Permutation groups

GU4041, fall 2023

Columbia University

October 22, 2023

Outline

(1) Definitions
(2) Cycle decomposition of a permutation
(3) Proof of the cycle decomposition of permutations
4. Multiplying permutations
(5) Conjugacy classes
(6) Transpositions
(7) Proof of the theorem

Permutations

By a permutation of the set S, we mean a bijective function $\sigma: S \rightarrow S$. This definition will only be used when S is a finite set.
Let $n \in \mathbb{N}$. The symmetric group on n letters is the group of all permutations of the set $\{1,2, \ldots, n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)
It is well known that there are
$n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot(3) \cdot(2) \cdot(1)$ permutations of a
collection $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ of n elements.
Here is the argument: let σ be a permutation of X. There are n choices for $\sigma\left(x_{0}\right)$. Then $\sigma\left(x_{1}\right) \in X \backslash\left\{\sigma\left(x_{0}\right)\right\}$, which has $n-1$ elements. Similarly, at the i th stage, there are $n-i$ choices for $\sigma\left(x_{i}\right)$. Thus the total number of choices is precisely $n!$.

Permutations

By a permutation of the set S, we mean a bijective function $\sigma: S \rightarrow S$. This definition will only be used when S is a finite set.
Let $n \in \mathbb{N}$. The symmetric group on n letters is the group of all permutations of the set $\{1,2, \ldots, n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)
It is well known that there are

collection $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ of n elements.
Here is the argument: let σ be a permutation of X. There are n choices for $\sigma\left(x_{0}\right)$. Then $\sigma\left(x_{1}\right) \in X \backslash\left\{\sigma\left(x_{0}\right)\right\}$, which has $n-1$ elements. Similarly, at the i th stage, there are $n-i$ choices for $\sigma\left(x_{i}\right)$. Thus the total number of choices is precisely $n!$.

Permutations

By a permutation of the set S, we mean a bijective function $\sigma: S \rightarrow S$. This definition will only be used when S is a finite set.
Let $n \in \mathbb{N}$. The symmetric group on n letters is the group of all permutations of the set $\{1,2, \ldots, n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)
It is well known that there are
$n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot(3) \cdot(2) \cdot(1)$ permutations of a collection $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ of n elements.
Here is the argument: let σ be a permutation of X. There are n choices
for $\sigma\left(x_{0}\right)$. Then $\sigma\left(x_{1}\right) \in X \backslash\left\{\sigma\left(x_{0}\right)\right\}$, which has $n-1$ elements.
Similarly, at the i th stage, there are $n-i$ choices for $\sigma\left(x_{i}\right)$. Thus the
total number of choices is precisely n !.

Permutations

By a permutation of the set S, we mean a bijective function $\sigma: S \rightarrow S$. This definition will only be used when S is a finite set.
Let $n \in \mathbb{N}$. The symmetric group on n letters is the group of all permutations of the set $\{1,2, \ldots, n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)
It is well known that there are
$n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot(3) \cdot(2) \cdot(1)$ permutations of a collection $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ of n elements.
Here is the argument: let σ be a permutation of X. There are n choices for $\sigma\left(x_{0}\right)$. Then $\sigma\left(x_{1}\right) \in X \backslash\left\{\sigma\left(x_{0}\right)\right\}$, which has $n-1$ elements. Similarly, at the i th stage, there are $n-i$ choices for $\sigma\left(x_{i}\right)$. Thus the total number of choices is precisely $n!$.

Notation for permutations

We see that the symmetric group has n ! elements. However, it is denoted S_{n} - or \mathfrak{S}_{n}, if we want to be old-fashioned. This is the only exception to our rule that a group denoted H_{m} has m elements.

An element $\sigma \in S_{n}$ is traditionally denoted by a matrix with n columns and 2 rows, where the top row is always $\left(\begin{array}{llll}1 & 2 & \ldots & n-1\end{array}\right)$, and the second row shows the effect of the permutation, like this:

Thus if $n=4$, the permutation

Notation for permutations

We see that the symmetric group has n ! elements. However, it is denoted S_{n} - or \mathfrak{S}_{n}, if we want to be old-fashioned. This is the only exception to our rule that a group denoted H_{m} has m elements. An element $\sigma \in S_{n}$ is traditionally denoted by a matrix with n columns and 2 rows, where the top row is always
$\left(\begin{array}{lllll}1 & 2 & \ldots & n-1 & n\end{array}\right)$, and the second row shows the effect of the permutation, like this:

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n-1) & \sigma(n)
\end{array}\right)
$$

Thus if $n=4$, the permutation

Notation for permutations

We see that the symmetric group has n ! elements. However, it is denoted S_{n} - or \mathfrak{S}_{n}, if we want to be old-fashioned. This is the only exception to our rule that a group denoted H_{m} has m elements.

An element $\sigma \in S_{n}$ is traditionally denoted by a matrix with n columns and 2 rows, where the top row is always
$\left(\begin{array}{lllll}1 & 2 & \ldots & n-1 & n\end{array}\right)$, and the second row shows the effect of the permutation, like this:

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n-1) & \sigma(n)
\end{array}\right)
$$

Thus if $n=4$, the permutation

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

A cycle

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

takes 1 to 2,2 to 4,3 to 1 , and 4 to 3 .
Another way to represent this permutation is

$$
1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1,
$$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of cycle notation. The above cycle is written

This is a 4-cycle because it has to be repeated 4 times to return to the initial state.

A cycle

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

takes 1 to 2,2 to 4,3 to 1 , and 4 to 3 .
Another way to represent this permutation is

$$
1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1
$$

but this notation only works if all the numbers are in a single cycle.
This leads to the introduction of cycle notation. The above cycle is
written

This is a 4-cycle because it has to be repeated 4 times to return to the

A cycle

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

takes 1 to 2,2 to 4,3 to 1 , and 4 to 3 .
Another way to represent this permutation is

$$
1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1
$$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of cycle notation. The above cycle is written

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right)
$$

This is a 4-cycle because it has to be repeated 4 times to return to the

A cycle

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

takes 1 to 2 , 2 to 4 , 3 to 1 , and 4 to 3 .
Another way to represent this permutation is

$$
1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1
$$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of cycle notation. The above cycle is written

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right)
$$

This is a 4 -cycle because it has to be repeated 4 times to return to the initial state.

