Permutation groups

GU4041, fall 2023

Columbia University

October 22, 2023

< ∃ >

Outline

- 2 Cycle decomposition of a permutation
- Proof of the cycle decomposition of permutations
- 4 Multiplying permutations
- 6 Conjugacy classes
 - Transpositions
 - 7 Proof of the theorem

B >

Permutations

By a *permutation* of the set *S*, we mean a bijective function $\sigma : S \to S$. This definition will only be used when *S* is a finite set.

Let $n \in \mathbb{N}$. The symmetric group on *n* letters is the group of all permutations of the set $\{1, 2, ..., n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)

It is well known that there are

 $n! = n \cdot (n-1) \cdot (n-2) \cdots (3) \cdot (2) \cdot (1)$ permutations of a collection $X = \{x_0, \dots, x_{n-1}\}$ of *n* elements.

Permutations

By a *permutation* of the set *S*, we mean a bijective function $\sigma : S \to S$. This definition will only be used when *S* is a finite set.

Let $n \in \mathbb{N}$. The *symmetric group on n letters* is the group of all permutations of the set $\{1, 2, ..., n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)

It is well known that there are

 $n! = n \cdot (n-1) \cdot (n-2) \cdots (3) \cdot (2) \cdot (1)$ permutations of a collection $X = \{x_0, \dots, x_{n-1}\}$ of *n* elements.

Permutations

By a *permutation* of the set *S*, we mean a bijective function $\sigma : S \to S$. This definition will only be used when *S* is a finite set.

Let $n \in \mathbb{N}$. The *symmetric group on n letters* is the group of all permutations of the set $\{1, 2, ..., n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)

It is well known that there are

 $n! = n \cdot (n-1) \cdot (n-2) \cdots (3) \cdot (2) \cdot (1)$ permutations of a collection $X = \{x_0, \dots, x_{n-1}\}$ of *n* elements.

Permutations

By a *permutation* of the set *S*, we mean a bijective function $\sigma : S \to S$. This definition will only be used when *S* is a finite set.

Let $n \in \mathbb{N}$. The *symmetric group on n letters* is the group of all permutations of the set $\{1, 2, ..., n\}$. (The terminology is classical; the "letters" are in fact numbers, although they could be any objects whatsoever.)

It is well known that there are

 $n! = n \cdot (n-1) \cdot (n-2) \cdots (3) \cdot (2) \cdot (1)$ permutations of a collection $X = \{x_0, \dots, x_{n-1}\}$ of *n* elements.

Notation for permutations

We see that the symmetric group has n! elements. However, it is denoted S_n – or \mathfrak{S}_n , if we want to be old-fashioned. This is the only exception to our rule that a group denoted H_m has m elements.

An element $\sigma \in S_n$ is traditionally denoted by a matrix with *n* columns and 2 rows, where the top row is always

 $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix}$, and the second row shows the effect of the permutation, like this:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

Thus if n = 4, the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

Notation for permutations

We see that the symmetric group has n! elements. However, it is denoted S_n – or \mathfrak{S}_n , if we want to be old-fashioned. This is the only exception to our rule that a group denoted H_m has m elements.

An element $\sigma \in S_n$ is traditionally denoted by a matrix with *n* columns and 2 rows, where the top row is always

 $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix}$, and the second row shows the effect of the permutation, like this:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

Thus if n = 4, the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

イロト イ理ト イヨト イヨト

Notation for permutations

We see that the symmetric group has n! elements. However, it is denoted S_n – or \mathfrak{S}_n , if we want to be old-fashioned. This is the only exception to our rule that a group denoted H_m has m elements.

An element $\sigma \in S_n$ is traditionally denoted by a matrix with *n* columns and 2 rows, where the top row is always

 $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix}$, and the second row shows the effect of the permutation, like this:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

Thus if n = 4, the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

A cycle

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3.

Another way to represent this permutation is

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1,$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of *cycle* notation. The above cycle is written

$$\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$$

A cycle

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3. Another way to represent this permutation is

$$1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1,$$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of *cycle* notation. The above cycle is written

$$\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$$

A cycle

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3. Another way to represent this permutation is

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1,$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of *cycle* notation. The above cycle is written

$$\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$$

A cycle

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3. Another rest this representation $\frac{1}{2}$

Another way to represent this permutation is

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1,$

but this notation only works if all the numbers are in a single cycle. This leads to the introduction of *cycle* notation. The above cycle is written

$$\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$$

Some examples

In the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

we observe that $1 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 4 \rightarrow 2$.

