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Prime factorization

Definition
1 A prime number is an integer p > 1 whose only divisors are 1

and p.
2 Two integers m, n are relatively prime if their only common

factor is 1.

Theorem
Every integer n > 1 can be written as a product of prime numbers.

Proof.
We proceed by contradiction. Let n > 1 be the smallest integer that
cannot be written as a product of prime numbers. If n is prime we
have a contradiction. If not, we can factor n = a · b with 1 < a, b < n.
By hypothesis both a and b can be written as products of prime
numbers, and so n = a · b can be as well.
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Unique factorization

Theorem (Fundamental theorem of arithmetic)
Every integer n > 1 has a unique factorization as a product of prime
numbers. More precisely, suppose

n =

r∏
i=1

pai
i =

s∏
j=1

qbj
j

where the pi and qj are all primes and the ai, bj are positive integers.
Then r = s, we can assume pi = qi for i = 1, . . . , r, up to permutation
; and then ai = bi.

For the proof, see chapter 2 of Gallagher’s notes. If there is time at the
end of the course we can review the proof.
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The greatest common divisor

Definition
Let m, n ∈ N The greatest common divisor (GCD) of m and n,
denoted GCD(m, n), or simply (m, n), is the largest positive integer d
such that d divides both m and n.

One way to find (m, n) is to factor m =
∏

i pai
i , n =

∏
i pbi

i , where now
ai, bi ≥ 0; then

GCD(m, n) =
∏

i

pmin(ai,bi)
i .

But prime factorization is believed to be computationally hard.
(Otherwise there would be no internet security.)
The Euclidean algorithm is much faster and is computationally easy
(polynomial time).
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Euclidean algorithm, part 1

We assume n ≥ m. Write n1 = n, m1 = m and divide the larger by the
smaller:

n1 = d1 · m1 + r1

where r1 is the remainder.
Of course r1 < m1. So now set n2 = m1, m2 = r1, and write

n2 = d2 · m2 + r2.

Set n3 = m2,m3 = r2 and continue in this way until we find
nk = dk · mk without remainder.
We claim that mk = GCD(m, n).
First: mk divides nk = mk−1; but

mk = rk−1 = nk−1 − dk−1mk−1 = nk−1 − dk−1nk.

So mk divides nk−1. By induction we see mk divides all the ni and mi,
hence divides m and n.
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Euclidean algorithm, part 2

To show that mk is the GCD, we need to show that if a is any divisor
of m and n then a divides mk. For this we show that there are integers
α, β such that

mk = α · n + β · m.

This is also proved by induction: we show that every mi and nj is a
linear combination of n and m with integer coefficients.

m2 = r1 = n− d1 · m

m3 = r2 = m− d2 · m2 = m− d2 · (n− d1 · m);

and so on.
If a divides n and m then a divides α · n + β · m = mk.
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Euclidean algorithm, example

We compute GCD(88, 24):

88 = 3 · 24 + 16.

24 = 1 · 16 + 8.

16 = 2 · 8 + 0.

Hence 8 = GCD(88, 24).
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Bezout’s theorem

Theorem
Suppose GCD(m, n) = 1. Then there are α, β ∈ Z such that

αm + βn = 1.

This is just a special case of the Euclidean algorithm.
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Gauss’s lemma

Theorem (Gauss lemma)
Suppose a, b, c ∈ Z.
Suppose a|b · c but GCD(a, c) = 1. Then a divides b.
In particular, if p is prime and divides b · c, then either p divides b or
p divides c.

The proof is as follows: By Bezout, there are α, β in Z such that
αa + βc = 1. Multiply both sides by b:

α · ab + β · bc = b.

a divides α · ab, a divides β · bc⇒ a divides α · ab + β · bc = b.
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Least common multiple

We define
LCM(m, n) =

m · n
GCD(m, n)

.

Exercise: Show that LCM(m, n), defined in this way, is the least
common multiple of m and n.
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Congruences

Let n > 1 be an integer. We define an equivalence relation ∼n on Z:
write

a ∼n b

if n divides a− b. More commonly, we write a ≡ b (mod n).

Reflexive: for any a, n | (a− a), so a ∼n a.

Symmetric: if n | (a− b) then n | (b− a).

Transitive: if n | (a− b) and n | (b− c) then n divides
(a− b) + (b− c) = a− c.