Some examples

In the permutation

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

we observe that $1 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 4 \rightarrow 2$.
So its cycle decomposition is

$$
\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)
$$

IMPORTANT POINT The cycles $\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $\left(\begin{array}{ll}3 & 1\end{array}\right)$ are equal. In fact $\left(\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right)$ can also be written

Some examples

In the permutation

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

we observe that $1 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 4 \rightarrow 2$.
So its cycle decomposition is

$$
\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)
$$

IMPORTANT POINT The cycles $\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $\left(\begin{array}{ll}3 & 1\end{array}\right)$ are equal. In fact $\left(\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right)$ can also be written

Some examples

In the permutation

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

we observe that $1 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 4 \rightarrow 2$.
So its cycle decomposition is

$$
\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)
$$

IMPORTANT POINT The cycles $\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $\left(\begin{array}{ll}3 & 1\end{array}\right)$ are equal. In fact $\left(\begin{array}{llll}1 & 2 & 4 & 3\end{array}\right)$ can also be written

$$
\left(\begin{array}{llll}
2 & 4 & 3 & 1
\end{array}\right)
$$

Or

$\left(\begin{array}{llll}4 & 3 & 1 & 2\end{array}\right)$

Notation that is best read at leisure

Suppose X is the set $\{1,2, \ldots, n\}$. Let $X^{1} \subset X$, with $\left|X^{1}\right|=n_{1}$.
Suppose $\sigma \in S_{n}$ is a permutation with the following property: we can label the elements of $X^{1} a_{1}, \ldots, a_{n_{1}}$ in such a way that

$$
\sigma\left(a_{1}\right)=a_{2} ; \sigma\left(a_{2}\right)=a_{3} ; \cdots \sigma\left(a_{i}\right)=a_{i+1} \cdots \sigma\left(a_{n_{1}}\right)=a_{1}
$$

and $\sigma(a)=a$ if $a \in X \backslash X^{1}$.
Then σ is said to be a cycle, or an n_{1}-cycle, and can be written

$$
\sigma=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n_{1}}
\end{array}\right)
$$

Notation that is best read at leisure

Suppose X is the set $\{1,2, \ldots, n\}$. Let $X^{1} \subset X$, with $\left|X^{1}\right|=n_{1}$.
Suppose $\sigma \in S_{n}$ is a permutation with the following property: we can label the elements of $X^{1} a_{1}, \ldots, a_{n_{1}}$ in such a way that

$$
\sigma\left(a_{1}\right)=a_{2} ; \sigma\left(a_{2}\right)=a_{3} ; \ldots \sigma\left(a_{i}\right)=a_{i+1} \ldots \sigma\left(a_{n_{1}}\right)=a_{1}
$$

and $\sigma(a)=a$ if $a \in X \backslash X^{1}$.
Then σ is said to be a cycle, or an n_{1}-cycle, and can be written

Notation that is best read at leisure

Suppose X is the set $\{1,2, \ldots, n\}$. Let $X^{1} \subset X$, with $\left|X^{1}\right|=n_{1}$.
Suppose $\sigma \in S_{n}$ is a permutation with the following property: we can label the elements of $X^{1} a_{1}, \ldots, a_{n_{1}}$ in such a way that

$$
\sigma\left(a_{1}\right)=a_{2} ; \sigma\left(a_{2}\right)=a_{3} ; \ldots \sigma\left(a_{i}\right)=a_{i+1} \ldots \sigma\left(a_{n_{1}}\right)=a_{1}
$$

and $\sigma(a)=a$ if $a \in X \backslash X^{1}$.
Then σ is said to be a cycle, or an n_{1}-cycle, and can be written

$$
\sigma=\left(a_{1} a_{2} \ldots a_{n_{1}}\right)
$$

Theorem best read at leisure

Theorem

Any permutation $\sigma \in S_{n}$ has a cycle decomposition. Precisely, there is a unique partition $X=X^{1} \amalg X^{2} \amalg \cdots \amalg X^{r}$ of X into r disjoint subsets, with $n_{j}=\left|X^{j}\right|$ and

$$
n=n_{1}+n_{2}+\cdots+n_{r}
$$

and for each j, an n_{j}-cycle

$$
\sigma_{j}=\left(a_{1}^{j} a_{2}^{j} \ldots a_{n_{j}}^{j}\right)
$$

where $X^{j}=\left\{a_{1}^{j}, a_{2}^{j}, \ldots, a_{n_{j}}^{j}\right\}$, such that

Another example

If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 5 & 2
\end{array}\right)
$$

we see

$$
1 \rightarrow 3 \rightarrow 6 \rightarrow 2 \rightarrow 1 ; 4 \rightarrow 4 ; 5 \rightarrow 5
$$

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

$$
\sigma=\left(\begin{array}{llll}
1 & 3 & 6 & 2
\end{array}\right) \cdot(4) \cdot(5)
$$

For simplicity we ALWAYS leave out the 1-cycles and just write

Another example

If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 5 & 2
\end{array}\right)
$$

we see

$$
1 \rightarrow 3 \rightarrow 6 \rightarrow 2 \rightarrow 1 ; 4 \rightarrow 4 ; 5 \rightarrow 5
$$

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

$$
\sigma=\left(\begin{array}{llll}
1 & 3 & 6 & 2
\end{array}\right) \cdot(4) \cdot(5)
$$

For simplicity we ALWAYS leave out the 1-cycles and just write

Another example

If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 5 & 2
\end{array}\right)
$$

we see

$$
1 \rightarrow 3 \rightarrow 6 \rightarrow 2 \rightarrow 1 ; 4 \rightarrow 4 ; 5 \rightarrow 5
$$

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

$$
\sigma=\left(\begin{array}{llll}
1 & 3 & 6 & 2
\end{array}\right) \cdot(4) \cdot(5)
$$

For simplicity we ALWAYS leave out the 1-cycles and just write

$$
\sigma=\left(\begin{array}{llll}
1 & 3 & 6 & 2
\end{array}\right)
$$

Disjoint cycles commute!

For example if

$$
\rho=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right),
$$

we can also write

$$
\rho=\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) ;
$$

it doesn't matter how the cycles are ordered.
In the above example,

Above we wrote
but we could write

Disjoint cycles commute!

For example if

$$
\rho=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right),
$$

we can also write

$$
\rho=\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) ;
$$

it doesn't matter how the cycles are ordered.
In the above example,

$$
\tau=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right) .
$$

Above we wrote
but we could write

Disjoint cycles commute!

