First notions of group theory

GU4041, fall 2023
Columbia University

September 12, 2023

Outline

(1) Elementary number theory

- Prime factorization
- Euclidean algorithm
(2) Congruences
- Residue classes
- Arithmetic modulo n
(3) Groups
- Basic properties of groups
- Examples

Prime factorization

Definition
(1) A prime number is an integer $p>1$ whose only divisors are 1 and p.
(2) Two integers m, n are relatively prime if their only common factor is 1 .

Theorem

Proof
We nroceed by contradiction. Let $n>1$ be the smallest integer that cannot be written as a product of prime numbers. If n is prime we have a contradiction. If not, we can factor $n=a \cdot b$ with $1<a, b<n$. By hypothesis both a and b can be written as products of prime numbers, and so $n=a \cdot b$ can be as well.

Prime factorization

Definition

(1) A prime number is an integer $p>1$ whose only divisors are 1 and p.
(2) Two integers m, n are relatively prime if their only common factor is 1 .

Theorem
Every integer $n>1$ can be written as a product of prime numbers.

We proceed by contradiction. Let $n>1$ be the smallest integer that cannot be written as a product of prime numbers. If n is prime we have a contradiction. If not, we can factor $n=a \cdot b$ with $1<a, b<n$. By hypothesis both a and b can be written as products of prime numbers, and so $n=a \cdot b$ can be as well.

Prime factorization

Definition

(1) A prime number is an integer $p>1$ whose only divisors are 1 and p.
(2) Two integers m, n are relatively prime if their only common factor is 1 .

Theorem

Every integer $n>1$ can be written as a product of prime numbers.

> Proof
> We proceed by contradiction. Let $n>1$ be the smallest integer that cannot be written as a product of prime numbers. If n is prime we have a contradiction. If not, we can factor $n=a \cdot b$ with $1<a, b<n$. By hypothesis both a and b can be written as products of prime numbers, and so $n=a \cdot b$ can be as well.

Prime factorization

Definition

(1) A prime number is an integer $p>1$ whose only divisors are 1 and p.
(2) Two integers m, n are relatively prime if their only common factor is 1 .

Theorem

Every integer $n>1$ can be written as a product of prime numbers.

Proof.

We proceed by contradiction. Let $n>1$ be the smallest integer that cannot be written as a product of prime numbers.

By hypothesis both a and b can be written as products of prime
numbers, and so $n=a \cdot b$ can be as well.

Prime factorization

Definition

(1) A prime number is an integer $p>1$ whose only divisors are 1 and p.
(2) Two integers m, n are relatively prime if their only common factor is 1 .

Theorem

Every integer $n>1$ can be written as a product of prime numbers.

Proof.

We proceed by contradiction. Let $n>1$ be the smallest integer that cannot be written as a product of prime numbers. If n is prime we have a contradiction. If not, we can factor $n=a \cdot b$ with $1<a, b<n$. By hypothesis both a and b can be written as products of prime numbers, and so $n=a \cdot b$ can be as well.

Prime factorization

Definition

(1) A prime number is an integer $p>1$ whose only divisors are 1 and p.
(2) Two integers m, n are relatively prime if their only common factor is 1 .

Theorem

Every integer $n>1$ can be written as a product of prime numbers.

Proof.

We proceed by contradiction. Let $n>1$ be the smallest integer that cannot be written as a product of prime numbers. If n is prime we have a contradiction. If not, we can factor $n=a \cdot b$ with $1<a, b<n$. By hypothesis both a and b can be written as products of prime numbers, and so $n=a \cdot b$ can be as well.

Unique factorization

Theorem (Fundamental theorem of arithmetic)
Every integer $n>1$ has a unique factorization as a product of prime numbers. More precisely, suppose

$$
n=\prod_{i=1} p_{i}^{a_{i}}=\prod_{j=1}^{\infty} q_{j}^{b_{j}}
$$

where the p_{i} and q_{j} are all primes and the a_{i}, b_{j} are positive integers. Then $r=s$, we can assume $p_{i}=q_{i}$ for $i=1$, , ..., r, up to permutation and then $a_{i}=b_{i}$.

For the proof, see chapter 2 of Gallagher's notes. If there is time at the end of the course we can review the proof.

Unique factorization

Theorem (Fundamental theorem of arithmetic)

Every integer $n>1$ has a unique factorization as a product of prime numbers. More precisely, suppose

$$
n=\prod_{i=1}^{r} p_{i}^{a_{i}}=\prod_{j=1}^{s} q_{j}^{b_{j}}
$$

where the p_{i} and q_{j} are all primes and the a_{i}, b_{j} are positive integers.
Then $r=s$, we can assume $p_{i}=q_{i}$ for $i=1$ and then $a_{i}=b_{i}$.

For the proof, see chapter 2 of Gallagher's notes. If there is time at the end of the course we can review the proof.

Unique factorization

Theorem (Fundamental theorem of arithmetic)

Every integer $n>1$ has a unique factorization as a product of prime numbers. More precisely, suppose

$$
n=\prod_{i=1}^{r} p_{i}^{a_{i}}=\prod_{j=1}^{s} q_{j}^{b_{j}}
$$

where the p_{i} and q_{j} are all primes and the a_{i}, b_{j} are positive integers. Then $r=s$, we can assume $p_{i}=q_{i}$ for $i=1, \ldots, r$, up to permutation

For the proof, see chapter 2 of Gallagher's notes. If there is time at the end of the course we can review the proof.

Unique factorization

Theorem (Fundamental theorem of arithmetic)

Every integer $n>1$ has a unique factorization as a product of prime numbers. More precisely, suppose

$$
n=\prod_{i=1}^{r} p_{i}^{a_{i}}=\prod_{j=1}^{s} q_{j}^{b_{j}}
$$

where the p_{i} and q_{j} are all primes and the a_{i}, b_{j} are positive integers. Then $r=s$, we can assume $p_{i}=q_{i}$ for $i=1, \ldots, r$, up to permutation ; and then $a_{i}=b_{i}$.

For the proof, see chapter 2 of Gallagher's notes. If there is time at the end of the course we can review the proof.

