operatorname{Aut}(N)$. And for any n, n^{\prime},

$$
r\left(h_{1}\right)(n) \cdot r\left(h_{1}\right)\left(n^{\prime}\right)=r\left(h_{1}\right)\left(n \cdot n^{\prime}\right)
$$

because $r\left(h_{1}\right)$ is an automorphism. So
$r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1} \cdot h_{2}\right) n_{3}=r\left(h_{1}\right)\left(n_{2}\right) \cdot r\left(h_{1}\right)\left(r\left(h_{2}\right)\left(n_{3}\right)\right)=r\left(h_{1}\right)\left(n_{2} \cdot r\left(h_{2}\right)\left(n_{3}\right)\right.$
which is what we needed to prove.

Examples of semidirect products

Example
Recall that if p is prime, then $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}^{\times}$. So there is a semidirect product

$$
\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}^{\times}
$$

of $\operatorname{order} p(p-1)$ for any p. It is non-commutative:

In this way we obtain new non-commutative groups of order $5 \cdot 4=20,7 \cdot 6=42$, and so on. (When $p=3$ we just get $D_{6} a_{8}$ gain).

Examples of semidirect products

Example

Recall that if p is prime, then $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}^{\times}$. So there is a semidirect product

$$
\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}^{\times}
$$

of order $p(p-1)$ for any p. It is non-commutative:

$$
x \cdot a=a \cdot a x, x \in \mathbb{Z}_{p}, a \in \mathbb{Z}_{p}^{\times}
$$

In this way we obtain new non-commutative groups of order $5 \cdot 4=20,7 \cdot 6=42$, and so on. (When $p=3$ we just get D_{6} again).

Examples of semidirect products

There are more possibilities. It is known that \mathbb{Z}_{p}^{\times}is always a cyclic group. When $p=7$ or $p=11$ this follows from the classification of abelian groups: the only abelian groups of order 6 or 10 are $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$, which are cyclic. .
So for example, \mathbb{Z}_{7}^{*} contains a cyclic group C_{3} of order 3 , and the inclusion

$$
C_{3} \hookrightarrow \mathbb{Z}_{7}^{*} \xrightarrow{\sim} \operatorname{Aut}\left(\mathbb{Z}_{7}\right)
$$

gives us a semidirect product

of order $7 \cdot 3=21$. Similarly $C_{5} \subset \mathbb{Z}_{11}^{\times}$gives us a semidirect product

Examples of semidirect products

There are more possibilities. It is known that \mathbb{Z}_{p}^{\times}is always a cyclic group. When $p=7$ or $p=11$ this follows from the classification of abelian groups: the only abelian groups of order 6 or 10 are $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$, which are cyclic.
So for example, \mathbb{Z}_{7}^{*} contains a cyclic group C_{3} of order 3 , and the inclusion

gives us a semidirect product
of order $7 \cdot 3=21$. Similarly $C_{5} \subset \mathbb{Z}_{11}^{\times}$gives us a semidirect product

Examples of semidirect products

There are more possibilities. It is known that \mathbb{Z}_{p}^{\times}is always a cyclic group. When $p=7$ or $p=11$ this follows from the classification of abelian groups: the only abelian groups of order 6 or 10 are $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$, which are cyclic. .
So for example, \mathbb{Z}_{7}^{*} contains a cyclic group C_{3} of order 3 , and the inclusion

$$
C_{3} \hookrightarrow \mathbb{Z}_{7}^{*} \xrightarrow{\sim} \operatorname{Aut}\left(\mathbb{Z}_{7}\right)
$$

gives us a semidirect product

$$
\mathbb{Z}_{7} \rtimes C_{3}
$$

of order $7 \cdot 3=21$. Similarly $C_{5} \subset \mathbb{Z}_{11}^{\times}$gives us a semidirect product

$$
\mathbb{Z}_{11} \rtimes C_{5}
$$

of order 55 .

Internal vs. external semidirect products

The construction above begins with two groups N and H and constructs a semidirect product $G=N \rtimes H$ with N as normal subgroup.