For example if

$$
\rho=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right),
$$

we can also write

$$
\rho=\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) ;
$$

it doesn't matter how the cycles are ordered.
In the above example,

$$
\tau=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right) .
$$

Above we wrote

$$
\sigma=\sigma_{1} \cdot \sigma_{2} \cdot \cdots \cdot \sigma_{r}
$$

but we could write

$$
\sigma=\sigma_{i_{1}} \cdot \sigma_{i_{2}} \cdots \cdots \sigma_{i_{r}}
$$

for anv reordering (permutation!) of the indices $1.2, \ldots . . r$.

Orbit of a permutation

Let X be a finite set and σ a permutation of X.

The orbits of σ are the subsets $X^{j} \in X$ such that,
(0) for any $x \neq y \in X^{j}$, there is an integer $m>0$ such that $\sigma^{m}(x)=y$, and
(3) if $x \in X^{j}$ then $\sigma(x) \in X^{j}$.

In other words, setting $n_{j}=\left|X_{j}\right|$, for for any $x \in X^{j}, \sigma^{n_{j}}(x)=x$ and X^{j} is a set of the form

for any $x \in X_{j}$.

Orbit of a permutation

Let X be a finite set and σ a permutation of X. The orbits of σ are the subsets $X^{j} \in X$ such that,
(1) for any $x \neq y \in X^{j}$, there is an integer $m>0$ such that $\sigma^{m}(x)=y$, and
(3) if $x \in X^{j}$ then $\sigma(x) \in X^{j}$.

In other words, setting $n_{j}=\left|X_{j}\right|$, for for any $x \in X^{j}, \sigma^{n_{j}}(x)=x$ and X^{j} is a set of the form

Orbit of a permutation

Let X be a finite set and σ a permutation of X. The orbits of σ are the subsets $X^{j} \in X$ such that,
(0) for any $x \neq y \in X^{j}$, there is an integer $m>0$ such that $\sigma^{m}(x)=y$, and
(2) if $x \in X^{j}$ then $\sigma(x) \in X^{j}$.

In other words, setting $n_{j}=\left|X_{j}\right|$, for for any $x \in X^{j}, \sigma^{n_{j}}(x)=x$ and X^{j}
is a set of the form

$$
\left\{x, \sigma(x), \sigma^{2}(x), \ldots \sigma^{n_{j}-1}(x)\right\}
$$

Orbit of a permutation

Let X be a finite set and σ a permutation of X. The orbits of σ are the subsets $X^{j} \in X$ such that,
(0) for any $x \neq y \in X^{j}$, there is an integer $m>0$ such that $\sigma^{m}(x)=y$, and
(2) if $x \in X^{j}$ then $\sigma(x) \in X^{j}$.

In other words, setting $n_{j}=\left|X_{j}\right|$, for for any $x \in X^{j}, \sigma^{n_{j}}(x)=x$ and X^{j} is a set of the form

$$
\left\{x, \sigma(x), \sigma^{2}(x), \ldots \sigma^{n_{j}-1}(x)\right\}
$$

for any $x \in X_{j}$.

Any permutation defines an equivalence relation

We define a relation on X : we say $x R_{\sigma} y$ if there exists some $m>0$ such that $\sigma^{m}(x)=y$. This is an equivalence relation:

- (reflexive) Since S_{n} is a finite group, $\sigma^{M}=e$ for some $M>0$; then $\sigma^{M}(x)=x$ for all x.
- (symmetric) If $\sigma^{m}(x)=y$ then $\sigma^{-m}(y)=x$, but $\sigma^{-m}=\sigma^{M-m}=\sigma^{d M-m}$ for any d, and for d sufficiently large $d M-m>0$.
- (transitive) If $\sigma^{m}(x)=y$ and $\sigma^{m^{\prime}}(y)=z$ then $\sigma^{m+m^{\prime}}(x)=z$.

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ. They define a partition of X.

```
Proof
For each j \sigma induces a permutation }\mp@subsup{\sigma}{j}{}\mathrm{ of X X that ignores the elements
of the Xi,i\not=j. The word "induces" means: the bijection \sigma:X->X
restricts to a bijection }\mp@subsup{\sigma}{j}{}:\mp@subsup{X}{}{j}->\mp@subsup{X}{}{j
Then }\sigma=\mp@subsup{\prod}{j}{}\mp@subsup{\sigma}{j}{\prime}\mathrm{ (in any order)
We check this by looking more closely at the group structure.
```


The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ. They define a partition of X.

Proof.
For each $j \sigma$ induces a permutation σ_{j} of X^{j} that ignores the elements of the $X^{i}, i \neq j$.

Then $\sigma=\prod_{j} \sigma_{j}$ (in any order).
We check this by looking more closely at the group structure.

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ. They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_{j} of X^{j} that ignores the elements of the $X^{i}, i \neq j$. The word "induces" means: the bijection $\sigma: X \rightarrow X$ restricts to a bijection $\sigma_{j}: X^{j} \rightarrow X^{j}$.

Then $\sigma=\prod_{j} \sigma_{j}$ (in any order)
We check this by looking more closely at the group structure.

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ. They define a partition of X.

Proof.
For each $j \sigma$ induces a permutation σ_{j} of X^{j} that ignores the elements of the $X^{i}, i \neq j$. The word "induces" means: the bijection $\sigma: X \rightarrow X$ restricts to a bijection $\sigma_{j}: X^{j} \rightarrow X^{j}$.

Then $\sigma=\prod_{j} \sigma_{j}$ (in any order).
We check this by looking more closely at the group structure.

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ. They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_{j} of X^{j} that ignores the elements of the $X^{i}, i \neq j$. The word "induces" means: the bijection $\sigma: X \rightarrow X$ restricts to a bijection $\sigma_{j}: X^{j} \rightarrow X^{j}$.

Then $\sigma=\prod_{j} \sigma_{j}$ (in any order).
We check this by looking more closely at the group structure.

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ, then apply σ. In other words: Then $\sigma \cdot \tau$ is the permutation in S_{n}, with the property that, for any $i \in\{1,2$, , n\} $\sigma \cdot \tau(i)=\sigma(\tau(i))$.

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. This is associative:
\square
Since any $\sigma \in S_{n}$ is bijective, it has an inverse σ^{-1}. And of course the identity is the permutation that doesn't move anything.
So S_{n} is indeed a group.