Unique factorization

Theorem (Fundamental theorem of arithmetic)

Every integer $n>1$ has a unique factorization as a product of prime numbers. More precisely, suppose

$$
n=\prod_{i=1}^{r} p_{i}^{a_{i}}=\prod_{j=1}^{s} q_{j}^{b_{j}}
$$

where the p_{i} and q_{j} are all primes and the a_{i}, b_{j} are positive integers. Then $r=s$, we can assume $p_{i}=q_{i}$ for $i=1, \ldots, r$, up to permutation ; and then $a_{i}=b_{i}$.

For the proof, see chapter 2 of Gallagher's notes. If there is time at the end of the course we can review the proof.

The greatest common divisor

Definition

Let $m, n \in \mathbb{N}$ The greatest common divisor (GCD) of m and n, denoted $G C D(m, n)$, or simply (m, n), is the largest positive integer d such that d divides both m and n.

One way to find (m, n) is to factor $m=\prod_{i} p_{i}^{a_{i}}, n=\prod_{i} p_{i}^{b_{i}}$, where now $a_{i}, b_{i} \geq 0$; then $G C D(m, n)=\prod p_{i}^{\min \left(a_{i}, b_{i}\right)}$

But prime factorization is believed to be computationally hard.
(Otherwise there would be no internet security.)
The Euclidean algorithm is much faster and is computationally easy (polynomial time).

The greatest common divisor

Definition

Let $m, n \in \mathbb{N}$ The greatest common divisor (GCD) of m and n, denoted $G C D(m, n)$, or simply (m, n), is the largest positive integer d such that d divides both m and n.

One way to find (m, n) is to factor $m=\prod_{i} p_{i}^{a_{i}}, n=\prod_{i} p_{i}^{b_{i}}$, where now $a_{i}, b_{i} \geq 0$; then

$$
G C D(m, n)=\prod_{i} p_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

But prime factorization is believed to be computationally hard.
(Otherwise there would be no internet security.)
The Euclidean algorithm is much faster and is computationally easy (polynomial time).

The greatest common divisor

Definition

Let $m, n \in \mathbb{N}$ The greatest common divisor (GCD) of m and n, denoted $G C D(m, n)$, or simply (m, n), is the largest positive integer d such that d divides both m and n.

One way to find (m, n) is to factor $m=\prod_{i} p_{i}^{a_{i}}, n=\prod_{i} p_{i}^{b_{i}}$, where now $a_{i}, b_{i} \geq 0$; then

$$
G C D(m, n)=\prod_{i} p_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

But prime factorization is believed to be computationally hard.
(Otherwise there would be no internet security.)

[^0]
The greatest common divisor

Definition

Let $m, n \in \mathbb{N}$ The greatest common divisor (GCD) of m and n, denoted $\operatorname{GCD}(m, n)$, or simply (m, n), is the largest positive integer d such that d divides both m and n.

One way to find (m, n) is to factor $m=\prod_{i} p_{i}^{a_{i}}, n=\prod_{i} p_{i}^{b_{i}}$, where now $a_{i}, b_{i} \geq 0$; then

$$
G C D(m, n)=\prod_{i} p_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

But prime factorization is believed to be computationally hard.
(Otherwise there would be no internet security.)
The Euclidean algorithm is much faster and is computationally easy (polynomial time).

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.

```
Of course }\mp@subsup{r}{1}{}<\mp@subsup{m}{1}{}\mathrm{ . So now set }\mp@subsup{n}{2}{}=\mp@subsup{m}{1}{},\mp@subsup{m}{2}{}=\mp@subsup{r}{1}{}\mathrm{ , and write
n}=\mp@subsup{d}{2}{}\cdot\mp@subsup{m}{2}{}+\mp@subsup{r}{2}{}
Set \(n_{3}=m_{2}, m_{3}=r_{2}\) and continue in this way until we find \(n_{k}=d_{k} \cdot m_{k}\) without remainder. We claim that \(m_{k}=\operatorname{GCD}(m, n)\). First: \(m_{k}\) divides \(n_{k}=m_{k-1}\); but
\[
m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k} .
\]
```

So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i}, hence divides m and n.

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.
Of course $r_{1}<m_{1}$. So now set $n_{2}=m_{1}, m_{2}=r_{1}$, and write

$$
n_{2}=d_{2} \cdot m_{2}+r_{2} .
$$

Set $n_{3}=m_{2}, m_{3}=r_{2}$ and continue in this way until we find $n_{k}=d_{k} \cdot m_{k}$ without remainder. We claim that $m_{k}=\operatorname{GCD}(m, n)$. First: m_{k} divides $n_{k}=m_{k-1}$; but

$$
m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k} .
$$

So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i}, hence divides m and n.

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.
Of course $r_{1}<m_{1}$. So now set $n_{2}=m_{1}, m_{2}=r_{1}$, and write

$$
n_{2}=d_{2} \cdot m_{2}+r_{2} .
$$

Set $n_{3}=m_{2}, m_{3}=r_{2}$ and continue in this way until we find $n_{k}=d_{k} \cdot m_{k}$ without remainder.
We claim that $m_{k}=\operatorname{GCD}(m, n)$.
First: m_{k} divides $n_{k}=m_{k-1}$; but
$m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k}$.
So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i}, hence divides m and n.

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.
Of course $r_{1}<m_{1}$. So now set $n_{2}=m_{1}, m_{2}=r_{1}$, and write

$$
n_{2}=d_{2} \cdot m_{2}+r_{2} .
$$

Set $n_{3}=m_{2}, m_{3}=r_{2}$ and continue in this way until we find $n_{k}=d_{k} \cdot m_{k}$ without remainder.
We claim that $m_{k}=\operatorname{GCD}(m, n)$.
First: m_{k} divides $n_{k}=m_{k-1}$; but
$m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k}$.
So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i}, hence divides m and n.