We can also start with a group G containing a normal subgroup N and
a subgroup H.
Proposition
Suppose
๑ $H \cdot N=G$ and
(a) $H \cap N=\{e\}$
Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \rightarrow A u t(N)$ is defined by
$r(h)(n)=h n h^{-1}$

Internal vs. external semidirect products

The construction above begins with two groups N and H and constructs a semidirect product $G=N \rtimes H$ with N as normal subgroup.
We can also start with a group G containing a normal subgroup N and a subgroup H.

Internal vs. external semidirect products

The construction above begins with two groups N and H and constructs a semidirect product $G=N \rtimes H$ with N as normal subgroup.
We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose
(1) $H \cdot N=G$ and
(2) $H \cap N=\{e\}$

Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \rightarrow \operatorname{Aut}(N)$ is defined by
$r(h)(n)=h n h^{-1}$.

Internal vs. external semidirect products

The construction above begins with two groups N and H and constructs a semidirect product $G=N \rtimes H$ with N as normal subgroup.
We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose
(1) $H \cdot N=G$ and
(2) $H \cap N=\{e\}$

Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \rightarrow \operatorname{Aut}(N)$ is defined by
\square

Internal vs. external semidirect products

The construction above begins with two groups N and H and constructs a semidirect product $G=N \rtimes H$ with N as normal subgroup.
We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose
(1) $H \cdot N=G$ and
(2) $H \cap N=\{e\}$

Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \rightarrow \operatorname{Aut}(N)$ is defined by

$$
r(h)(n)=h n h^{-1}
$$

Internal vs. external semidirect products, proof of the proposition

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$
u(g)=(n, h) \text { if } g=n h .
$$

Every g can be written as a product $g=n h$ because $H \cdot N=G$. Moreover, this expression is unique, because $H \cap N=\{e\}$. So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_{1}=n_{1} h_{1}, g_{2}=n_{2} h_{2}$. We have $u\left(g_{1} g_{2}\right)=u\left(n_{1} h_{1} n_{2} h_{2}\right)=u\left(n_{1}\left[h_{1} n_{1} h_{1}^{-1}\right] h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)$ On the other hand, $u\left(g_{1}\right) u\left(g_{2}\right)=\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} r\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)$

Internal vs. external semidirect products, proof of the proposition

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$
u(g)=(n, h) \text { if } g=n h .
$$

Every g can be written as a product $g=n h$ because $H \cdot N=G$. Moreover, this expression is unique, because $H \cap N=\{e\}$.

> So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_{1}=n_{1} h_{1}, g_{2}=n_{2} h_{2}$. We have $u\left(g_{1} g_{2}\right)=u\left(n_{1} h_{1} n_{2} h_{2}\right)=u\left(n_{1}\left[h_{1} n_{1} h_{1}^{-1}\right] h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)$ On the other hand, $u\left(g_{1}\right) u\left(g_{2}\right)=\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} r\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)$

Internal vs. external semidirect products, proof of the proposition

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$
u(g)=(n, h) \text { if } g=n h .
$$

Every g can be written as a product $g=n h$ because $H \cdot N=G$. Moreover, this expression is unique, because $H \cap N=\{e\}$. So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_{1}=n_{1} h_{1}, g_{2}=n_{2} h_{2}$. We have
$u\left(g_{1} g_{2}\right)=u\left(n_{1} h_{1} n_{2} h_{2}\right)=u\left(n_{1}\left[h_{1} n_{1} h_{1}^{-1}\right] h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)$
On the other hand,
$u\left(g_{1}\right) u\left(g_{2}\right)=\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} r\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)$

Internal vs. external semidirect products, proof of the proposition

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$
u(g)=(n, h) \text { if } g=n h
$$

Every g can be written as a product $g=n h$ because $H \cdot N=G$. Moreover, this expression is unique, because $H \cap N=\{e\}$. So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_{1}=n_{1} h_{1}, g_{2}=n_{2} h_{2}$. We have

$$
u\left(g_{1} g_{2}\right)=u\left(n_{1} h_{1} n_{2} h_{2}\right)=u\left(n_{1}\left[h_{1} n_{1} h_{1}^{-1}\right] h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)
$$

On the other hand,

$$
u\left(g_{1}\right) u\left(g_{2}\right)=\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1} r\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)=\left(n_{1}\left[h_{1} n_{2} h_{1}^{-1}\right], h_{1} h_{2}\right)
$$