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ, then apply σ. In other words: Then $\sigma \cdot \tau$ is the permutation in S_{n}, with the property that, for any $i \in\{1,2, \ldots, n\}$

$$
\sigma \cdot \tau(i)=\sigma(\tau(i))
$$

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. This is associative:
\square
Since any $\sigma \in S_{n}$ is bijective, it has an inverse σ^{-1}. And of course the identity is the permutation that doesn't move anything.
So S_{n} is indeed a group.

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ, then apply σ. In other words: Then $\sigma \cdot \tau$ is the permutation in S_{n}, with the property that, for any $i \in\{1,2, \ldots, n\}$

$$
\sigma \cdot \tau(i)=\sigma(\tau(i))
$$

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. This is associative:

Since any $\sigma \in S_{n}$ is biiective, it has an inverse σ^{-1}. And of course the
identity is the permutation that doesn't move anything.
So S_{n} is indeed a group.

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ, then apply σ. In other words: Then $\sigma \cdot \tau$ is the permutation in S_{n}, with the property that, for any $i \in\{1,2, \ldots, n\}$

$$
\sigma \cdot \tau(i)=\sigma(\tau(i))
$$

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. This is associative:

$$
\sigma \circ(\tau \circ \rho)=(\sigma \circ \tau) \circ \rho
$$

Since any $\sigma \in S_{n}$ is bijective, it has an inverse σ^{-1}. And of course the
identity is the permutation that doesn't move anything.
So S_{n} is indeed a group.

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ, then apply σ. In other words: Then $\sigma \cdot \tau$ is the permutation in S_{n}, with the property that, for any $i \in\{1,2, \ldots, n\}$

$$
\sigma \cdot \tau(i)=\sigma(\tau(i))
$$

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. This is associative:

$$
\sigma \circ(\tau \circ \rho)=(\sigma \circ \tau) \circ \rho .
$$

Since any $\sigma \in S_{n}$ is bijective, it has an inverse σ^{-1}. And of course the identity is the permutation that doesn't move anything.

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ, then apply σ. In other words: Then $\sigma \cdot \tau$ is the permutation in S_{n}, with the property that, for any $i \in\{1,2, \ldots, n\}$

$$
\sigma \cdot \tau(i)=\sigma(\tau(i))
$$

In other words, multiplication in S_{n} is just composition of (bijective) functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}: \sigma \cdot \tau=\sigma \circ \tau$. This is associative:

$$
\sigma \circ(\tau \circ \rho)=(\sigma \circ \tau) \circ \rho .
$$

Since any $\sigma \in S_{n}$ is bijective, it has an inverse σ^{-1}. And of course the identity is the permutation that doesn't move anything.
So S_{n} is indeed a group.

Matrix notation is bad for writing the inverse

If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 5 & 2
\end{array}\right)
$$

then obviously you get σ^{-1} by exchanging the two rows:

$$
\sigma^{-1}=\left(\begin{array}{llllll}
3 & 1 & 6 & 4 & 5 & 2 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)
$$

But just as obviously this is not written in standard form: you have to move the columns around:

Matrix notation is bad for writing the inverse

If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 5 & 2
\end{array}\right)
$$

then obviously you get σ^{-1} by exchanging the two rows:

$$
\sigma^{-1}=\left(\begin{array}{llllll}
3 & 1 & 6 & 4 & 5 & 2 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)
$$

But just as obviously this is not written in standard form: you have to move the columns around:

$$
\sigma^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 6 & 1 & 4 & 5 & 3
\end{array}\right)
$$

Matrix notation is bad for writing the inverse

If

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 5 & 2
\end{array}\right)
$$

then obviously you get σ^{-1} by exchanging the two rows:

$$
\sigma^{-1}=\left(\begin{array}{llllll}
3 & 1 & 6 & 4 & 5 & 2 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right)
$$

But just as obviously this is not written in standard form: you have to move the columns around:

$$
\sigma^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 6 & 1 & 4 & 5 & 3
\end{array}\right)
$$

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example.
Suppose $n=4$,

We compute: $\sigma \cdot \tau(1)=\sigma(\tau(1))=\sigma(4)=3$. Similarly, $\sigma \cdot \tau(2)=\sigma(1)=2 ; \sigma \cdot \tau(3)=\sigma(3)=1$; and $\sigma \cdot \tau(4)=\sigma(2)=4$.

Thus

$$
\sigma \cdot \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example.
Suppose $n=4$,

$$
\begin{aligned}
\sigma & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \\
\tau & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

We compute: $\sigma \cdot \tau(1)=\sigma(\tau(1))=\sigma(4)=3$. Similarly, $\sigma \cdot \tau(2)=\sigma(1)=2 ; \sigma \cdot \tau(3)=\sigma(3)=1$; and $\sigma \cdot \tau(4)=\sigma(2)=4$.

Thus

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example.
Suppose $n=4$,

$$
\begin{aligned}
\sigma & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \\
\tau & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

We compute: $\sigma \cdot \tau(1)=\sigma(\tau(1))=\sigma(4)=3$. Similarly, $\sigma \cdot \tau(2)=\sigma(1)=2 ; \sigma \cdot \tau(3)=\sigma(3)=1$; and $\sigma \cdot \tau(4)=\sigma(2)=4$.

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example.
Suppose $n=4$,

$$
\begin{aligned}
\sigma & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right) \\
\tau & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

We compute: $\sigma \cdot \tau(1)=\sigma(\tau(1))=\sigma(4)=3$. Similarly, $\sigma \cdot \tau(2)=\sigma(1)=2 ; \sigma \cdot \tau(3)=\sigma(3)=1$; and $\sigma \cdot \tau(4)=\sigma(2)=4$.

Thus

$$
\sigma \cdot \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

It's not easier in cycle notation

We have

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right) ; \tau=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)
$$

and

$$
\sigma \cdot \tau=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(2)(4)\right) .
$$

Howie's notes also suggests a shortcut for computing σ^{-1} on p. 28. Here the cycle notation can be more helpful.

It's not easier in cycle notation

We have

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 4 & 3
\end{array}\right) ; \tau=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right)
$$

and

$$
\sigma \cdot \tau=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(2)(4)\right) .
$$

Howie's notes also suggests a shortcut for computing σ^{-1} on p. 28.
Here the cycle notation can be more helpful.

An equivalence relation on S_{n}

We can define an equivalence relation \sim on S_{n} : two permutations $\sigma, \sigma^{\prime} \in S_{n}$ satisfy $\sigma \sim \sigma^{\prime}$ if and only if their cycle decompositions have the same lengths.

