Semidirect products

GU4041

Columbia University

November 28, 2023

Outline

Normal subgroups

Semidirect products

Let $N \leq G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$n \mapsto r_g(n) := gng^{-1}, \ n \in N$$

is an automorphism of N.

This is because if $n_1, n_2 \in N$

$$r_g(n_1 \cdot n_2) = gn_1 \cdot n_2 g^{-1} = gn_1 g^{-1} \cdot gn_2 g^{-1} = r_g(n_1) \cdot r_g(n_2)$$

The set Aut(N) of automorphisms of N is a group under composition.

Lemma

The map $g \mapsto r_g$ is a homomorphism of groups

$$G \rightarrow Aut(N)$$

Let $N \subseteq G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$n \mapsto r_g(n) := gng^{-1}, \ n \in N$$

is an automorphism of N.

This is because if $n_1, n_2 \in N$

$$r_g(n_1 \cdot n_2) = gn_1 \cdot n_2 g^{-1} = gn_1 g^{-1} \cdot gn_2 g^{-1} = r_g(n_1) \cdot r_g(n_2).$$

The set Aut(N) of automorphisms of N is a group under composition.

Lemma

The map $g \mapsto r_g$ is a homomorphism of groups.

$$G \rightarrow Aut(N)$$

Let $N \subseteq G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$n \mapsto r_g(n) := gng^{-1}, \ n \in N$$

is an automorphism of N.

This is because if $n_1, n_2 \in N$

$$r_g(n_1 \cdot n_2) = gn_1 \cdot n_2 g^{-1} = gn_1 g^{-1} \cdot gn_2 g^{-1} = r_g(n_1) \cdot r_g(n_2).$$

The set Aut(N) of automorphisms of N is a *group* under composition.

Lemma

The map $g \mapsto r_g$ *is a homomorphism of groups:*

$$G \rightarrow Aut(N)$$
.

Let $N \subseteq G$ be a normal subgroup. For any $g \in G$, the conjugation map on N

$$n \mapsto r_g(n) := gng^{-1}, \ n \in N$$

is an automorphism of N.

This is because if $n_1, n_2 \in N$

$$r_g(n_1 \cdot n_2) = gn_1 \cdot n_2 g^{-1} = gn_1 g^{-1} \cdot gn_2 g^{-1} = r_g(n_1) \cdot r_g(n_2).$$

The set Aut(N) of automorphisms of N is a *group* under composition.

Lemma

The map $g \mapsto r_g$ *is a homomorphism of groups:*

$$G \rightarrow Aut(N)$$
.

Proof of the lemma

Proof.

We need to show that if $g, h \in G$, then

$$r_{gh} = r_g \circ r_h$$
.

That is, for all $n \in N$,

$$r_{gh}(n) = r_g \circ r_h(n) = r_g(r_h(n)).$$

We check:

$$r_g(r_h(n)) = r_g(hnh^{-1}) = g(hnh^{-1})g^{-1} = (gh)n(gh)^{-1} = r_{gh}(n).$$

Proof of the lemma

Proof.

We need to show that if $g, h \in G$, then

$$r_{gh} = r_g \circ r_h$$
.

That is, for all $n \in N$,

$$r_{gh}(n) = r_g \circ r_h(n) = r_g(r_h(n)).$$

We check

$$r_g(r_h(n)) = r_g(hnh^{-1}) = g(hnh^{-1})g^{-1} = (gh)n(gh)^{-1} = r_{gh}(n).$$

Proof of the lemma

Proof.

We need to show that if $g, h \in G$, then

$$r_{gh} = r_g \circ r_h$$
.

That is, for all $n \in N$,

$$r_{gh}(n) = r_g \circ r_h(n) = r_g(r_h(n)).$$

We check:

$$r_g(r_h(n)) = r_g(hnh^{-1}) = g(hnh^{-1})g^{-1} = (gh)n(gh)^{-1} = r_{gh}(n).$$

Proposition

The only groups of order 6 are \mathbb{Z}_6 and D_6 .

Proof.

Let G be a group of order 6. If G has an element of order 6 then it is cyclic.

So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N = \langle r \rangle \subset G$ is of index 2, hence is normal. Let $r: G \to Aut(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3 \stackrel{\sim}{\longrightarrow} \mathbb{Z}_6$. Suppose r is not trivial. Then G is a non-abelian group of order 6, with a commutative normal subgroup N of order 3. Let $f \in G, f \notin N$. Then r(f) is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_6 .