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.
Of course $r_{1}<m_{1}$. So now set $n_{2}=m_{1}, m_{2}=r_{1}$, and write

$$
n_{2}=d_{2} \cdot m_{2}+r_{2}
$$

Set $n_{3}=m_{2}, m_{3}=r_{2}$ and continue in this way until we find $n_{k}=d_{k} \cdot m_{k}$ without remainder.
We claim that $m_{k}=\operatorname{GCD}(m, n)$.
First: m_{k} divides $n_{k}=m_{k-1}$; but

$$
m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k}
$$

So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i},

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.
Of course $r_{1}<m_{1}$. So now set $n_{2}=m_{1}, m_{2}=r_{1}$, and write

$$
n_{2}=d_{2} \cdot m_{2}+r_{2}
$$

Set $n_{3}=m_{2}, m_{3}=r_{2}$ and continue in this way until we find $n_{k}=d_{k} \cdot m_{k}$ without remainder.
We claim that $m_{k}=G C D(m, n)$.
First: m_{k} divides $n_{k}=m_{k-1}$; but

$$
m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k} .
$$

So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i}, hence divides m and n.

Euclidean algorithm, part 1

We assume $n \geq m$. Write $n_{1}=n, m_{1}=m$ and divide the larger by the smaller:

$$
n_{1}=d_{1} \cdot m_{1}+r_{1}
$$

where r_{1} is the remainder.
Of course $r_{1}<m_{1}$. So now set $n_{2}=m_{1}, m_{2}=r_{1}$, and write

$$
n_{2}=d_{2} \cdot m_{2}+r_{2}
$$

Set $n_{3}=m_{2}, m_{3}=r_{2}$ and continue in this way until we find $n_{k}=d_{k} \cdot m_{k}$ without remainder.
We claim that $m_{k}=G C D(m, n)$.
First: m_{k} divides $n_{k}=m_{k-1}$; but

$$
m_{k}=r_{k-1}=n_{k-1}-d_{k-1} m_{k-1}=n_{k-1}-d_{k-1} n_{k} .
$$

So m_{k} divides n_{k-1}. By induction we see m_{k} divides all the n_{i} and m_{i}, hence divides m and n.

Euclidean algorithm, part 2

To show that m_{k} is the GCD, we need to show that if a is any divisor of m and n then a divides m_{k}. For this we show that there are integers α, β such that

$$
m_{k}=\alpha \cdot n+\beta \cdot m
$$

This is also proved by induction: we show that every m_{i} and n_{j} is a linear combination of n and m with integer coefficients.

$$
m_{2}=r_{1}=n-d_{1} \cdot m
$$

$$
m_{3}=r_{2}=m-d_{2} \cdot m_{2}=m-d_{2} \cdot\left(n-d_{1} \cdot m\right)
$$

and so on.
If a divides n and m then a divides $\alpha \cdot n+\beta \cdot m=m_{k}$

Euclidean algorithm, part 2

To show that m_{k} is the GCD, we need to show that if a is any divisor of m and n then a divides m_{k}. For this we show that there are integers α, β such that

$$
m_{k}=\alpha \cdot n+\beta \cdot m
$$

This is also proved by induction: we show that every m_{i} and n_{j} is a linear combination of n and m with integer coefficients.

$$
m_{2}=r_{1}=n-d_{1} \cdot m
$$

$m_{3}=r_{2}=m-d_{2} \cdot m_{2}=m-d_{2} \cdot\left(n-d_{1} \cdot m\right) ;$
and so on.
If a divides n and m then a divides $\alpha \cdot n+\beta \cdot m=m_{k}$

Euclidean algorithm, part 2

To show that m_{k} is the GCD, we need to show that if a is any divisor of m and n then a divides m_{k}. For this we show that there are integers α, β such that

$$
m_{k}=\alpha \cdot n+\beta \cdot m
$$

This is also proved by induction: we show that every m_{i} and n_{j} is a linear combination of n and m with integer coefficients.

$$
\begin{gathered}
m_{2}=r_{1}=n-d_{1} \cdot m \\
m_{3}=r_{2}=m-d_{2} \cdot m_{2}=m-d_{2} \cdot\left(n-d_{1} \cdot m\right)
\end{gathered}
$$

and so on.
If a divides n and m then a divides $\alpha \cdot n+\beta \cdot m=m_{k}$.

Euclidean algorithm, part 2

To show that m_{k} is the GCD, we need to show that if a is any divisor of m and n then a divides m_{k}. For this we show that there are integers α, β such that

$$
m_{k}=\alpha \cdot n+\beta \cdot m
$$

This is also proved by induction: we show that every m_{i} and n_{j} is a linear combination of n and m with integer coefficients.

$$
\begin{gathered}
m_{2}=r_{1}=n-d_{1} \cdot m \\
m_{3}=r_{2}=m-d_{2} \cdot m_{2}=m-d_{2} \cdot\left(n-d_{1} \cdot m\right)
\end{gathered}
$$

and so on.
If a divides n and m then a divides $\alpha \cdot n+\beta \cdot m=m_{k}$.

Euclidean algorithm, example

We compute $G C D(88,24)$:

$$
\begin{gathered}
88=3 \cdot 24+16 \\
24=1 \cdot 16+8 \\
16=2 \cdot 8+0
\end{gathered}
$$

Hence $8=\operatorname{GCD}(88,24)$.

Bezout's theorem

Theorem
Suppose $\operatorname{GCD}(m, n)=1$. Then there are $\alpha, \beta \in \mathbb{Z}$ such that

$$
\alpha m+\beta n=1
$$

This is just a special case of the Euclidean algorithm.

Bezout's theorem

Theorem
Suppose $\operatorname{GCD}(m, n)=1$. Then there are $\alpha, \beta \in \mathbb{Z}$ such that

$$
\alpha m+\beta n=1
$$

This is just a special case of the Euclidean algorithm.

Gauss's lemma

Theorem (Gauss lemma)
Suppose $a, b, c \in \mathbb{Z}$.
Suppose $a \mid b \cdot c$ but $\operatorname{GCD}(a, c)=1$. Then a divides b.
In particular, if p is prime and divides $b \cdot c$, then either p divides b or
p divides c.
The proof is as follows: By Bezout, there are α, β in \mathbb{Z} such that $\alpha a+\beta c=1$. Multiply both sides by b :

$$
a \cdot a b+\beta \cdot b c=b .
$$

a divides $\alpha \cdot a b, a$ divides $\beta \cdot b c \Rightarrow a$ divides $\alpha \cdot a b+\beta \cdot b c=b$.