> Theorem
> Suppose $\sigma, \sigma^{\prime} \in S_{n}$ both have cycle decompositions with partition $n=n_{1}+n_{2}+\cdots+n_{r}$. Then there exists $\lambda \in S_{n}$ such that

> Thus the set S_{n} has a partition according to the shape of the cycle decomposition.
> The relation $\sigma^{\prime}=\lambda \sigma \lambda^{-1}$ is called conjugacy

An equivalence relation on S_{n}

We can define an equivalence relation \sim on S_{n} : two permutations $\sigma, \sigma^{\prime} \in S_{n}$ satisfy $\sigma \sim \sigma^{\prime}$ if and only if their cycle decompositions have the same lengths.

Theorem

Suppose $\sigma, \sigma^{\prime} \in S_{n}$ both have cycle decompositions with partition $n=n_{1}+n_{2}+\cdots+n_{r}$. Then there exists $\lambda \in S_{n}$ such that

$$
\sigma^{\prime}=\lambda \sigma \lambda^{-1}
$$

> Thus the set S_{n} has a partition according to the shape of the cycle decomposition.
> The relation $\sigma^{\prime}=\lambda \sigma \lambda^{-1}$ is called conjugacy.

An equivalence relation on S_{n}

We can define an equivalence relation \sim on S_{n} : two permutations $\sigma, \sigma^{\prime} \in S_{n}$ satisfy $\sigma \sim \sigma^{\prime}$ if and only if their cycle decompositions have the same lengths.

Theorem

Suppose $\sigma, \sigma^{\prime} \in S_{n}$ both have cycle decompositions with partition $n=n_{1}+n_{2}+\cdots+n_{r}$. Then there exists $\lambda \in S_{n}$ such that

$$
\sigma^{\prime}=\lambda \sigma \lambda^{-1}
$$

Thus the set S_{n} has a partition according to the shape of the cycle decomposition.
The relation $\sigma^{\prime}=\lambda \sigma \lambda^{-1}$ is called conjugacy.

Proof

The proof of the theorem is in the online notes. It will be sketched on the board with an example.

Transpositions

A transposition in S_{n} is a cycle of the form $\tau_{i j}=\left(\begin{array}{ll}i & j\end{array}\right)$ where $1 \leq i \neq j \leq n$. In other words, $\tau_{i j}$ exchanges i and j and leaves the other numbers unchanged.

Then obviously $\tau_{i j} \cdot \tau_{i j}$ is the identity element e. We will see later in the course that every $\sigma \in S_{n}$ can be written as a product of transpositions.

This product expression is not unique - for example, the identity element e can be written $\tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j}$ and in infinitely many other ways - it suffices to keep adding pairs of $\tau_{i j}$.

What is unique, however, is the sign of σ.

Transpositions

A transposition in S_{n} is a cycle of the form $\tau_{i j}=\left(\begin{array}{ll}i & j\end{array}\right)$ where $1 \leq i \neq j \leq n$. In other words, $\tau_{i j}$ exchanges i and j and leaves the other numbers unchanged. It is a cycle of length 2 .

Then obviously $\tau_{i j} \cdot \tau_{i j}$ is the identity element e.
We will see later in the course that every $\sigma \in S_{n}$ can be written as a
product of transpositions.
This product expression is not unique - for example, the identity element e can be written $\tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j}$ and in infinitely many other ways - it suffices to keep adding pairs of $\tau_{i j}$.

What is unique, however is the sign of σ.

Transpositions

A transposition in S_{n} is a cycle of the form $\tau_{i j}=\left(\begin{array}{ll}i & j\end{array}\right)$ where $1 \leq i \neq j \leq n$. In other words, $\tau_{i j}$ exchanges i and j and leaves the other numbers unchanged. It is a cycle of length 2 .

Then obviously $\tau_{i j} \cdot \tau_{i j}$ is the identity element e. We will see later in the course that every $\sigma \in S_{n}$ can be written as a product of transpositions.

This product expression is not unique - for example, the identity element e can be written $\tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j}$ and in infinitely many other ways - it suffices to keep adding pairs of $\tau_{i j}$.

What is unique, however, is the sign of σ.

Transpositions

A transposition in S_{n} is a cycle of the form $\tau_{i j}=\left(\begin{array}{ll}i & j\end{array}\right)$ where $1 \leq i \neq j \leq n$. In other words, $\tau_{i j}$ exchanges i and j and leaves the other numbers unchanged. It is a cycle of length 2 .

Then obviously $\tau_{i j} \cdot \tau_{i j}$ is the identity element e. We will see later in the course that every $\sigma \in S_{n}$ can be written as a product of transpositions.

This product expression is not unique - for example, the identity element e can be written $\tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j} \cdot \tau_{i j}$ and in infinitely many other ways - it suffices to keep adding pairs of $\tau_{i j}$.

What is unique, however, is the sign of σ.

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

> It follows that if σ can be written in one way as an odd number of transpositions then every such expression for σ has an odd number of transpositions.
> We define the sign of σ, denoted $\operatorname{sgn}(\sigma)$ to be 1 if it can be written as
> a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions. In particular $\operatorname{sgn}\left(\tau_{i j}\right)=-1$ for any $i \neq j$.

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then every such expression for σ has an odd number of transpositions.
We define the sign of σ, denoted $\operatorname{sgn}(\sigma)$ to be 1 if it can be written as
a product of an even number of transpositions, and -1 if it can be
written as a product of an odd number of transpositions.
In particular $\operatorname{sgn}\left(\tau_{i j}\right)=-1$ for any $i \neq j$.

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then every such expression for σ has an odd number of transpositions.
We define the sign of σ, denoted $\operatorname{sgn}(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions.
In particular $\operatorname{sgn}\left(\tau_{i j}\right)=-1$ for any $i \neq j$.

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then every such expression for σ has an odd number of transpositions.
We define the sign of σ, denoted $\operatorname{sgn}(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions.
In particular $\operatorname{sgn}\left(\tau_{i j}\right)=-1$ for any $i \neq j$.

Adjacent transpositions

We say $\tau_{i j}$ is an adjacent transposition if $j=i+1$. It can be shown that every $\sigma \in S_{n}$ can be written as a product of adjacent transpositions.

The length of σ is then the shortest expression of σ as a product of adjacent transpositions. We will not be discussing length in this course.