Proposition

The only groups of order 6 are \mathbb{Z}_6 and D_6 .

Proof.

Let G be a group of order 6. If G has an element of order 6 then it is cyclic.

So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N = \langle r \rangle \subset G$ is of index 2, hence is normal. Let $r: G \to Aut(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3 \xrightarrow{\sim} \mathbb{Z}_6$. Suppose r is not trivial. Then G is a non-abelian group of order 6, with a commutative normal subgroup N of order 3. Let $f \in G, f \notin N$. Then r(f) is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_6 .

Proposition

The only groups of order 6 are \mathbb{Z}_6 and D_6 .

Proof.

Let G be a group of order 6. If G has an element of order 6 then it is cyclic.

So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N = \langle r \rangle \subset G$ is of index 2, hence is normal. Let $r: G \to Aut(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3 \xrightarrow{\sim} \mathbb{Z}_6$. Suppose r is not trivial. Then G is a non-abelian group of order 6, with a commutative normal subgroup N of order 3. Let $f \in G, f \notin N$. Then r(f) is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_6 .

Proposition

The only groups of order 6 are \mathbb{Z}_6 and D_6 .

Proof.

Let G be a group of order 6. If G has an element of order 6 then it is cyclic.

So suppose G has no element of order 6. Suppose G has an element r of order 3. Then the subgroup $N = \langle r \rangle \subset G$ is of index 2, hence is normal. Let $r: G \to Aut(N)$ be the conjugation map. If r is trivial then G is abelian, hence isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3 \stackrel{\sim}{\longrightarrow} \mathbb{Z}_6$. Suppose r is not trivial. Then G is a non-abelian group of order 6, with a commutative normal subgroup N of order 3. Let $f \in G, f \notin N$. Then r(f) is the non-trivial automorphism $n \mapsto n^{-1}$ of N. One sees that G is isomorphic to D_6 .

Proof.

Finally, if G has no element of order 3, then it has only elements of order 2. By a homework problem, G is abelian, but then by classification it must be \mathbb{Z}_6 again.

Now suppose N and H are groups and

$$r: H \to Aut(N)$$

is a homomorphism. We construct a new group $N \bowtie H$ as follows:

The elements of $N \rtimes H$ are ordered pairs $(n,h), n \in N, h \in H$. Mutliplication is given by

$$(n_1,h_1)(n_2,h_2)=(n_1\cdot r(h_1)(n_2),h_1\cdot h_2).$$

We can remove the parentheses if we take care:

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2$$

and use the *commutation rule*

$$h_1 \cdot n_2 = h_1 n_2 h_1^{-1} h_1 = r(h_1)(n_2) \cdot h_1.$$

so that

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2 = n_1r(h_1)(n_2) \cdot h_1h_2$$

Now suppose N and H are groups and

$$r: H \to Aut(N)$$

is a homomorphism. We construct a new group $N \times H$ as follows: The elements of $N \times H$ are ordered pairs $(n, h), n \in N, h \in H$. Mutliplication is given by

$$(n_1,h_1)(n_2,h_2)=(n_1\cdot r(h_1)(n_2),h_1\cdot h_2).$$

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2$$

$$h_1 \cdot n_2 = h_1 n_2 h_1^{-1} h_1 = r(h_1)(n_2) \cdot h_1.$$

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2 = n_1r(h_1)(n_2) \cdot h_1h_2$$

Now suppose *N* and *H* are groups and

$$r: H \to Aut(N)$$

is a homomorphism. We construct a new group $N \rtimes H$ as follows: The elements of $N \rtimes H$ are ordered pairs $(n,h), n \in N, h \in H$. Mutliplication is given by

$$(n_1,h_1)(n_2,h_2)=(n_1\cdot r(h_1)(n_2),h_1\cdot h_2).$$

We can remove the parentheses if we take care:

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2$$

and use the commutation rule

$$h_1 \cdot n_2 = h_1 n_2 h_1^{-1} h_1 = r(h_1)(n_2) \cdot h_1.$$

so that

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2 = n_1r(h_1)(n_2) \cdot h_1h_2$$