Gauss's lemma

Theorem (Gauss lemma)

Suppose $a, b, c \in \mathbb{Z}$.
Suppose a $\mid b \cdot c$ but $\operatorname{GCD}(a, c)=1$. Then a divides b.
In particular, if p is prime and divides $b \cdot c$, then either p divides b or p divides c.

The proof is as follows: By Bezout, there are α, β in \mathbb{Z} such that $\alpha a+\beta c=1$. Multiply both sides by b :

$$
\alpha \cdot a b+\beta \cdot b c=b
$$

a divides $\alpha \cdot a b, a$ divides $\beta \cdot b c \Rightarrow a$ divides $\alpha \cdot a b+\beta \cdot b c=b$.

Least common multiple

We define

$$
\operatorname{LCM}(m, n)=\frac{m \cdot n}{G C D(m, n)} .
$$

Exercise: Show that $\operatorname{LCM}(m, n)$, defined in this way, is the least common multiple of m and n.

Least common multiple

We define

$$
\operatorname{LCM}(m, n)=\frac{m \cdot n}{G C D(m, n)} .
$$

Exercise: Show that $\operatorname{LCM}(m, n)$, defined in this way, is the least common multiple of m and n.

Congruences

Let $n>1$ be an integer. We define an equivalence relation \sim_{n} on \mathbb{Z} : write

$$
a \sim_{n} b
$$

if n divides $a-b$. More commonly, we write $a \equiv b(\bmod n)$.

- Reflexive: for any $a, n \mid(a-a)$, so $a \sim_{n} a$.
- Symmetric: if $n \mid(a-b)$ then $n \mid(b-a)$.
- Transitive: if $n \mid(a-b)$ and $n \mid(b-c)$ then n divides $(a-b)+(b-c)=a-c$.

The set of equivalence classes $\mathbb{Z} / \sim_{n}-$ also called congruence classes, or residue classes - is denoted \mathbb{Z}_{n} (later C_{n}). If $a \in \mathbb{N}$, write $a=d \cdot n+r$; then $r \in\{0,1, \ldots n-1\}$, so $a \sim_{n} r$. Thus $\left|\mathbb{Z}_{n}\right|=n$ (Check that this works also for negative a.)

Congruences

Let $n>1$ be an integer. We define an equivalence relation \sim_{n} on \mathbb{Z} : write

$$
a \sim_{n} b
$$

if n divides $a-b$. More commonly, we write $a \equiv b(\bmod n)$.

- Reflexive: for any $a, n \mid(a-a)$, so $a \sim_{n} a$.
- Symmetric: if $n \mid(a-b)$ then $n \mid(b-a)$.
- Transitive: if $n \mid(a-b)$ and $n \mid(b-c)$ then n divides $(a-b)+(b-c)=a-c$.
The set of equivalence classes \mathbb{Z} / \sim_{n} - also called congruence classes, or residue classes - is denoted \mathbb{Z}_{n} (later C_{n}). If $a \in \mathbb{N}$, write $a=d \cdot n+r$; then $r \in\{0,1, \ldots n-1\}$, so $a \sim_{n} r$. Thus $\left|\mathbb{Z}_{n}\right|=n$ (Check that this works also for negative a.)

Congruences

Let $n>1$ be an integer. We define an equivalence relation \sim_{n} on \mathbb{Z} : write

$$
a \sim_{n} b
$$

if n divides $a-b$. More commonly, we write $a \equiv b(\bmod n)$.

- Reflexive: for any $a, n \mid(a-a)$, so $a \sim_{n} a$.
- Symmetric: if $n \mid(a-b)$ then $n \mid(b-a)$.
- Transitive: if $n \mid(a-b)$ and $n \mid(b-c)$ then n divides

$$
(a-b)+(b-c)=a-c
$$

The set of equivalence classes \mathbb{Z} / \sim_{n} - also called congruence

Congruences

Let $n>1$ be an integer. We define an equivalence relation \sim_{n} on \mathbb{Z} : write

$$
a \sim_{n} b
$$

if n divides $a-b$. More commonly, we write $a \equiv b(\bmod n)$.

- Reflexive: for any $a, n \mid(a-a)$, so $a \sim_{n} a$.
- Symmetric: if $n \mid(a-b)$ then $n \mid(b-a)$.
- Transitive: if $n \mid(a-b)$ and $n \mid(b-c)$ then n divides $(a-b)+(b-c)=a-c$.
The set of equivalence classes \mathbb{Z} / \sim_{n} - also called congruence classes, or residue classes

Thus $\left|\mathbb{Z}_{n}\right|=n$ (Check that this works also for negative a.)

Congruences

Let $n>1$ be an integer. We define an equivalence relation \sim_{n} on \mathbb{Z} : write

$$
a \sim_{n} b
$$

if n divides $a-b$. More commonly, we write $a \equiv b(\bmod n)$.

- Reflexive: for any $a, n \mid(a-a)$, so $a \sim_{n} a$.
- Symmetric: if $n \mid(a-b)$ then $n \mid(b-a)$.
- Transitive: if $n \mid(a-b)$ and $n \mid(b-c)$ then n divides $(a-b)+(b-c)=a-c$.
The set of equivalence classes \mathbb{Z} / \sim_{n} - also called congruence classes, or residue classes - is denoted \mathbb{Z}_{n} (later C_{n}).

Thus $\left|\mathbb{Z}_{n}\right|=n$ (Check that this works also for negative a.)

Congruences

Let $n>1$ be an integer. We define an equivalence relation \sim_{n} on \mathbb{Z} : write

$$
a \sim_{n} b
$$

if n divides $a-b$. More commonly, we write $a \equiv b(\bmod n)$.