Adjacent transpositions

We say $\tau_{i j}$ is an adjacent transposition if $j=i+1$. It can be shown that every $\sigma \in S_{n}$ can be written as a product of adjacent transpositions.

The length of σ is then the shortest expression of σ as a product of adjacent transpositions. We will not be discussing length in this course.

Factorization in transpositions

Proposition
 Any element of S_{n} can be wntten as the product of transpositions.

Proof: Suppose σ has a cycle decomposition
with σ_{i} a k_{i}-cycle. It suffices to check that each σ_{i} can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$
\sigma=\left(a_{1} \ldots a_{k}\right)
$$

We induct on k, clearly all right if $k \leq 2$. So we assume $k>2$.

Factorization in transpositions

Proposition

Any element of S_{n} can be wntten as the product of transpositions.
Proof: Suppose σ has a cycle decomposition

$$
\sigma=\sigma_{1} \cdot \sigma_{2} \cdot \cdots \cdot \sigma_{r}
$$

with σ_{i} a k_{i}-cycle. It suffices to check that each σ_{i} can be written as
the product of transpositions. So we may assume σ is itself a k-cycle:

We induct on k, clearly all right if $k \leq 2$. So we assume $k>2$.

Factorization in transpositions

Proposition

Any element of S_{n} can be wntten as the product of transpositions.
Proof: Suppose σ has a cycle decomposition

$$
\sigma=\sigma_{1} \cdot \sigma_{2} \cdot \cdots \cdot \sigma_{r}
$$

with σ_{i} a k_{i}-cycle. It suffices to check that each σ_{i} can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$
\sigma=\left(a_{1} \ldots a_{k}\right)
$$

We induct on k, clearly all right if $k \leq 2$. So we assume $k>2$.

Factorization in transpositions

Proposition

Any element of S_{n} can be wntten as the product of transpositions.
Proof: Suppose σ has a cycle decomposition

$$
\sigma=\sigma_{1} \cdot \sigma_{2} \cdots \cdots \sigma_{r}
$$

with σ_{i} a k_{i}-cycle. It suffices to check that each σ_{i} can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$
\sigma=\left(a_{1} \ldots a_{k}\right)
$$

We induct on k, clearly all right if $k \leq 2$. So we assume $k>2$.

Factorization in transpositions

Consider

$$
\tau_{1}=\left(a_{1} a_{2}\right), \quad \tau_{2}=\left(a_{2} \ldots a_{k}\right), \quad \tau=\tau_{1} \cdot \tau_{2}
$$

By induction τ_{2} of length $k-1$ is a product of transpositions, and therefore so is τ.
So we want to show $\sigma=\tau$. But $\tau\left(a_{1}\right)=\tau_{1}\left(a_{1}\right)=a_{2}$,

$$
\tau\left(a_{2}\right)=\tau_{1}\left(\tau_{2}\left(a_{2}\right)\right)=\tau_{1}\left(a_{3}\right)=a_{3}
$$

$$
\tau\left(a_{k}\right)=\tau_{1}\left(\tau_{2}\left(a_{k}\right)\right)=\tau_{1}\left(a_{2}\right)=a_{1}
$$

Factorization in transpositions

Consider

$$
\tau_{1}=\left(a_{1} a_{2}\right), \quad \tau_{2}=\left(a_{2} \ldots a_{k}\right), \quad \tau=\tau_{1} \cdot \tau_{2}
$$

By induction τ_{2} of length $k-1$ is a product of transpositions, and therefore so is τ.
So we want to show $\sigma=\tau$. But $\tau\left(a_{1}\right)=\tau_{1}\left(a_{1}\right)=a_{2}$,

$$
3 \leq i \leq k-1 \Rightarrow \tau\left(a_{i}\right)=\tau_{2}\left(a_{i}\right)=a_{i+1} .
$$

$$
\tau\left(a_{2}\right)=\tau_{1}\left(\tau_{2}\left(a_{2}\right)\right)=\tau_{1}\left(a_{3}\right)=a_{3}
$$

$$
\tau\left(a_{k}\right)=\tau_{1}\left(\tau_{2}\left(a_{k}\right)\right)=\tau_{1}\left(a_{2}\right)=a_{1} .
$$

Factorization in transpositions

Consider

$$
\tau_{1}=\left(a_{1} a_{2}\right), \quad \tau_{2}=\left(a_{2} \ldots a_{k}\right), \quad \tau=\tau_{1} \cdot \tau_{2}
$$

By induction τ_{2} of length $k-1$ is a product of transpositions, and therefore so is τ.
So we want to show $\sigma=\tau$. But $\tau\left(a_{1}\right)=\tau_{1}\left(a_{1}\right)=a_{2}$,

$$
3 \leq i \leq k-1 \Rightarrow \tau\left(a_{i}\right)=\tau_{2}\left(a_{i}\right)=a_{i+1} .
$$

$$
\begin{aligned}
& \tau\left(a_{2}\right)=\tau_{1}\left(\tau_{2}\left(a_{2}\right)\right)=\tau_{1}\left(a_{3}\right)=a_{3} . \\
& \tau\left(a_{k}\right)=\tau_{1}\left(\tau_{2}\left(a_{k}\right)\right)=\tau_{1}\left(a_{2}\right)=a_{1} .
\end{aligned}
$$

Factorization in transpositions

Consider

$$
\tau_{1}=\left(a_{1} a_{2}\right), \quad \tau_{2}=\left(a_{2} \ldots a_{k}\right), \quad \tau=\tau_{1} \cdot \tau_{2}
$$

By induction τ_{2} of length $k-1$ is a product of transpositions, and therefore so is τ.
So we want to show $\sigma=\tau$. But $\tau\left(a_{1}\right)=\tau_{1}\left(a_{1}\right)=a_{2}$,

$$
3 \leq i \leq k-1 \Rightarrow \tau\left(a_{i}\right)=\tau_{2}\left(a_{i}\right)=a_{i+1} .
$$

$$
\begin{aligned}
& \tau\left(a_{2}\right)=\tau_{1}\left(\tau_{2}\left(a_{2}\right)\right)=\tau_{1}\left(a_{3}\right)=a_{3} . \\
& \tau\left(a_{k}\right)=\tau_{1}\left(\tau_{2}\left(a_{k}\right)\right)=\tau_{1}\left(a_{2}\right)=a_{1} .
\end{aligned}
$$

Thus $\sigma=\tau$ and we conclude.