Now suppose N and H are groups and

$$r: H \to Aut(N)$$

is a homomorphism. We construct a new group $N \rtimes H$ as follows: The elements of $N \rtimes H$ are ordered pairs $(n,h), n \in N, h \in H$. Mutliplication is given by

$$(n_1, h_1)(n_2, h_2) = (n_1 \cdot r(h_1)(n_2), h_1 \cdot h_2).$$

We can remove the parentheses if we take care:

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2$$

and use the commutation rule

$$h_1 \cdot n_2 = h_1 n_2 h_1^{-1} h_1 = r(h_1)(n_2) \cdot h_1.$$

so that

$$(n_1 \cdot h_1)(n_2 \cdot h_2) = n_1(h_1 \cdot n_2)h_2 = n_1r(h_1)(n_2) \cdot h_1h_2$$

In other words, inside $N \rtimes H$ the homomorphism $r: H \to Aut(N)$ corresponds to conjugation of N by H.

The group $N \times H$ is called the *semidirect product* of N and H. The roles of N and H cannot be exchanged.

Example

For any cyclic group \mathbb{Z}_n , there is a homomorphism $r: \{\pm 1\} \to Aut(\mathbb{Z}_n)$:

$$r(-1)(x) = -x$$

The semidirect product $\mathbb{Z}_n \times \{\pm 1\}$ is just the dihedral group D_{2n} .

In other words, inside $N \rtimes H$ the homomorphism $r: H \to Aut(N)$ corresponds to conjugation of N by H.

The group $N \rtimes H$ is called the *semidirect product* of N and H. The roles of N and H cannot be exchanged.

Example

For any cyclic group \mathbb{Z}_n , there is a homomorphism $r: \{\pm 1\} \to Aut(\mathbb{Z}_n)$:

$$r(-1)(x) = -x.$$

The semidirect product $\mathbb{Z}_n \times \{\pm 1\}$ is just the dihedral group D_{2n} .

We need to prove that multiplication in $N \rtimes H$ is associative and that the identity and inverses exist. The identity is obvious: if we set

$$e = (e_N, e_H)$$
, then

$$(e_N, e_H)(n, h) = (e_N \cdot r(e_H)(n), e_H \cdot h)) = (e_N \cdot n, e_H \cdot h) = (n, h)$$

because $r(e_H)$ is the identity in Aut(N)

The identity relation of multiplication on the right is verified in the same way.

$$(n',h')(n,h) = (e_N,e_H).$$

We need to prove that multiplication in $N \times H$ is associative and that the identity and inverses exist. The identity is obvious: if we set $e = (e_N, e_H)$, then

$$(e_N, e_H)(n, h) = (e_N \cdot r(e_H)(n), e_H \cdot h)) = (e_N \cdot n, e_H \cdot h) = (n, h)$$

because $r(e_H)$ is the identity in Aut(N).

The identity relation of multiplication on the right is verified in the same way.

$$(n',h')(n,h) = (e_N,e_H).$$

We need to prove that multiplication in $N \times H$ is associative and that the identity and inverses exist. The identity is obvious: if we set $e = (e_N, e_H)$, then

$$(e_N, e_H)(n, h) = (e_N \cdot r(e_H)(n), e_H \cdot h)) = (e_N \cdot n, e_H \cdot h) = (n, h)$$

because $r(e_H)$ is the identity in Aut(N).

The identity relation of multiplication on the right is verified in the same way.

$$(n',h')(n,h) = (e_N,e_H).$$

We need to prove that multiplication in $N \times H$ is associative and that the identity and inverses exist. The identity is obvious: if we set $e = (e_N, e_H)$, then

$$(e_N, e_H)(n, h) = (e_N \cdot r(e_H)(n), e_H \cdot h)) = (e_N \cdot n, e_H \cdot h) = (n, h)$$

because $r(e_H)$ is the identity in Aut(N).

The identity relation of multiplication on the right is verified in the same way.

$$(n', h')(n, h) = (e_N, e_H).$$

Now if

$$(e_N, e_H) = (n', h')(n, h) = (n' \cdot r(h')n, h' \cdot h)$$

then we must have $h' = h^{-1}$. So the equation we need to solve is

$$n' \cdot r(h^{-1})(n) = e_N; \ n' = (r(h^{-1})n)^{-1}$$

and this gives the solution. You can check that

$$(n,h)((r(h^{-1})n)^{-1},h^{-1})=(e_N,e_H)$$

as well

Now if

$$(e_N, e_H) = (n', h')(n, h) = (n' \cdot r(h')n, h' \cdot h)$$

then we must have $h' = h^{-1}$. So the equation we need to solve is

$$n' \cdot r(h^{-1})(n) = e_N; \ n' = (r(h^{-1})n)^{-1}$$

and this gives the solution. You can check that

$$(n,h)((r(h^{-1})n)^{-1},h^{-1})=(e_N,e_H)$$

as well.