The set of equivalence classes Z/ ∼n – also called congruence
classes, or residue classes – is denoted Zn (later Cn).
If a ∈ N, write a = d · n + r; then r ∈ {0, 1, . . . n− 1}, so a ∼n r.
Thus |Zn| = n (Check that this works also for negative a.)
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Thus |Zn| = n (Check that this works also for negative a.)
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Elementary number theory
Congruences

Groups

Residue classes
Arithmetic modulo n

Residue classes, examples

Example
For n = 2, there are two residue classes: the set of odd or even
numbers.

Example
For n = 10, any integer a is in the residue class of its last digit:

197865493 ≡ 3 (mod 10).

Example
For n = 12, congruence mod 12 is the basis of telling time on a clock.
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A word problem

At 3 : 00 I take a bus to Denver. The trip takes 42 hours and the time
is 2 hours earlier. What time is it when I arrive?

Answer: 3 + 42− 2 ≡ 7 (mod 12). So it is 7 : 00.

This is a calculation in arithmetic modulo 12.
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Arithmetic modulo n

We know there is a function from Z to the set of equivalence classes

rn : Z→ Zn = Z/ ∼n .

For any a ∈ Z, we write [a]n = rn(a) for the equivalence class in Zn

containing a.
Now we can define

[a]n + [b]n = [a + b]n; [a]n · [b]n = [a · b]n.

Thus for example

[3]12 + [42]12 − [2]12 = [43]12.

Not practical for telling time!
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Arithmetic modulo n is well defined

Suppose [a]n = [a′]n, [b]n = [b′]n. We need to show that

[ab]n = [a′b′]n, [a + b]n = [a′ + b′]n.

Check for multiplication (more difficult)

[a]n = [a′]n ⇒ n | (a− a′)⇒ (a− a′) = dn

So a = a′ + dn; b = b′ + en,
So

ab = (a′+dn)(b′+en) = a′b′+n(db′+ea′+den) ≡ a′b′ (mod n).
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Arithmetic modulo n with representatives

We choose one representative in each residue class, usually

{[0]n, [1]n, . . . , [n− 1]n}.

Then to compute [a]n + [b]n, when 0 ≤ a, b < n

if a + b < n then [a]n + [b]n = [a + b]n is the chosen
representative;

if n < a + b < 2n then [a]n + [b]n = [a + b− n]n.

For multiplication, you have ab = dn + r with 0 ≤ r < n the
remainder, so

[a]n[b]n = [r]n.
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A corollary to Bezout’s theorem

Recall that if GCD(a, n) = 1 then there are integers α, β such that

α · a + β · n = 1.

Thus
[α]n · [a]n = [1]n − [β · n]n = [1]n.

In other words, if (a, n) = 1 then [a]n has a multiplicative inverse in
Zn.
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Definition of a group

The set Zn with addition is the simplest example of a finite group.

Definition
A binary operation on a set G is a function m : G× G→ G.

Definition
A group is a set G with a binary operation m, where we write
m(g, h) = gh = g · h, an element e ∈ G, and a function

ι : G→ G, written ι(g) = g−1,

satisfying these axioms:

Associativity: ∀g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3);

Identity: ∀g ∈ G, eg = g;

Inverse: ∀g ∈ G, g−1g = e.
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Elementary properties

For all g ∈ G, gg−1 = e.
Proof: Let h = gg−1. We write

g−1h = g−1(gg−1) = (g−1g)g−1 [associative law]

g−1h = e · g−1 [inverse]

(∗) g−1h = g−1. [identity]

So

h = eh = ((g−1)−1 · g−1) · h [identity and inverse]

h = (g−1)−1(g−1 · h) [associative law]

h = (g−1)−1g−1 [by (*)]

h = e [inverse]
GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties

For all g ∈ G, gg−1 = e.
Proof: Let h = gg−1. We write

g−1h = g−1(gg−1) = (g−1g)g−1 [associative law]

g−1h = e · g−1 [inverse]

(∗) g−1h = g−1. [identity]

So

h = eh = ((g−1)−1 · g−1) · h [identity and inverse]

h = (g−1)−1(g−1 · h) [associative law]

h = (g−1)−1g−1 [by (*)]

h = e [inverse]
GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties

For all g ∈ G, gg−1 = e.
Proof: Let h = gg−1. We write

g−1h = g−1(gg−1) = (g−1g)g−1 [associative law]

g−1h = e · g−1 [inverse]