The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of transpositions is not unique. For example the identity in S_{n} can be
written

$$
e=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right) .
$$

But we can restate the theorem:
Theorem
Suppose σ can be written in two different ways as the product $\sigma=\tau_{1}$
where all the τ_{i} and α_{j} are transpositions. Then $k \equiv k^{\prime}(\bmod 2)$

The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of transpositions is not unique. For example the identity in S_{n} can be written

$$
e=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

But we can restate the theorem:

Theorem

Suppose σ can be written in two different ways as the product

$$
\sigma=\tau_{1} \cdots \cdots \tau_{k}=\alpha_{1} \cdots \cdots \alpha_{k^{\prime}}
$$

where all the τ_{i} and α_{j} are transpositions.

The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of transpositions is not unique. For example the identity in S_{n} can be written

$$
e=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

But we can restate the theorem:

Theorem

Suppose σ can be written in two different ways as the product

$$
\sigma=\tau_{1} \cdots \cdots \tau_{k}=\alpha_{1} \cdots \cdots \alpha_{k^{\prime}}
$$

where all the τ_{i} and α_{j} are transpositions.
Then $k \equiv k^{\prime}(\bmod 2)$.

The sign homomorphism

Corollary

There is a homomorphism

$$
\begin{aligned}
& \operatorname{sgn}: S_{n} \rightarrow\{ \pm 1\} \\
& \operatorname{sgn}(\sigma)=(-1)^{k}
\end{aligned}
$$

if σ is the product of k transpositions.
The kernel of sgn is a subgroup $A_{n} \subset S_{n}$ of index 2 called the alternating group.

Proof of the theorem, I

Suppose

$$
\sigma=\beta_{1} \cdots \cdots \beta_{k}=\alpha_{1} \cdots \cdots \alpha_{k^{\prime}}
$$

Then $e=\prod_{i=1}^{k} \beta_{i} \cdot\left[\prod_{j} \alpha_{1} \cdots \alpha_{k^{\prime}}\right]^{-1}$ or

because each transposition is its own inverse.
So e is the product of $m=k+k^{\prime}$ transpositions. It suffices to show
that $m=k+k^{\prime}$ is even.

Proof of the theorem, I

Suppose

$$
\sigma=\beta_{1} \cdots \cdots \beta_{k}=\alpha_{1} \cdots \cdots \alpha_{k^{\prime}}
$$

Then $e=\prod_{i=1}^{k} \beta_{i} \cdot\left[\prod_{j} \alpha_{1} \cdots \cdot \alpha_{k^{\prime}}\right]^{-1}$ or
because each transposition is its own inverse.
So e is the product of $m=k+k^{\prime}$ transpositions. It suffices to show
that $m=k+k^{\prime}$ is even.

Proof of the theorem, I

Suppose

$$
\sigma=\beta_{1} \cdots \cdots \beta_{k}=\alpha_{1} \cdots \cdots \alpha_{k^{\prime}}
$$

Then $e=\prod_{i=1}^{k} \beta_{i} \cdot\left[\prod_{j} \alpha_{1} \cdots \cdot \alpha_{k^{\prime}}\right]^{-1}$ or

$$
\begin{gathered}
e=\beta_{1} \cdots \cdots \beta_{k} \cdot \alpha_{k^{\prime}}^{-1} \cdot \ldots \alpha_{2}^{-1} \cdot \alpha_{1}^{-1} \\
e=\beta_{1} \cdots \cdots \beta_{k} \cdot \alpha_{k^{\prime}} \cdot \ldots \alpha_{2}^{-1} \cdot \alpha_{1}
\end{gathered}
$$

because each transposition is its own inverse.
So e is the product of $m=k+k^{\prime}$ transpositions. It suffices to show
that $m=k+k^{\prime}$ is even.

Proof of the theorem, I

Suppose

$$
\sigma=\beta_{1} \cdots \cdots \beta_{k}=\alpha_{1} \cdots \cdots \alpha_{k^{\prime}}
$$

Then $e=\prod_{i=1}^{k} \beta_{i} \cdot\left[\prod_{j} \alpha_{1} \cdots \alpha_{k^{\prime}}\right]^{-1}$ or

$$
\begin{gathered}
e=\beta_{1} \cdots \cdots \beta_{k} \cdot \alpha_{k^{\prime}}^{-1} \cdot \ldots \alpha_{2}^{-1} \cdot \alpha_{1}^{-1} \\
e=\beta_{1} \cdots \cdots \beta_{k} \cdot \alpha_{k^{\prime}} \cdot \ldots \alpha_{2}^{-1} \cdot \alpha_{1}
\end{gathered}
$$

because each transposition is its own inverse.
So e is the product of $m=k+k^{\prime}$ transpositions. It suffices to show that $m=k+k^{\prime}$ is even.

Proof of the theorem, II

The theorem is thus equivalent to
Theorem
Suppose $e \in S_{n}$ is the product of m transpositions $e=\tau_{1} \cdots \tau_{m}$.
Then m is even.
The proof is an induction on m. We have

Proof of the theorem, II

The theorem is thus equivalent to
Theorem
Suppose $e \in S_{n}$ is the product of m transpositions $e=\tau_{1} \cdots \tau_{m}$.
Then m is even.
The proof is an induction on m. We have

$$
e=\left[\tau_{1} \cdots \cdots \tau_{m-2}\right] \tau_{m-1} \cdot \tau_{m}
$$

Proof of the theorem, III

$$
e=\left[\tau_{1} \cdots \cdot \tau_{m-2}\right] \tau_{m-1} \cdot \tau_{m}
$$

There are four possibilities.
(1) $\tau_{m-1}=\tau_{m}=(a b)$;
(2) $\tau_{m-1}=(c d), \tau_{m}=(a b)$ all different.
(3) $\tau_{m-1}=(a c), \tau_{m}=(a b), a, b, c$ distinct.
(4) $\tau_{m-1}=(b c), \tau_{m}=(a b)$

Case (1) is easy: $\tau_{m-1} \cdot \tau_{m}=e$ so $m \equiv m-2(\bmod 2)$ and we conclude by induction. In the other cases we aim to move a to the left until there is no more room.