The semidirect product is associative

This is a calculation:

$$[(n_1, h_1)(n_2, h_2)](n_3, h_3) = (n_1 \cdot r(h_1)(n_2), h_1 \cdot h_2)(n_3, h_3)$$

= $(n_1 \cdot r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3, h_1h_2h_3).$

On the other hand

$$(n_1, h_1)[(n_2, h_2)(n_3, h_3)] = (n_1, h_1)(n_2 \cdot r(h_2)(n_3), h_2 \cdot h_3)$$

= $(n_1 \cdot r(h_1)(n_2 \cdot r(h_2)(n_3), h_1h_2h_3)$

So we need to check

$$n_1 \cdot r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = n_1 \cdot r(h_1)(n_2 \cdot r(h_2)(n_3))$$

or even
$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

The semidirect product is associative

This is a calculation:

$$[(n_1, h_1)(n_2, h_2)](n_3, h_3) = (n_1 \cdot r(h_1)(n_2), h_1 \cdot h_2)(n_3, h_3)$$

= $(n_1 \cdot r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3, h_1h_2h_3).$

On the other hand

$$(n_1, h_1)[(n_2, h_2)(n_3, h_3)] = (n_1, h_1)(n_2 \cdot r(h_2)(n_3), h_2 \cdot h_3)$$

= $(n_1 \cdot r(h_1)(n_2 \cdot r(h_2)(n_3), h_1h_2h_3)$

So we need to check

$$n_1 \cdot r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = n_1 \cdot r(h_1)(n_2 \cdot r(h_2)(n_3))$$

or even
$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

The semidirect product is associative

This is a calculation:

$$[(n_1, h_1)(n_2, h_2)](n_3, h_3) = (n_1 \cdot r(h_1)(n_2), h_1 \cdot h_2)(n_3, h_3)$$

= $(n_1 \cdot r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3, h_1h_2h_3).$

On the other hand

$$(n_1, h_1)[(n_2, h_2)(n_3, h_3)] = (n_1, h_1)(n_2 \cdot r(h_2)(n_3), h_2 \cdot h_3)$$

= $(n_1 \cdot r(h_1)(n_2 \cdot r(h_2)(n_3), h_1h_2h_3)$

So we need to check

$$n_1 \cdot r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = n_1 \cdot r(h_1)(n_2 \cdot r(h_2)(n_3))$$

or even
$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = r(h_1)(n_2 \cdot r(h_2)(n_3))$$
.

The semidirect product is associative, end of the calculation

We need to show

$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

But $r(h_1 \cdot h_2)n_3 = r(h_1)(r(h_2)(n_3))$ by the definition of $r: H \to Aut(N)$. And for any n, n',

$$r(h_1)(n) \cdot r(h_1)(n') = r(h_1)(n \cdot n')$$

because $r(h_1)$ is an automorphism. So

$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2) n_3 = r(h_1)(n_2) \cdot r(h_1)(r(h_2)(n_3)) = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

which is what we needed to prove

The semidirect product is associative, end of the calculation

We need to show

$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

But $r(h_1 \cdot h_2)n_3 = r(h_1)(r(h_2)(n_3))$ by the definition of $r: H \to Aut(N)$. And for any n, n',

$$r(h_1)(n) \cdot r(h_1)(n') = r(h_1)(n \cdot n')$$

because $r(h_1)$ is an automorphism. So

$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2) n_3 = r(h_1)(n_2) \cdot r(h_1)(r(h_2)(n_3)) = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

which is what we needed to prove

The semidirect product is associative, end of the calculation

We need to show

$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2)n_3 = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

But $r(h_1 \cdot h_2)n_3 = r(h_1)(r(h_2)(n_3))$ by the definition of $r: H \to Aut(N)$. And for any n, n',

$$r(h_1)(n) \cdot r(h_1)(n') = r(h_1)(n \cdot n')$$

because $r(h_1)$ is an automorphism. So

$$r(h_1)(n_2) \cdot r(h_1 \cdot h_2) n_3 = r(h_1)(n_2) \cdot r(h_1)(r(h_2)(n_3)) = r(h_1)(n_2 \cdot r(h_2)(n_3))$$

which is what we needed to prove.