So its cycle decomposition is

 $\begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$

IMPORTANT POINT The cycles $\begin{pmatrix} 1 & 3 \end{pmatrix}$ and $\begin{pmatrix} 3 & 1 \end{pmatrix}$ are equal. In fact $\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$ can also be written

 $\begin{pmatrix} 2 & 4 & 3 & 1 \end{pmatrix}$

01

Some examples

In the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

we observe that $1 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 4 \rightarrow 2$. So its cycle decomposition is

 $\begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$

IMPORTANT POINT The cycles $\begin{pmatrix} 1 & 3 \end{pmatrix}$ and $\begin{pmatrix} 3 & 1 \end{pmatrix}$ are equal. In fact $\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$ can also be written

$$(2 \ 4 \ 3 \ 1)$$

01

Some examples

In the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

we observe that $1 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 4 \rightarrow 2$. So its cycle decomposition is

 $\begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$

IMPORTANT POINT The cycles $\begin{pmatrix} 1 & 3 \end{pmatrix}$ and $\begin{pmatrix} 3 & 1 \end{pmatrix}$ are equal. In fact $\begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}$ can also be written

$$(2 \ 4 \ 3 \ 1)$$

or

GU4041, fall 2023

Permutation groups

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

2)

Notation that is best read at leisure

Suppose *X* is the set $\{1, 2, ..., n\}$. Let $X^1 \subset X$, with $|X^1| = n_1$.

Suppose $\sigma \in S_n$ is a permutation with the following property: we can label the elements of $X^1 a_1, \ldots, a_{n_1}$ in such a way that

$$\sigma(a_1) = a_2; \sigma(a_2) = a_3; \dots \sigma(a_i) = a_{i+1} \dots \sigma(a_{n_1}) = a_1;$$

and $\sigma(a) = a$ if $a \in X \setminus X^1$.

Then σ is said to be a *cycle*, or an n_1 -cycle, and can be written

$$\sigma=(a_1\ a_2\ \ldots\ a_{n_1}).$$

Notation that is best read at leisure

Suppose *X* is the set $\{1, 2, ..., n\}$. Let $X^1 \subset X$, with $|X^1| = n_1$. Suppose $\sigma \in S_n$ is a permutation with the following property: we can label the elements of $X^1 a_1, ..., a_{n_1}$ in such a way that

$$\sigma(a_1) = a_2; \sigma(a_2) = a_3; \dots \sigma(a_i) = a_{i+1} \dots \sigma(a_{n_1}) = a_1;$$

and $\sigma(a) = a$ if $a \in X \setminus X^1$.

Then σ is said to be a *cycle*, or an n_1 -cycle, and can be written

$$\sigma=(a_1\ a_2\ \ldots\ a_{n_1}).$$

Notation that is best read at leisure

Suppose *X* is the set $\{1, 2, ..., n\}$. Let $X^1 \subset X$, with $|X^1| = n_1$. Suppose $\sigma \in S_n$ is a permutation with the following property: we can label the elements of $X^1 a_1, ..., a_{n_1}$ in such a way that

$$\sigma(a_1) = a_2; \sigma(a_2) = a_3; \dots \sigma(a_i) = a_{i+1} \dots \sigma(a_{n_1}) = a_1;$$

and $\sigma(a) = a$ if $a \in X \setminus X^1$.

Then σ is said to be a *cycle*, or an n_1 -cycle, and can be written

$$\sigma=(a_1\ a_2\ \ldots\ a_{n_1}).$$

Theorem best read at leisure

Theorem

Any permutation $\sigma \in S_n$ has a cycle decomposition. Precisely, there is a unique partition $X = X^1 \coprod X^2 \coprod \cdots \coprod X^r$ of X into r disjoint subsets, with $n_j = |X^j|$ and

$$n=n_1+n_2+\cdots+n_r,$$

and for each j, an n_j -cycle

$$\sigma_j = (a_1^j a_2^j \ldots a_{n_j}^j)$$

where $X^j = \{a_1^j, a_2^j, \ldots, a_{n_j}^j\}$, such that

$\sigma = \sigma_1 \cdot \sigma$	$\sigma_2 \cdots \sigma_r$.
GU4041, fall 2023	Permutation groups

