Platonic solids and their symmetries

GU4041

Columbia University
April 20, 2020

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces)
and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces)
dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

Regular polyhedra

A regular polyhedron is a convex object in 3-dimensional space made up of a collection of regular n-gons (the faces), all of the same size and all with the same n, that meet (when they do) at the same angle at the edges, and with the same number of faces meeting at each vertex.

There are regular n-gons for every $n \geq 3$, but it has been known since antiquity that there are only five distinct regular polyhedra.

These are the tetrahedron (four faces) ; the hexahedron (six faces), better known as the cube ; the octahedron (eight faces) ; the dodecahedron (twelve faces) ; and the icosahedron (twenty faces).

A proof

There is a proof in Book XIII of Euclid's Elements that there are no other regular polyhedra.

Here is a modern proof:
Suppose we have r faces (each a regular n-gon) meeting at every vertex. The angle at the corner of the n-gon is $(n-2) \pi / n$ (basic Euclidean geometry!) Since the polyhedron is convex we must have $r \times(n-2) \pi / n<2 \pi \Rightarrow(r-2)(n-2)<4$.

The only positive integers satisfying this are $(n, r)=(3,3)$ (the tetrahedron), $(4,3)$ (the cube), $(3,4)$ (the octahedron), $(5,3)$ (the dodecahedron), $(3,5)$ (the icosahedron).

A proof

There is a proof in Book XIII of Euclid's Elements that there are no other regular polyhedra.

Here is a modern proof:
Suppose we have r faces (each a regular n-gon) meeting at every vertex. The angle at the corner of the n-gon is $(n-2) \pi / n$ (basic Euclidean geometry!) Since the polyhedron is convex we must have $r \times(n-2) \pi / n<2 \pi \Rightarrow(r-2)(n-2)<4$.

The only positive integers satisfying this are $(n, r)=(3,3)$ (the tetrahedron), $(4,3)$ (the cube), $(3,4)$ (the octahedron), $(5,3)$ (the dodecahedron), $(3,5)$ (the icosahedron).

A proof

There is a proof in Book XIII of Euclid's Elements that there are no other regular polyhedra.

Here is a modern proof:
Suppose we have r faces (each a regular n-gon) meeting at every vertex. The angle at the corner of the n-gon is $(n-2) \pi / n$ (basic
Euclidean geometry!) Since the polyhedron is convex we must have

The only positive integers satisfying this are $(n, r)=(3,3)$ (the tetrahedron), $(4,3)$ (the cube), $(3,4)$ (the octahedron), $(5,3)$ (the dodecahedron), $(3,5)$ (the icosahedron).

A proof

There is a proof in Book XIII of Euclid's Elements that there are no other regular polyhedra.

Here is a modern proof:
Suppose we have r faces (each a regular n-gon) meeting at every vertex. The angle at the corner of the n-gon is $(n-2) \pi / n$ (basic Euclidean geometry!) Since the polyhedron is convex we must have

The only positive integers satisfying this are $(n, r)=(3,3)$ (the tetrahedron), $(4,3)$ (the cube), $(3,4)$ (the octahedron), $(5,3)$ (the dodecahedron), $(3,5)$ (the icosahedron).

A proof

There is a proof in Book XIII of Euclid's Elements that there are no other regular polyhedra.

Here is a modern proof:
Suppose we have r faces (each a regular n-gon) meeting at every vertex. The angle at the corner of the n-gon is $(n-2) \pi / n$ (basic Euclidean geometry!) Since the polyhedron is convex we must have

$$
r \times(n-2) \pi / n<2 \pi \Rightarrow(r-2)(n-2)<4
$$

The only positive integers satisfying this are $(n, r)=(3,3)$ (the tetrahedron), $(4,3)$ (the cube), $(3,4)$ (the octahedron), $(5,3)$ (the dodecahedron), $(3,5)$ (the icosahedron).

A proof

There is a proof in Book XIII of Euclid's Elements that there are no other regular polyhedra.

Here is a modern proof:
Suppose we have r faces (each a regular n-gon) meeting at every vertex. The angle at the corner of the n-gon is $(n-2) \pi / n$ (basic Euclidean geometry!) Since the polyhedron is convex we must have

$$
r \times(n-2) \pi / n<2 \pi \Rightarrow(r-2)(n-2)<4 .
$$

The only positive integers satisfying this are $(n, r)=(3,3)$ (the tetrahedron), $(4,3)$ (the cube), $(3,4)$ (the octahedron), $(5,3)$ (the dodecahedron), $(3,5)$ (the icosahedron).

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond to an element.

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond
to an element.

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond
to an element.

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond
to an element.

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond
to an element.

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond
to an element.

Plato's Timaeus

https://en.wikipedia.org/wiki/Platonic_solid The name Platonic solid refers to their prominent mention in Plato's Timaeus, one of his most speculative dialogues, in which Plato posited that each of the four classical elements is made up of one of the regular polyhedra.