Example

Recall that if p is prime, then $Aut(\mathbb{Z}_p) = \mathbb{Z}_p^{\times}$. So there is a semidirect product

$$\mathbb{Z}_p \rtimes \mathbb{Z}_p^{\times}$$

of order p(p-1) for any p. It is non-commutative:

$$x \cdot a = a \cdot ax, x \in \mathbb{Z}_p, a \in \mathbb{Z}_p^{\times}$$

In this way we obtain new non-commutative groups of order $5 \cdot 4 = 20$, $7 \cdot 6 = 42$, and so on. (When p = 3 we just get D_6 again).

Example

Recall that if p is prime, then $Aut(\mathbb{Z}_p) = \mathbb{Z}_p^{\times}$. So there is a semidirect product

$$\mathbb{Z}_p \rtimes \mathbb{Z}_p^{\times}$$

of order p(p-1) for any p. It is non-commutative:

$$x \cdot a = a \cdot ax, x \in \mathbb{Z}_p, a \in \mathbb{Z}_p^{\times}.$$

In this way we obtain new non-commutative groups of order $5 \cdot 4 = 20$, $7 \cdot 6 = 42$, and so on. (When p = 3 we just get D_6 again).

There are more possibilities. It is known that \mathbb{Z}_p^{\times} is always a cyclic group. When p=7 or p=11 this follows from the classification of abelian groups: the only abelian groups of order 6 or 10 are $\mathbb{Z}_2 \times \mathbb{Z}_3$ or $\mathbb{Z}_2 \times \mathbb{Z}_5$, which are cyclic.

So for example, \mathbb{Z}_7^* contains a cyclic group C_3 of order 3, and the inclusion

$$C_3 \hookrightarrow \mathbb{Z}_7^* \xrightarrow{\sim} Aut(\mathbb{Z}_7)$$

gives us a semidirect product

$$\mathbb{Z}_7 \times C_3$$

of order $7 \cdot 3 = 21$. Similarly $C_5 \subset \mathbb{Z}_{11}^{\times}$ gives us a semidirect product

$$\mathbb{Z}_{11} \times C_5$$

There are more possibilities. It is known that \mathbb{Z}_p^{\times} is always a cyclic group. When p=7 or p=11 this follows from the classification of abelian groups: the only abelian groups of order 6 or 10 are $\mathbb{Z}_2 \times \mathbb{Z}_3$ or $\mathbb{Z}_2 \times \mathbb{Z}_5$, which are cyclic.

So for example, \mathbb{Z}_7^* contains a cyclic group C_3 of order 3, and the inclusion

$$C_3 \hookrightarrow \mathbb{Z}_7^* \xrightarrow{\sim} Aut(\mathbb{Z}_7)$$

gives us a semidirect product

$$\mathbb{Z}_7 \times C_3$$

of order $7 \cdot 3 = 21$. Similarly $C_5 \subset \mathbb{Z}_{11}^{\times}$ gives us a semidirect product

$$\mathbb{Z}_{11} \times C_5$$

There are more possibilities. It is known that \mathbb{Z}_p^{\times} is always a cyclic group. When p=7 or p=11 this follows from the classification of abelian groups: the only abelian groups of order 6 or 10 are $\mathbb{Z}_2 \times \mathbb{Z}_3$ or $\mathbb{Z}_2 \times \mathbb{Z}_5$, which are cyclic.

So for example, \mathbb{Z}_7^* contains a cyclic group C_3 of order 3, and the inclusion

$$C_3 \hookrightarrow \mathbb{Z}_7^* \xrightarrow{\sim} Aut(\mathbb{Z}_7)$$

gives us a semidirect product

$$\mathbb{Z}_7 \rtimes C_3$$

of order $7 \cdot 3 = 21$. Similarly $C_5 \subset \mathbb{Z}_{11}^{\times}$ gives us a semidirect product

$$\mathbb{Z}_{11} \rtimes C_5$$

of order 55.

The construction above begins with two groups N and H and constructs a semidirect product $G = N \rtimes H$ with N as normal subgroup.