(∗) g−1h = g−1. [identity]

So

h = eh = ((g−1)−1 · g−1) · h [identity and inverse]

h = (g−1)−1(g−1 · h) [associative law]

h = (g−1)−1g−1 [by (*)]

h = e [inverse]
GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties

For all g ∈ G, gg−1 = e.
Proof: Let h = gg−1. We write

g−1h = g−1(gg−1) = (g−1g)g−1 [associative law]

g−1h = e · g−1 [inverse]

(∗) g−1h = g−1. [identity]

So

h = eh = ((g−1)−1 · g−1) · h [identity and inverse]

h = (g−1)−1(g−1 · h) [associative law]

h = (g−1)−1g−1 [by (*)]

h = e [inverse]
GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties

For all g ∈ G, gg−1 = e.
Proof: Let h = gg−1. We write

g−1h = g−1(gg−1) = (g−1g)g−1 [associative law]

g−1h = e · g−1 [inverse]

(∗) g−1h = g−1. [identity]

So

h = eh = ((g−1)−1 · g−1) · h [identity and inverse]

h = (g−1)−1(g−1 · h) [associative law]

h = (g−1)−1g−1 [by (*)]

h = e [inverse]
GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties

Similarly, the identity axiom states eg = g, but in fact

∀g, ge = g.

Indeed,
ge = g(g−1g) = (gg−1)g [associative law]

ge = eg [as we just showed]

ge = g [by the identity axiom]

GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties

Similarly, the identity axiom states eg = g, but in fact

∀g, ge = g.

Indeed,
ge = g(g−1g) = (gg−1)g [associative law]

ge = eg [as we just showed]

ge = g [by the identity axiom]

GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Elementary properties, exercises

Exercise
(1) Show that, for any g, e is the unique element such that eg = g.
(2) Show that, for any g, there is a unique element j such that gj = e
(and thus j = g−1.
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Commutative groups

Definition
The group G is commutative if, for all g, h ∈ G, gh = hg.

Familiar examples: Z, Q, R are commutative groups under the
addition law.

Theorem
The set Zn with addition is a group.

Proof.
Associativity of addition in Zn follows from that in Z:

([a]n+[b]n)+[c]n = [a+b]n+[c]n = [(a+b)+c]n = [a+(b+c)]n . . .

The element [0]n is the identity; the inverse of [a]n is [−a]n.
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More examples

The set Q× = Q \ {0} has multiplicative inverses. So m(a, b) = a · b
is a group law on Q×.
Similarly for R× = R \ {0}.
The set Z \ {0} is not a group under multiplication; any element
a > 1 has no multiplicative inverse in Z \ {0}.
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Cyclic groups

For any m ∈ N, g ∈ G, we write gm = g · g · g · · · · g (m times). We
write g0 = e, g−m = (gm)−1.

Definition
A group G is cyclic if there is an element g ∈ G, called a cyclic
generator, such that every h ∈ G is of the form gm for some m ∈ Z.

Example
The additive group Z is cyclic; the elements 1 and −1 are both cycllic
generators.

Example

The group Zn is cyclic with generator [1]n.
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Cayley tables

The multiplication table for a group is called a Cayley table. Here is
the Cayley table for a group with 4 elements.

You can check that this group satisfies all three axioms. It is the
simplest group that is not cyclic and is called the Klein group, written
K4.
Some Cayley tables for Z2 and Z3 (on the board).

GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Cayley tables

The multiplication table for a group is called a Cayley table. Here is
the Cayley table for a group with 4 elements.

You can check that this group satisfies all three axioms. It is the
simplest group that is not cyclic and is called the Klein group, written
K4.
Some Cayley tables for Z2 and Z3 (on the board).

GU4041, fall 2023 First notions of group theory



Elementary number theory
Congruences

Groups

Basic properties of groups
Examples

Cayley tables

The multiplication table for a group is called a Cayley table. Here is
the Cayley table for a group with 4 elements.

You can check that this group satisfies all three axioms. It is the
simplest group that is not cyclic and is called the Klein group, written
K4.
Some Cayley tables for Z2 and Z3 (on the board).

GU4041, fall 2023 First notions of group theory


	Elementary number theory
	Prime factorization
	Euclidean algorithm

	Congruences
	Residue classes
	Arithmetic modulo n 

	Groups
	Basic properties of groups
	Examples