- Reflexive: for any $a, n \mid(a-a)$, so $a \sim_{n} a$.
- Symmetric: if $n \mid(a-b)$ then $n \mid(b-a)$.
- Transitive: if $n \mid(a-b)$ and $n \mid(b-c)$ then n divides

$$
(a-b)+(b-c)=a-c
$$

The set of equivalence classes \mathbb{Z} / \sim_{n} - also called congruence classes, or residue classes - is denoted \mathbb{Z}_{n} (later C_{n}). If $a \in \mathbb{N}$, write $a=d \cdot n+r$; then $r \in\{0,1, \ldots n-1\}$, so $a \sim_{n} r$. Thus $\left|\mathbb{Z}_{n}\right|=n$ (Check that this works also for negative a.)

Residue classes, examples

Example

For $n=2$, there are two residue classes: the set of odd or even numbers.

Example
For $n=10$, any integer a is in the residue class of its last digit:

$$
197865493 \equiv 3 \quad(\bmod 10) .
$$

Example

For $n=12$, congruence $\bmod 12$ is the basis of telling time on a clock.

Residue classes, examples

Example

For $n=2$, there are two residue classes: the set of odd or even numbers.

Example
For $n=10$, any integer a is in the residue class of its last digit:

$$
197865493 \equiv 3 \quad(\bmod 10)
$$

Example
For $n=12$, congruence $\bmod 12$ is the basis of telling time on a clock.

Residue classes, examples

Example

For $n=2$, there are two residue classes: the set of odd or even numbers.

Example
For $n=10$, any integer a is in the residue class of its last digit:

$$
197865493 \equiv 3 \quad(\bmod 10)
$$

Example

For $n=12$, congruence $\bmod 12$ is the basis of telling time on a clock.

A word problem

At 3:00 I take a bus to Denver. The trip takes 42 hours and the time is 2 hours earlier. What time is it when I arrive?

Answer: $3+42-2 \equiv 7(\bmod 12)$. So it is $7: 00$.
This is a calculation in arithmetic modulo 12.

A word problem

At 3 : 00 I take a bus to Denver. The trip takes 42 hours and the time is 2 hours earlier. What time is it when I arrive?

Answer: $3+42-2 \equiv 7(\bmod 12)$. So it is $7: 00$.
This is a calculation in arithmetic modulo 12.

A word problem

At 3 : 00 I take a bus to Denver. The trip takes 42 hours and the time is 2 hours earlier. What time is it when I arrive?

Answer: $3+42-2 \equiv 7(\bmod 12)$. So it is $7: 00$.
This is a calculation in arithmetic modulo 12 .

Arithmetic modulo n

We know there is a function from \mathbb{Z} to the set of equivalence classes

$$
r_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}=\mathbb{Z} / \sim_{n}
$$

For any $a \in \mathbb{Z}$, we write $[a]_{n}=r_{n}(a)$ for the equivalence class in \mathbb{Z}_{n}
containing a.
Now we can define

$$
[a]_{n}+[b]_{n}=[a+b]_{n} ;[a]_{n} \cdot[b]_{n}=[a \cdot b]_{n} .
$$

Thus for example

$$
[3]_{12}+[42]_{12}-[2]_{12}=[43]_{12} .
$$

Arithmetic modulo n

We know there is a function from \mathbb{Z} to the set of equivalence classes

$$
r_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}=\mathbb{Z} / \sim_{n}
$$

For any $a \in \mathbb{Z}$, we write $[a]_{n}=r_{n}(a)$ for the equivalence class in \mathbb{Z}_{n} containing a.
Now we can define

$$
[a]_{n}+[b]_{n}=[a+b]_{n} ;[a]_{n} \cdot[b]_{n}=[a \cdot b]_{n}
$$

Thus for example

$$
[3]_{12}+[42]_{12}-[2]_{12}=[43]_{12} .
$$

Arithmetic modulo n

We know there is a function from \mathbb{Z} to the set of equivalence classes

$$
r_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}=\mathbb{Z} / \sim_{n}
$$

For any $a \in \mathbb{Z}$, we write $[a]_{n}=r_{n}(a)$ for the equivalence class in \mathbb{Z}_{n} containing a.
Now we can define

$$
[a]_{n}+[b]_{n}=[a+b]_{n} ;[a]_{n} \cdot[b]_{n}=[a \cdot b]_{n}
$$

Thus for example

$$
[3]_{12}+[42]_{12}-[2]_{12}=[43]_{12}
$$

Arithmetic modulo n

We know there is a function from \mathbb{Z} to the set of equivalence classes

$$
r_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}=\mathbb{Z} / \sim_{n}
$$

For any $a \in \mathbb{Z}$, we write $[a]_{n}=r_{n}(a)$ for the equivalence class in \mathbb{Z}_{n} containing a.
Now we can define

$$
[a]_{n}+[b]_{n}=[a+b]_{n} ;[a]_{n} \cdot[b]_{n}=[a \cdot b]_{n}
$$

Thus for example

$$
[3]_{12}+[42]_{12}-[2]_{12}=[43]_{12}
$$

Not practical for telling time!

Arithmetic modulo n is well defined

Suppose $[a]_{n}=\left[a^{\prime}\right]_{n},[b]_{n}=\left[b^{\prime}\right]_{n}$. We need to show that

$$
[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n},[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n} .
$$

Check for multiplication (more difficult)
 $$
[a]_{n}=\left[a^{\prime}\right]_{n} \Rightarrow n \mid\left(a-a^{\prime}\right) \Rightarrow\left(a-a^{\prime}\right)=d n
$$

So $a=a^{\prime}+d n ; b=b^{\prime}+e n$,
$a b=\left(a^{\prime}+d n\right)\left(b^{\prime}+e n\right)=a^{\prime} b^{\prime}+n\left(d b^{\prime}+e a^{\prime}+d e n\right) \equiv a^{\prime} b^{\prime}(\bmod n)$.