We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose

$$\mathbf{0} H \cdot N = G$$
 and

②
$$H \cap N = \{e\}$$

Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \to Aut(N)$ is defined by

$$r(h)(n) = hnh^{-1}$$

The construction above begins with two groups N and H and constructs a semidirect product $G = N \rtimes H$ with N as normal subgroup.

We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose

$$\mathbf{0} \ H \cdot N = G$$
 and

Then $G \xrightarrow{\sim} N \times H$, where $r: H \to Aut(N)$ is defined by

$$r(h)(n) = hnh^{-1}$$

The construction above begins with two groups N and H and constructs a semidirect product $G = N \rtimes H$ with N as normal subgroup.

We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose

$$\mathbf{0} \ H \cdot N = G \ and$$

②
$$H \cap N = \{e\}$$

Then $G \xrightarrow{\sim} N \times H$, where $r: H \to Aut(N)$ is defined by

$$r(h)(n) = hnh^{-1}$$

The construction above begins with two groups N and H and constructs a semidirect product $G = N \rtimes H$ with N as normal subgroup.

We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose

$$\mathbf{0} \ H \cdot N = G \ and$$

2
$$H \cap N = \{e\}$$

Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \to Aut(N)$ is defined by

$$r(h)(n) = hnh^{-1}$$

The construction above begins with two groups N and H and constructs a semidirect product $G = N \rtimes H$ with N as normal subgroup.

We can also start with a group G containing a normal subgroup N and a subgroup H.

Proposition

Suppose

$$\mathbf{0} \ H \cdot N = G \ and$$

2
$$H \cap N = \{e\}$$

Then $G \xrightarrow{\sim} N \rtimes H$, where $r: H \to Aut(N)$ is defined by

$$r(h)(n) = hnh^{-1}.$$

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$u(g) = (n, h)$$
 if $g = nh$.

Every g can be written as a product g = nh because $H \cdot N = G$. Moreover, this expression is unique, because $H \cap N = \{e\}$. So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_1 = n_1h_1$, $g_2 = n_2h_2$. We have

$$u(g_1g_2) = u(n_1h_1n_2h_2) = u(n_1[h_1n_1h_1^{-1}]h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2).$$

On the other hand

$$u(g_1)u(g_2) = (n_1, h_1)(n_2, h_2) = (n_1r(h_1)(n_2), h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2).$$

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$u(g) = (n, h)$$
 if $g = nh$.

Every g can be written as a product g = nh because $H \cdot N = G$. Moreover, this expression is unique, because $H \cap N = \{e\}$.

So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_1 = n_1h_1$, $g_2 = n_2h_2$. We have

$$u(g_1g_2) = u(n_1h_1n_2h_2) = u(n_1[h_1n_1h_1^{-1}]h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2).$$

On the other hand

$$u(g_1)u(g_2) = (n_1, h_1)(n_2, h_2) = (n_1r(h_1)(n_2), h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2)$$

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$u(g) = (n, h) \text{ if } g = nh.$$

Every g can be written as a product g = nh because $H \cdot N = G$. Moreover, this expression is unique, because $H \cap N = \{e\}$. So the map from G to $N \rtimes H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_1 = n_1h_1$, $g_2 = n_2h_2$. We have

$$u(g_1g_2) = u(n_1h_1n_2h_2) = u(n_1[h_1n_1h_1^{-1}]h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2).$$

On the other hand

$$u(g_1)u(g_2) = (n_1, h_1)(n_2, h_2) = (n_1r(h_1)(n_2), h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2)$$

The proof is easy. We define a homomorphism $u: G \rightarrow N \rtimes H$ by setting

$$u(g) = (n, h)$$
 if $g = nh$.

Every g can be written as a product g = nh because $H \cdot N = G$.

Moreover, this expression is unique, because $H \cap N = \{e\}$.

So the map from G to $N \times H$ is well-defined. It remains to be proved that it is a homomorphism: We write $g_1 = n_1 h_1$, $g_2 = n_2 h_2$. We have

$$u(g_1g_2) = u(n_1h_1n_2h_2) = u(n_1[h_1n_1h_1^{-1}]h_1h_2) = (n_1[h_1n_2h_1^{-1}], h_1h_2).$$

On the other hand,

$$u(g_1)u(g_2)=(n_1,h_1)(n_2,h_2)=(n_1r(h_1)(n_2),h_1h_2)=(n_1[h_1n_2h_1^{-1}],h_1h_2).$$