Another example

If

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

we see

$1\rightarrow 3\rightarrow 6\rightarrow 2\rightarrow 1;\ 4\rightarrow 4;\ 5\rightarrow 5$

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \end{pmatrix} .$$

For simplicity we ALWAYS leave out the 1-cycles and just write

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 2 \end{pmatrix}$$

イロト イ押ト イヨト イヨト

Another example

If

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

we see

$$1\rightarrow 3\rightarrow 6\rightarrow 2\rightarrow 1;\ 4\rightarrow 4;\ 5\rightarrow 5$$

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \end{pmatrix}.$$

For simplicity we ALWAYS leave out the 1-cycles and just write

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 2 \end{pmatrix}$$

イロト イポト イヨト

Another example

If

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

we see

$$1\rightarrow 3\rightarrow 6\rightarrow 2\rightarrow 1;\ 4\rightarrow 4;\ 5\rightarrow 5$$

So the cycle decomposition is a product of a 4-cycle and two 1-cycles:

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \end{pmatrix} \cdot \begin{pmatrix} 5 \end{pmatrix} .$$

For simplicity we ALWAYS leave out the 1-cycles and just write

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 2 \end{pmatrix}$$

Disjoint cycles commute!

For example if

$$\rho = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix},$$

we can also write

$$\rho = \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \end{pmatrix};$$

it doesn't matter how the cycles are ordered.

In the above example,

$$\tau = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix}.$$

Above we wrote

$$\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$$

but we could write

$$\sigma = \sigma_{i_1} \cdot \sigma_{i_2} \cdot \cdots \cdot \sigma_{i_r}$$

for any reordering (permutation!) of the indices 12.2.5 the state of the second second

Disjoint cycles commute!

For example if

$$\rho = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix},$$

we can also write

$$\rho = \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \end{pmatrix};$$

it doesn't matter how the cycles are ordered. In the above example,

$$au = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix}.$$

Above we wrote

$$\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$$

but we could write

$$\sigma = \sigma_{i_1} \cdot \sigma_{i_2} \cdot \cdots \cdot \sigma_{i_r}$$

Disjoint cycles commute!

For example if

$$\rho = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix},$$

we can also write

$$\rho = \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \end{pmatrix};$$

it doesn't matter how the cycles are ordered. In the above example,

$$\tau = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix}.$$

Above we wrote

$$\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$$

but we could write

$$\sigma = \sigma_{i_1} \cdot \sigma_{i_2} \cdot \cdots \cdot \sigma_{i_r}$$

Orbit of a permutation

Let *X* be a finite set and σ a permutation of *X*.

The orbits of σ are the subsets $X^j \in X$ such that,

• for any $x \neq y \in X^j$, there is an integer m > 0 such that $\sigma^m(x) = y$, and

• if
$$x \in X^j$$
 then $\sigma(x) \in X^j$.

In other words, setting $n_j = |X_j|$, for for any $x \in X^j$, $\sigma^{n_j}(x) = x$ and X^j is a set of the form

$$\{x,\sigma(x),\sigma^2(x),\ldots\sigma^{n_j-1}(x)\}$$

for any $x \in X_j$.

イロト イ押ト イヨト イヨト

Orbit of a permutation

Let *X* be a finite set and σ a permutation of *X*. The orbits of σ are the subsets $X^j \in X$ such that,

• for any $x \neq y \in X^j$, there is an integer m > 0 such that $\sigma^m(x) = y$, and

$$if x \in X^j then \sigma(x) \in X^j.$$

In other words, setting $n_j = |X_j|$, for for any $x \in X^j$, $\sigma^{n_j}(x) = x$ and X^j is a set of the form

$$\{x,\sigma(x),\sigma^2(x),\ldots\sigma^{n_j-1}(x)\}$$

for any $x \in X_j$.

Orbit of a permutation

Let *X* be a finite set and σ a permutation of *X*. The orbits of σ are the subsets $X^j \in X$ such that,

• for any $x \neq y \in X^j$, there is an integer m > 0 such that $\sigma^m(x) = y$, and

(a) if
$$x \in X^j$$
 then $\sigma(x) \in X^j$.