- Fire is composed of tetrahedra;
- Earth is composed of cubes;
- Air is made up of octahedra;
- Water is made up of icosahedra.

The dodecahedron, with the most complex faces, did not correspond to an element.

Kepler

In his Mysterium Cosmographicum, Kepler speculated that the orbits of the known planets corresponded to the five Platonic solids.

Kepler

In his Mysterium Cosmographicum, Kepler speculated that the orbits of the known planets corresponded to the five Platonic solids. https://www.youtube.com/watch?v=ZrmjEfBReoA

Symmetries of the cube

We have seen that the rotations of the cube form the group S_{4}.
include reflections, we obtain the group $S_{4} \times \mathbb{Z}_{2}$.
The cube has six faces, twelve edges, and eight vertices. Place a new
vertex at the center of each face, and connect each one to the four
adjacent centers by a new edge. There are twelve new edges in all (15
pairs of vertices, not counting the pairs on opposite faces).
The result is an octahedron.

Symmetries of the cube

We have seen that the rotations of the cube form the group S_{4}. If we include reflections, we obtain the group $S_{4} \times \mathbb{Z}_{2}$.
The cube has six faces, twelve edges, and eight vertices. Place a new vertex at the center of each face, and connect each one to the four adjacent centers by a new edge. There are twelve new edges in all (15 pairs of vertices, not counting the pairs on opposite faces). The result is an octahedron.

Symmetries of the cube

We have seen that the rotations of the cube form the group S_{4}. If we include reflections, we obtain the group $S_{4} \times \mathbb{Z}_{2}$.
The cube has six faces, twelve edges, and eight vertices.
vertex at the center of each face, and connect each one to the four adjacent centers by a new edge. There are twelve new edges in all (15 pairs of vertices, not counting the pairs on opposite faces). The result is an octahedron.

Symmetries of the cube

We have seen that the rotations of the cube form the group S_{4}. If we include reflections, we obtain the group $S_{4} \times \mathbb{Z}_{2}$. The cube has six faces, twelve edges, and eight vertices. Place a new vertex at the center of each face, and connect each one to the four adjacent centers by a new edge. There are twelve new edges in all (15 pairs of vertices, not counting the pairs on opposite faces). The result is an octahedron.

Symmetries of the cube

We have seen that the rotations of the cube form the group S_{4}. If we include reflections, we obtain the group $S_{4} \times \mathbb{Z}_{2}$. The cube has six faces, twelve edges, and eight vertices. Place a new vertex at the center of each face, and connect each one to the four adjacent centers by a new edge. There are twelve new edges in all (15 pairs of vertices, not counting the pairs on opposite faces).

Symmetries of the cube

We have seen that the rotations of the cube form the group S_{4}. If we include reflections, we obtain the group $S_{4} \times \mathbb{Z}_{2}$. The cube has six faces, twelve edges, and eight vertices. Place a new vertex at the center of each face, and connect each one to the four adjacent centers by a new edge. There are twelve new edges in all (15 pairs of vertices, not counting the pairs on opposite faces). The result is an octahedron.

Octahedron

Any symmetry of the cube is also a symmetry of the octahedron, and vice versa.
So S_{4} is the group of rotations of the octahedron.

Octahedron

Any symmetry of the cube is also a symmetry of the octahedron, and vice versa.
So S_{4} is the group of rotations of the octahedron.

The tetrahedron

The tetrahedron

> Any permutation of the four vertices of the tetrahedron is a symmetry. So S_{4} is the symmetry group of the tetrahedron; A_{4} its group of rotations.

Icosahedral viruses

https:
//www.wired.com/story/glass-microbiology/

Icosahedron and dual dodecahedron

To determine the group G of rotations of the icosahedron, note that G acts transitively on the 20 faces, and there are 3 rotations that fix any face.

Similarly, G acts transitively on the 12 faces of the (dual) dodecahedron, and there are 5 rotations that fix any pentagon.

So the order of G is 60 .

Icosahedron and dual dodecahedron

To determine the group G of rotations of the icosahedron, note that G acts transitively on the 20 faces, and there are 3 rotations that fix any face.

Similarly, G acts transitively on the 12 faces of the (dual) dodecahedron, and there are 5 rotations that fix any pentagon.

So the order of G is 60 .

Icosahedron and dual dodecahedron

To determine the group G of rotations of the icosahedron, note that G acts transitively on the 20 faces, and there are 3 rotations that fix any face.

Similarly, G acts transitively on the 12 faces of the (dual) dodecahedron, and there are 5 rotations that fix any pentagon.

So the order of G is 60 .

Dodecahedral symmetry

http://www-groups.mcs.st-andrews.ac.uk/~john/ geometry/Lectures/L10.html