Arithmetic modulo n is well defined

Suppose $[a]_{n}=\left[a^{\prime}\right]_{n},[b]_{n}=\left[b^{\prime}\right]_{n}$. We need to show that

$$
[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n},[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n} .
$$

Check for multiplication (more difficult)

$$
[a]_{n}=\left[a^{\prime}\right]_{n} \Rightarrow n \mid\left(a-a^{\prime}\right) \Rightarrow\left(a-a^{\prime}\right)=d n
$$

So $a=a^{\prime}+d n ; b=b^{\prime}+e n$,

Arithmetic modulo n is well defined

Suppose $[a]_{n}=\left[a^{\prime}\right]_{n},[b]_{n}=\left[b^{\prime}\right]_{n}$. We need to show that

$$
[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n},[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n} .
$$

Check for multiplication (more difficult)

$$
[a]_{n}=\left[a^{\prime}\right]_{n} \Rightarrow n \mid\left(a-a^{\prime}\right) \Rightarrow\left(a-a^{\prime}\right)=d n
$$

So $a=a^{\prime}+d n ; b=b^{\prime}+e n$,
So
$a b=\left(a^{\prime}+d n\right)\left(b^{\prime}+e n\right)=a^{\prime} b^{\prime}+n\left(d b^{\prime}+e a^{\prime}+d e n\right) \equiv a^{\prime} b^{\prime} \quad(\bmod n)$.

Arithmetic modulo n with representatives

We choose one representative in each residue class, usually

$$
\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\} .
$$

Then to compute $[a]_{n}+[b]_{n}$, when $0 \leq a, b<n$ - if $a+b<n$ then $[a]_{n}+[b]_{n}=[a+b]_{n}$ is the chosen representative;

For multiplication, you have $a b=d n+r$ with $0 \leq r<n$ the
remainder, so

$$
[a]_{n}[b]_{n}=[r]_{n}
$$

Arithmetic modulo n with representatives

We choose one representative in each residue class, usually

$$
\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\} .
$$

Then to compute $[a]_{n}+[b]_{n}$, when $0 \leq a, b<n$

- if $a+b<n$ then $[a]_{n}+[b]_{n}=[a+b]_{n}$ is the chosen

representative;

- if $n<a+b<2 n$ then $[a]_{n}+[b]_{n}=[a+b-n]_{n}$.

For multiplication, you have $a b=d n+r$ with $0 \leq r<n$ the
remainder, so

$$
[a]_{n}[b]_{n}=[r]_{n} .
$$

Arithmetic modulo n with representatives

We choose one representative in each residue class, usually

$$
\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\} .
$$

Then to compute $[a]_{n}+[b]_{n}$, when $0 \leq a, b<n$

- if $a+b<n$ then $[a]_{n}+[b]_{n}=[a+b]_{n}$ is the chosen representative;

For multiplication, you have $a b=d n+r$ with $0 \leq r<n$ the
remainder, so

$$
[a]_{n}[b]_{n}=[r]_{n} .
$$

Arithmetic modulo n with representatives

We choose one representative in each residue class, usually

$$
\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\} .
$$

Then to compute $[a]_{n}+[b]_{n}$, when $0 \leq a, b<n$

- if $a+b<n$ then $[a]_{n}+[b]_{n}=[a+b]_{n}$ is the chosen representative;
- if $n<a+b<2 n$ then $[a]_{n}+[b]_{n}=[a+b-n]_{n}$.

For multiplication, you have $a b=d n+r$ with $0 \leq r<n$ the
remainder, so

$$
[a]_{n}[b]_{n}=[r]_{n}
$$

Arithmetic modulo n with representatives

We choose one representative in each residue class, usually

$$
\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\} .
$$

Then to compute $[a]_{n}+[b]_{n}$, when $0 \leq a, b<n$

- if $a+b<n$ then $[a]_{n}+[b]_{n}=[a+b]_{n}$ is the chosen representative;
- if $n<a+b<2 n$ then $[a]_{n}+[b]_{n}=[a+b-n]_{n}$.

For multiplication, you have $a b=d n+r$ with $0 \leq r<n$ the remainder, so

$$
[a]_{n}[b]_{n}=[r]_{n} .
$$

A corollary to Bezout's theorem

Recall that if $\operatorname{GCD}(a, n)=1$ then there are integers α, β such that

$$
\alpha \cdot a+\beta \cdot n=1
$$

Thus

$$
[\alpha]_{n} \cdot[a]_{n}=[1]_{n}-[\beta \cdot n]_{n}=[1]_{n} .
$$

In other words, if $(a, n)=1$ then $[a]_{n}$ has a multiplicative inverse in \mathbb{Z}_{n}.

A corollary to Bezout's theorem

Recall that if $\operatorname{GCD}(a, n)=1$ then there are integers α, β such that

$$
\alpha \cdot a+\beta \cdot n=1 .
$$

Thus

$$
[\alpha]_{n} \cdot[a]_{n}=[1]_{n}-[\beta \cdot n]_{n}=[1]_{n} .
$$

In other words, if $(a, n)=1$ then $[a]_{n}$ has a multiplicative inverse in \mathbb{Z}_{n}.

A corollary to Bezout's theorem

Recall that if $\operatorname{GCD}(a, n)=1$ then there are integers α, β such that

$$
\alpha \cdot a+\beta \cdot n=1 .
$$

Thus

$$
[\alpha]_{n} \cdot[a]_{n}=[1]_{n}-[\beta \cdot n]_{n}=[1]_{n} .
$$

In other words, if $(a, n)=1$ then $[a]_{n}$ has a multiplicative inverse in \mathbb{Z}_{n}.

Definition of a group

The set \mathbb{Z}_{n} with addition is the simplest example of a finite group.
Definition
A binary operation on a set G is a function $m: G \times G \rightarrow G$.
Definition
A group is a set G with a binary operation m, where we write $m(g, h)=g h=g \cdot h$, an element $e \in G$, and a function
satisfying these axioms:

- Associativity: $\forall g_{1}, g_{2}, g_{3} \in G,\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$;
- Identity: $\forall g \in G, e g=g$;
- Inverse: $\forall g \in G, g^{-1} g=e$

Definition of a group

The set \mathbb{Z}_{n} with addition is the simplest example of a finite group.

Definition

A binary operation on a set G is a function $m: G \times G \rightarrow G$.