In other words, setting $n_j = |X_j|$, for for any $x \in X^j$, $\sigma^{n_j}(x) = x$ and X^j is a set of the form

$$\{x,\sigma(x),\sigma^2(x),\ldots\sigma^{n_j-1}(x)\}$$

for any $x \in X_j$.

Orbit of a permutation

Let *X* be a finite set and σ a permutation of *X*. The orbits of σ are the subsets $X^j \in X$ such that,

• for any $x \neq y \in X^j$, there is an integer m > 0 such that $\sigma^m(x) = y$, and

a if
$$x \in X^j$$
 then $\sigma(x) \in X^j$.

In other words, setting $n_j = |X_j|$, for for any $x \in X^j$, $\sigma^{n_j}(x) = x$ and X^j is a set of the form

$$\{x, \sigma(x), \sigma^2(x), \dots \sigma^{n_j-1}(x)\}$$

for any $x \in X_j$.

Any permutation defines an equivalence relation

We define a relation on *X*: we say $xR_{\sigma}y$ if there exists some m > 0 such that $\sigma^m(x) = y$. This is an equivalence relation:

- (reflexive) Since S_n is a finite group, σ^M = e for some M > 0; then σ^M(x) = x for all x.
- (symmetric) If σ^m(x) = y then σ^{-m}(y) = x, but σ^{-m} = σ^{M-m} = σ^{dM-m} for any d, and for d sufficiently large dM − m > 0.

• (transitive) If
$$\sigma^m(x) = y$$
 and $\sigma^{m'}(y) = z$ then $\sigma^{m+m'}(x) = z$.

イロト 不得 とくほ とくほとう

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ . They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_j of X^j that ignores the elements of the $X^i, i \neq j$. The word "induces" means: the bijection $\sigma : X \to X$ restricts to a bijection $\sigma_j : X^j \to X^j$.

Then $\sigma = \prod_j \sigma_j$ (in any order). We check this by looking more closely at the group structure.

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ . They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_j of X^j that ignores the elements of the $X^i, i \neq j$. The word "induces" means: the bijection $\sigma : X \to X$ restricts to a bijection $\sigma_j : X^j \to X^j$.

Then $\sigma = \prod_j \sigma_j$ (in any order). We check this by looking more closely at the group structure.

4 E 5

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ . They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_j of X^j that ignores the elements of the $X^i, i \neq j$. The word "induces" means: the bijection $\sigma : X \to X$ restricts to a bijection $\sigma_j : X^j \to X^j$.

Then $\sigma = \prod_i \sigma_j$ (in any order).

We check this by looking more closely at the group structure.

イロト イポト イヨト イヨト

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ . They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_j of X^j that ignores the elements of the $X^i, i \neq j$. The word "induces" means: the bijection $\sigma : X \to X$ restricts to a bijection $\sigma_j : X^j \to X^j$.

Then $\sigma = \prod_{i} \sigma_{i}$ (in any order).

We check this by looking more closely at the group structure.

4 E 5

The orbits define a partition

Theorem

The equivalence classes for the relation R_{σ} are precisely the orbits of σ . They define a partition of X.

Proof.

For each $j \sigma$ induces a permutation σ_j of X^j that ignores the elements of the $X^i, i \neq j$. The word "induces" means: the bijection $\sigma : X \to X$ restricts to a bijection $\sigma_j : X^j \to X^j$.

Then $\sigma = \prod_j \sigma_j$ (in any order). We check this by looking more closely at the group structure.

イロト イポト イヨト イヨト
The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ , then apply σ .