Proof of the theorem, IV

In case (2) $(c d) \cdot(a b)=(a b) \cdot(c d)$.
In case (3) $(a c) \cdot(a b)=(a b) \cdot(b c)$. (CHECK!)
In case (4) $(b c) \cdot(a b)=(a c) \cdot(b c)$. (CHECK!)
In any case a is in τ_{m-1} and is NOT in τ_{m}. Now continue with the pair
τ_{m-2}, τ_{m-1}. We again have four cases.
We repeat the analysis. After each step a moves to the left and is
absent from the subsequent transpositions: either a cancels as in case (1), which concludes by induction, or
for some $b^{\prime} \neq a$, where a is NOT in $\tau_{i}, \tau_{i+1}, \ldots \tau_{m}$.

Proof of the theorem, IV

In case (2) $(c d) \cdot(a b)=(a b) \cdot(c d)$.
In case (3) $(a c) \cdot(a b)=(a b) \cdot(b c)$. (CHECK!)
In case (4) $(b c) \cdot(a b)=(a c) \cdot(b c)$. (CHECK!)
In any case a is in τ_{m-1} and is NOT in τ_{m}. Now continue with the pair τ_{m-2}, τ_{m-1}. We again have four cases.
We repeat the analysis. After each step a moves to the left and is
absent from the subsequent transpositions: either a cancels as in case
(1), which concludes by induction, or
for some $b^{\prime} \neq a$, where a is NOT in $\tau_{i}, \tau_{i+1}, \ldots \tau_{m}$.

Proof of the theorem, IV

In case (2) $(c d) \cdot(a b)=(a b) \cdot(c d)$.
In case (3) $(a c) \cdot(a b)=(a b) \cdot(b c)$. (CHECK!)
In case (4) $(b c) \cdot(a b)=(a c) \cdot(b c)$. (CHECK!)
In any case a is in τ_{m-1} and is NOT in τ_{m}. Now continue with the pair τ_{m-2}, τ_{m-1}. We again have four cases.
We repeat the analysis. After each step a moves to the left and is absent from the subsequent transpositions: either a cancels as in case (1), which concludes by induction, or

$$
e=\tau_{1} \cdot \ldots\left(a b^{\prime}\right) \cdot \tau_{i} \cdot \tau_{i+1} \cdots \cdots \tau_{m}
$$

for some $b^{\prime} \neq a$, where a is NOT in $\tau_{i}, \tau_{i+1}, \ldots \tau_{m}$.

Proof of the theorem, conclusion

So if a survives to the end, we have

$$
e=\left(a b^{\prime}\right) \cdot \prod_{i=2}^{m} \tau_{i}
$$

where $\tau_{i}(a)=a$ for $i \geq 2$.
Apply both sides to a :

This is a contradiction, so we conclude by induction.

Proof of the theorem, conclusion

So if a survives to the end, we have

$$
e=\left(a b^{\prime}\right) \cdot \prod_{i=2}^{m} \tau_{i}
$$

where $\tau_{i}(a)=a$ for $i \geq 2$.
Apply both sides to a :

$$
a=e(a)=\left[\left(a b^{\prime}\right) \cdot \prod_{i=2}^{m} \tau_{i}\right](a)=\left(a b^{\prime}\right)(a)=b^{\prime}
$$

This is a contradiction, so we conclude by induction.

Proof of the theorem, conclusion

So if a survives to the end, we have

$$
e=\left(a b^{\prime}\right) \cdot \prod_{i=2}^{m} \tau_{i}
$$

where $\tau_{i}(a)=a$ for $i \geq 2$.
Apply both sides to a :

$$
a=e(a)=\left[\left(a b^{\prime}\right) \cdot \prod_{i=2}^{m} \tau_{i}\right](a)=\left(a b^{\prime}\right)(a)=b^{\prime}
$$

This is a contradiction, so we conclude by induction.

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

$$
f\left(g n g^{-1}\right)=f(g) f(n) f\left(g^{-1}\right)-f(g) \cdot e \cdot f\left(g^{-1}\right)=e
$$

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:

$$
(123),(124),(134),(234)
$$

and their squares. This makes $3+2 \cdot 4=11$, and the identity is the
last one.

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:

$$
(123),(124),(134),(234)
$$

and their squares. This makes $3+2 \cdot 4=11$, and the identity is the

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

$$
f\left(g n g^{-1}\right)=f(g) f(n) f\left(g^{-1}\right)=f(g) \cdot e \cdot f\left(g^{-1}\right)=e .
$$

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements
as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:
(123), (12 4), (134), (234)
and their squares. This makes $3+2 \cdot 4=11$, and the identity is the

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

$$
f\left(g n g^{-1}\right)=f(g) f(n) f\left(g^{-1}\right)=f(g) \cdot e \cdot f\left(g^{-1}\right)=e .
$$

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:

and their squares. This makes $3+2 \cdot 4=11$, and the identity is the

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

$$
f\left(g n g^{-1}\right)=f(g) f(n) f\left(g^{-1}\right)=f(g) \cdot e \cdot f\left(g^{-1}\right)=e
$$

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:
(123), (124), (134), (234)
and their squares. This makes $3+2 \cdot 4=11$, and the identity is the

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

$$
f\left(g n g^{-1}\right)=f(g) f(n) f\left(g^{-1}\right)=f(g) \cdot e \cdot f\left(g^{-1}\right)=e
$$

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:

$$
(123),(124),(134),(234)
$$

and their squares. This makes $3+2 \cdot 4=11$, and the identity is the

The alternating group A_{n} is of index 2 in S_{n}, hence is normal.
However, the kernel of any homomorphism $f: G \rightarrow G^{\prime}$ is always normal. Indeed, if $N=\operatorname{ker} f, n \in N, g \in G$, then

$$
f\left(g n g^{-1}\right)=f(g) f(n) f\left(g^{-1}\right)=f(g) \cdot e \cdot f\left(g^{-1}\right)=e
$$

The order of A_{4} is $\left|S_{4}\right| / 2=4!/ 2=12$. We can write all the elements as products $(a b)(c d)$.

$$
(12)(34),(13)(24),(14)(23)
$$

and all the 3-cycles:

$$
(123),(124),(134),(234)
$$

and their squares. This makes $3+2 \cdot 4=11$, and the identity is the last one.

The complement of A_{4} is S_{4} is the coset of elements whose sign is -1 .
There are 6 transpositions corresponding to the choice of any pair of two elements, and 64 -cycles.

$S_{4} \backslash A_{4}$

The complement of A_{4} is S_{4} is the coset of elements whose sign is -1 .
There are 6 transpositions corresponding to the choice of any pair of two elements, and 64 -cycles.