Definition

A group is a set G with a binary operation m, where we write $m(g, h)=g h=g \cdot h$, an element $e \in G$, and a function

$$
\iota: G \rightarrow G, \text { written } \iota(g)=g^{-1}
$$

satisfying these axioms:

- Associativity: $\forall g_{1}, g_{2}, g_{3} \in G,\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$;
- Identity: $\forall g \in G, e g=g$;
- Inverse: $\forall g \in G, g^{-1} g=e$.

Definition of a group

The set \mathbb{Z}_{n} with addition is the simplest example of a finite group.

Definition

A binary operation on a set G is a function $m: G \times G \rightarrow G$.

Definition

A group is a set G with a binary operation m, where we write $m(g, h)=g h=g \cdot h$, an element $e \in G$, and a function

$$
\iota: G \rightarrow G, \text { written } \iota(g)=g^{-1}
$$

satisfying these axioms:

- Associativity: $\forall g_{1}, g_{2}, g_{3} \in G,\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$;
- Identity: $\forall g \in G, e g=g$;
- Inverse: $\forall g \in G, g^{-1} g=e$.

Definition of a group

The set \mathbb{Z}_{n} with addition is the simplest example of a finite group.

Definition

A binary operation on a set G is a function $m: G \times G \rightarrow G$.

Definition

A group is a set G with a binary operation m, where we write $m(g, h)=g h=g \cdot h$, an element $e \in G$, and a function

$$
\iota: G \rightarrow G, \text { written } \iota(g)=g^{-1}
$$

satisfying these axioms:

- Associativity: $\forall g_{1}, g_{2}, g_{3} \in G,\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$;
- Identity: $\forall g \in G, e g=g$;

Definition of a group

The set \mathbb{Z}_{n} with addition is the simplest example of a finite group.

Definition

A binary operation on a set G is a function $m: G \times G \rightarrow G$.

Definition

A group is a set G with a binary operation m, where we write $m(g, h)=g h=g \cdot h$, an element $e \in G$, and a function

$$
\iota: G \rightarrow G, \text { written } \iota(g)=g^{-1}
$$

satisfying these axioms:

- Associativity: $\forall g_{1}, g_{2}, g_{3} \in G,\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$;
- Identity: $\forall g \in G, e g=g$;
- Inverse: $\forall g \in G, g^{-1} g=e$.

Elementary properties

For all $g \in G, g g^{-1}=e$.
Proof: Let $h=g g^{-1}$. We write

$$
\begin{gathered}
g^{-1} h=g^{-1}\left(g g^{-1}\right)=\left(g^{-1} g\right) g^{-1} \text { [associative law] } \\
g^{-1} h=e \cdot g^{-1}[\text { inverse }] \\
(*) g^{-1} h=g^{-1} \cdot[\text { identity }] \\
\left.h=e h=\left(\left(g^{-1}\right)^{-1} \cdot g^{-1}\right) \cdot h \text { [identity and inverse }\right] \\
h=\left(g^{-1}\right)^{-1}\left(g^{-1} \cdot h\right)[\text { associative law] } \\
h=\left(g^{-1}\right)^{-1} g^{-1}[\text { by }(*)] \\
h=e[\text { inverse }]
\end{gathered}
$$

Elementary properties

For all $g \in G, g g^{-1}=e$. Proof: Let $h=g g^{-1}$. We write

$$
g^{-1} h=g^{-1}\left(g g^{-1}\right)=\left(g^{-1} g\right) g^{-1}[\text { associative law }]
$$

$h=e$ [inverse]

Elementary properties

For all $g \in G, g g^{-1}=e$.
Proof: Let $h=g g^{-1}$. We write

$$
g^{-1} h=g^{-1}\left(g g^{-1}\right)=\left(g^{-1} g\right) g^{-1}[\text { associative law }]
$$

$$
g^{-1} h=e \cdot g^{-1}[\text { inverse }]
$$

$$
\text { (*) } \quad g^{-1} h=g^{-1} .[\text { identity }]
$$

Elementary properties

For all $g \in G, g g^{-1}=e$.
Proof: Let $h=g g^{-1}$. We write

$$
\begin{gathered}
g^{-1} h=g^{-1}\left(g g^{-1}\right)=\left(g^{-1} g\right) g^{-1}[\text { associative law }] \\
g^{-1} h=e \cdot g^{-1}[\text { inverse }] \\
(*) \quad g^{-1} h=g^{-1} .[\text { identity }]
\end{gathered}
$$

So

$$
\begin{aligned}
h=e h & =\left(\left(g^{-1}\right)^{-1} \cdot g^{-1}\right) \cdot h \text { [identity and inverse] } \\
h & =\left(g^{-1}\right)^{-1}\left(g^{-1} \cdot h\right) \text { [associative law] }
\end{aligned}
$$

Elementary properties

For all $g \in G, g g^{-1}=e$.
Proof: Let $h=g g^{-1}$. We write

$$
\begin{gathered}
g^{-1} h=g^{-1}\left(g g^{-1}\right)=\left(g^{-1} g\right) g^{-1}[\text { associative law }] \\
g^{-1} h=e \cdot g^{-1}[\text { inverse }] \\
(*) \quad g^{-1} h=g^{-1} .[\text { identity }]
\end{gathered}
$$

So

$$
\begin{gathered}
h=e h=\left(\left(g^{-1}\right)^{-1} \cdot g^{-1}\right) \cdot h \text { [identity and inverse] } \\
h=\left(g^{-1}\right)^{-1}\left(g^{-1} \cdot h\right)[\text { associative law }] \\
h=\left(g^{-1}\right)^{-1} g^{-1}[\text { by }(*)] \\
h=e[\text { inverse }]
\end{gathered}
$$

Elementary properties

Similarly, the identity axiom states $e g=g$, but in fact

$$
\forall g, g e=g
$$

Indeed,

$$
\begin{gathered}
g e=g\left(g^{-1} g\right)=\left(g g^{-1}\right) g \text { [associative law] } \\
g e=e g[\text { as we just showed }] \\
g e=g[\text { by the identity axiom }]
\end{gathered}
$$

Elementary properties

Similarly, the identity axiom states $e g=g$, but in fact

$$
\forall g, g e=g
$$

Indeed,

$$
\begin{gathered}
g e=g\left(g^{-1} g\right)=\left(g g^{-1}\right) g \text { [associative law] } \\
g e=e g[\text { as we just showed }] \\
g e=g[\text { by the identity axiom }]
\end{gathered}
$$

Elementary properties, exercises

Exercise

(1) Show that, for any g, e is the unique element such that $e g=g$.
(2) Show that, for any g, there is a unique element j such that $g j=e$ (and thus $j=g^{-1}$.