In other words: Then $\sigma \cdot \tau$ is the permutation in S_n , with the property that, for any $i \in \{1, 2, ..., n\}$

 $\sigma \cdot \tau(i) = \sigma(\tau(i)).$

In other words, multiplication in S_n is just composition of (bijective) functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$: $\sigma \cdot \tau = \sigma \circ \tau$. This is associative:

$$\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho.$$

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ , then apply σ . In other words: Then $\sigma \cdot \tau$ is the permutation in S_n , with the property that, for any $i \in \{1, 2, ..., n\}$

 $\sigma \cdot \tau(i) = \sigma(\tau(i)).$

In other words, multiplication in S_n is just composition of (bijective) functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$: $\sigma \cdot \tau = \sigma \circ \tau$. This is associative:

$$\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho.$$

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ , then apply σ . In other words: Then $\sigma \cdot \tau$ is the permutation in S_n , with the property that, for any $i \in \{1, 2, ..., n\}$

$$\sigma \cdot \tau(i) = \sigma(\tau(i)).$$

In other words, multiplication in S_n is just composition of (bijective) functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$: $\sigma \cdot \tau = \sigma \circ \tau$. This is associative:

$$\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho.$$

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ , then apply σ . In other words: Then $\sigma \cdot \tau$ is the permutation in S_n , with the property that, for any $i \in \{1, 2, ..., n\}$

$$\sigma \cdot \tau(i) = \sigma(\tau(i)).$$

In other words, multiplication in S_n is just composition of (bijective) functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$: $\sigma \cdot \tau = \sigma \circ \tau$. This is associative:

$$\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho.$$

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ , then apply σ . In other words: Then $\sigma \cdot \tau$ is the permutation in S_n , with the property that, for any $i \in \{1, 2, ..., n\}$

$$\sigma \cdot \tau(i) = \sigma(\tau(i)).$$

In other words, multiplication in S_n is just composition of (bijective) functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$: $\sigma \cdot \tau = \sigma \circ \tau$. This is associative:

$$\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho.$$

The group structure

The product of the permutations $\sigma \cdot \tau$ is: first apply τ , then apply σ . In other words: Then $\sigma \cdot \tau$ is the permutation in S_n , with the property that, for any $i \in \{1, 2, ..., n\}$

$$\sigma \cdot \tau(i) = \sigma(\tau(i)).$$

In other words, multiplication in S_n is just composition of (bijective) functions from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$: $\sigma \cdot \tau = \sigma \circ \tau$. This is associative:

$$\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho.$$

Matrix notation is bad for writing the inverse

If

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

then obviously you get σ^{-1} by exchanging the two rows:

$$\sigma^{-1} = \begin{pmatrix} 3 & 1 & 6 & 4 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

But just as obviously this is not written in standard form: you have to move the columns around:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 4 & 5 & 3 \end{pmatrix}$$

Matrix notation is bad for writing the inverse

If

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

then obviously you get σ^{-1} by exchanging the two rows:

$$\sigma^{-1} = \begin{pmatrix} 3 & 1 & 6 & 4 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

But just as obviously this is not written in standard form: you have to move the columns around:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 4 & 5 & 3 \end{pmatrix}$$

Matrix notation is bad for writing the inverse

If

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 6 & 4 & 5 & 2 \end{pmatrix}$$

then obviously you get σ^{-1} by exchanging the two rows:

$$\sigma^{-1} = \begin{pmatrix} 3 & 1 & 6 & 4 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

But just as obviously this is not written in standard form: you have to move the columns around:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 4 & 5 & 3 \end{pmatrix}$$

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example. Suppose n = 4,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix};$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}.$$

We compute: $\sigma \cdot \tau(1) = \sigma(\tau(1)) = \sigma(4) = 3$. Similarly, $\sigma \cdot \tau(2) = \sigma(1) = 2$; $\sigma \cdot \tau(3) = \sigma(3) = 1$; and $\sigma \cdot \tau(4) = \sigma(2) = 4$.

Thus

$$\sigma \cdot \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$$

イロト イポト イヨト イヨト

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example. Suppose n = 4,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix};$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}.$$

We compute: $\sigma \cdot \tau(1) = \sigma(\tau(1)) = \sigma(4) = 3$. Similarly, $\sigma \cdot \tau(2) = \sigma(1) = 2$; $\sigma \cdot \tau(3) = \sigma(3) = 1$; and $\sigma \cdot \tau(4) = \sigma(2) = 4$.

Thus

$$\sigma \cdot \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$$

イロト 不得 トイヨト イヨト

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example. Suppose n = 4,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix};$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}.$$

We compute: $\sigma \cdot \tau(1) = \sigma(\tau(1)) = \sigma(4) = 3$. Similarly, $\sigma \cdot \tau(2) = \sigma(1) = 2$; $\sigma \cdot \tau(3) = \sigma(3) = 1$; and $\sigma \cdot \tau(4) = \sigma(2) = 4$.

Thus

$$\sigma \cdot \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$$

イロト 不得 トイヨト イヨト

Matrix notation is even worse for multiplication

The simplest way to show this is to illustrate it with an example. Suppose n = 4,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix};$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}.$$

We compute: $\sigma \cdot \tau(1) = \sigma(\tau(1)) = \sigma(4) = 3$. Similarly, $\sigma \cdot \tau(2) = \sigma(1) = 2$; $\sigma \cdot \tau(3) = \sigma(3) = 1$; and $\sigma \cdot \tau(4) = \sigma(2) = 4$.

Thus

$$\sigma \cdot \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$$

イロト イ理ト イヨト イヨト

It's not easier in cycle notation

We have

$$\sigma = \begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}; \ \tau = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}$$

and

$$\sigma \cdot \tau = \begin{pmatrix} 1 & 3 \end{pmatrix} (= \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}).$$

Howie's notes also suggests a shortcut for computing σ^{-1} on p. 28. Here the cycle notation can be more helpful.

It's not easier in cycle notation

We have

$$\sigma = \begin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}; \ \tau = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}$$

and

$$\sigma \cdot \tau = \begin{pmatrix} 1 & 3 \end{pmatrix} (= \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}).$$

Howie's notes also suggests a shortcut for computing σ^{-1} on p. 28. Here the cycle notation can be more helpful.

An equivalence relation on S_n

We can define an equivalence relation \sim on S_n : two permutations $\sigma, \sigma' \in S_n$ satisfy $\sigma \sim \sigma'$ if and only if their cycle decompositions have the same lengths.

Theorem

Suppose $\sigma, \sigma' \in S_n$ both have cycle decompositions with partition $n = n_1 + n_2 + \cdots + n_r$. Then there exists $\lambda \in S_n$ such that

$$\sigma' = \lambda \sigma \lambda^{-1}.$$

Thus the set S_n has a partition according to the shape of the cycle decomposition. The relation $\sigma' = \lambda \sigma \lambda^{-1}$ is called *conjugacy*.

イロト イポト イヨト イヨト

An equivalence relation on S_n

We can define an equivalence relation \sim on S_n : two permutations $\sigma, \sigma' \in S_n$ satisfy $\sigma \sim \sigma'$ if and only if their cycle decompositions have the same lengths.

Theorem

Suppose $\sigma, \sigma' \in S_n$ both have cycle decompositions with partition $n = n_1 + n_2 + \cdots + n_r$. Then there exists $\lambda \in S_n$ such that

$$\sigma' = \lambda \sigma \lambda^{-1}.$$

Thus the set S_n has a partition according to the shape of the cycle decomposition. The relation $\sigma' = \lambda \sigma \lambda^{-1}$ is called *conjugacy*.

イロト イ理ト イヨト イヨト

An equivalence relation on S_n

We can define an equivalence relation \sim on S_n : two permutations $\sigma, \sigma' \in S_n$ satisfy $\sigma \sim \sigma'$ if and only if their cycle decompositions have the same lengths.

Theorem

Suppose $\sigma, \sigma' \in S_n$ both have cycle decompositions with partition $n = n_1 + n_2 + \cdots + n_r$. Then there exists $\lambda \in S_n$ such that

$$\sigma' = \lambda \sigma \lambda^{-1}.$$

Thus the set S_n has a partition according to the shape of the cycle decomposition.

The relation $\sigma' = \lambda \sigma \lambda^{-1}$ is called *conjugacy*.

イロト イ得ト イヨト イヨト

Proof

The proof of the theorem is in the online notes. It will be sketched on the board with an example.

イロト イ押ト イヨト イヨト

Transpositions

A *transposition* in S_n is a cycle of the form $\tau_{ij} = (i \ j)$ where $1 \le i \ne j \le n$. In other words, τ_{ij} exchanges *i* and *j* and leaves the other numbers unchanged. It is a cycle of length 2.

Then obviously $\tau_{ij} \cdot \tau_{ij}$ is the identity element *e*. We will see later in the course that every $\sigma \in S_n$ can be written as a product of transpositions.