Commutative groups

Definition

The group G is commutative if, for all $g, h \in G, g h=h g$.


```
addition law.
Theorem
The set }\mp@subsup{\mathbb{Z}}{n}{}\mathrm{ with addition is a group.
```

Proof
Ascociativity of addition in \mathbb{Z}_{n} follows from that in \mathbb{Z} :
$\left([a]_{n}+[b]_{n}\right)+[c]_{n}=[a+b]_{n}+[c]_{n}=[(a+b)+c]_{n}=[a+(b+c)]_{n}$
The element $[0]_{n}$ is the identity; the inverse of $[a]_{n}$ is $[-a]_{n}$.

Commutative groups

Definition

The group G is commutative if, for all $g, h \in G, g h=h g$.
Familiar examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are commutative groups under the addition law.

> Theorem
> The set \mathbb{Z}_{n} with addition is a group.

> Proof
> Ascociativity of addition in \mathbb{Z}_{n} follows from that in \mathbb{Z} :
> $\left([a]_{n}+[b]_{n}\right)+[c]_{n}=[a+b]_{n}+[c]_{n}=[(a+b)+c]_{n}=[a+(b+c)]_{n}$
> The element $[0]_{n}$ is the identity; the inverse of $[a]_{n}$ is $[-a]_{n}$.

Commutative groups

Definition

The group G is commutative if, for all $g, h \in G, g h=h g$.
Familiar examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are commutative groups under the addition law.

Theorem

The set \mathbb{Z}_{n} with addition is a group.

Proof.

Associativity of addition in \mathbb{Z}_{n} follows from that in \mathbb{Z} :
$\left([a]_{n}+[b]_{n}\right)+[c]_{n}=[a+b]_{n}+[c]_{n}=[(a+b)+c]_{n}=[a+(b+c)]_{n} \ldots$
The element $[0]_{n}$ is the identity; the inverse of $[a]_{n}$ is $[-a]_{n}$.

Commutative groups

Definition

The group G is commutative if, for all $g, h \in G, g h=h g$.
Familiar examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are commutative groups under the addition law.

Theorem

The set \mathbb{Z}_{n} with addition is a group.

Proof.

Associativity of addition in \mathbb{Z}_{n} follows from that in \mathbb{Z} :

$$
\left([a]_{n}+[b]_{n}\right)+[c]_{n}=[a+b]_{n}+[c]_{n}=[(a+b)+c]_{n}=[a+(b+c)]_{n} \ldots
$$

The element $[0]_{n}$ is the identity; the inverse of $[a]_{n}$ is $[-a]_{n}$.

More examples

The set $\mathbb{Q}^{\times}=\mathbb{Q} \backslash\{0\}$ has multiplicative inverses. So $m(a, b)=a \cdot b$ is a group law on \mathbb{Q}^{\times}.
Similarly for $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$.
The set $\mathbb{Z} \backslash\{0\}$ is not a group under multiplication; any element $a>1$ has no multiplicative inverse in $\mathbb{Z} \backslash\{0\}$.

More examples

The set $\mathbb{Q}^{\times}=\mathbb{Q} \backslash\{0\}$ has multiplicative inverses. So $m(a, b)=a \cdot b$ is a group law on \mathbb{Q}^{\times}.
Similarly for $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$.
The set $\mathbb{Z} \backslash\{0\}$ is not a group under multiplication; any element $a>1$ has no multiplicative inverse in $\mathbb{Z} \backslash\{0\}$.

Cyclic groups

For any $m \in \mathbb{N}, g \in G$, we write $g^{m}=g \cdot g \cdot g \cdots \cdot g(m$ times $)$. We write $g^{0}=e, g^{-m}=\left(g^{m}\right)^{-1}$.

Definition

A group G is cyclic if there is an element $g \in G$, called a cyclic generator, such that every $h \in G$ is of the form g^{m} for some $m \in \mathbb{Z}$.

Example

The additive group \mathbb{Z} is cyclic; the elements 1 and -1 are both cycllic generators.

Example

The group \mathbb{Z}_{n} is cyclic with generator $[1]_{n}$.

Cayley tables

The multiplication table for a group is called a Cayley table. Here is the Cayley table for a group with 4 elements.

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

> You can check that this group satisfies all three axioms. It is the simplest group that is not cyclic and is called the Klein group, written K_{4}.
> Some Cayley tables for \mathbb{Z}_{2} and \mathbb{Z}_{3} (on the board).

Cayley tables

The multiplication table for a group is called a Cayley table. Here is the Cayley table for a group with 4 elements.

	\mathbf{e}	\mathbf{a}	\mathbf{b}	\mathbf{c}
\mathbf{e}	e	a	b	c
\mathbf{a}	a	e	c	b
\mathbf{b}	b	c	e	a
\mathbf{c}	c	b	a	e

You can check that this group satisfies all three axioms. It is the simplest group that is not cyclic and is called the Klein group, written K_{4}.
Some Cayley tables for \mathbb{Z}_{2} and \mathbb{Z}_{3} (on the board).

Cayley tables

The multiplication table for a group is called a Cayley table. Here is the Cayley table for a group with 4 elements.

	\mathbf{e}	\mathbf{a}	\mathbf{b}	\mathbf{c}
\mathbf{e}	e	a	b	c
\mathbf{a}	a	e	c	b
\mathbf{b}	b	c	e	a
\mathbf{c}	c	b	a	e

You can check that this group satisfies all three axioms. It is the simplest group that is not cyclic and is called the Klein group, written K_{4}.
Some Cayley tables for \mathbb{Z}_{2} and \mathbb{Z}_{3} (on the board).

[^0]: The Euclidean algorithm is much faster and is computationally easy
 (polynomial time).