This product expression is not unique – for example, the identity element *e* can be written $\tau_{ij} \cdot \tau_{ij} \cdot \tau_{ij} \cdot \tau_{ij}$ and in infinitely many other ways – it suffices to keep adding pairs of τ_{ij} .

What is unique, however, is the sign of σ .

イロト イ理ト イヨト イヨト

A *transposition* in S_n is a cycle of the form $\tau_{ij} = \begin{pmatrix} i & j \end{pmatrix}$ where $1 \le i \ne j \le n$. In other words, τ_{ij} exchanges *i* and *j* and leaves the other numbers unchanged. It is a cycle of length 2.

Then obviously $\tau_{ij} \cdot \tau_{ij}$ is the identity element *e*.

We will see later in the course that every $\sigma \in S_n$ can be written as a product of transpositions.

This product expression is not unique – for example, the identity element *e* can be written $\tau_{ij} \cdot \tau_{ij} \cdot \tau_{ij} \cdot \tau_{ij}$ and in infinitely many other ways – it suffices to keep adding pairs of τ_{ij} .

What is unique, however, is the *sign* of σ .

イロト イポト イヨト イヨト

Transpositions

A *transposition* in S_n is a cycle of the form $\tau_{ij} = (i \ j)$ where $1 \le i \ne j \le n$. In other words, τ_{ij} exchanges *i* and *j* and leaves the other numbers unchanged. It is a cycle of length 2.

Then obviously $\tau_{ij} \cdot \tau_{ij}$ is the identity element *e*. We will see later in the course that every $\sigma \in S_n$ can be written as a product of transpositions.

This product expression is not unique – for example, the identity element *e* can be written $\tau_{ij} \cdot \tau_{ij} \cdot \tau_{ij}$ and in infinitely many other ways – it suffices to keep adding pairs of τ_{ij} .

What is unique, however, is the sign of σ .

Definitions Cycle decomposition of a permutation Proof of the cycle decomposition of permutations Multiplying permutations Conjugacy classes Transpositions Proof of the theorem	_		
Definitions Cycle decomposition of a permutation Proof of the cycle decomposition of permutations Multiplying permutations Conjugacy classes Transpositions		Proof of the theorem	
Definitions Cycle decomposition of a permutation Proof of the cycle decomposition of permutations Multiplying permutations		Transpositions	
Definitions Cycle decomposition of a permutation Proof of the cycle decomposition of permutations		Multiplying permutations	
Definitions Cycle decomposition of a permutation		Proof of the cycle decomposition of permutations	
Definitions		Cycle decomposition of a permutation	
		Definitions	

A *transposition* in S_n is a cycle of the form $\tau_{ij} = (i \ j)$ where $1 \le i \ne j \le n$. In other words, τ_{ij} exchanges *i* and *j* and leaves the other numbers unchanged. It is a cycle of length 2.

Then obviously $\tau_{ij} \cdot \tau_{ij}$ is the identity element *e*. We will see later in the course that every $\sigma \in S_n$ can be written as a product of transpositions.

This product expression is not unique – for example, the identity element *e* can be written $\tau_{ij} \cdot \tau_{ij} \cdot \tau_{ij}$ and in infinitely many other ways – it suffices to keep adding pairs of τ_{ij} .

What is unique, however, is the *sign* of σ .

Transpositions

イロト (福) (ほ) (ほ)

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then *every* such expression for σ has an odd number of transpositions.

We define the sign of σ , denoted $sgn(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions. In particular $sgn(\tau_{ii}) = -1$ for any $i \neq j$.

(日)

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then *every* such expression for σ has an odd number of transpositions.

We define the sign of σ , denoted $sgn(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions. In particular $sgn(\tau_{ij}) = -1$ for any $i \neq j$.

イロト イポト イヨト

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then *every* such expression for σ has an odd number of transpositions.

We define the sign of σ , denoted $sgn(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions.

In particular $sgn(\tau_{ij}) = -1$ for any $i \neq j$.

イロト イ理ト イヨト イヨト

Sign of a transposition

Theorem

If σ can be written in one way as a product of an even number of transpositions, then every such expression for σ has an even number of transpositions.

It follows that if σ can be written in one way as an odd number of transpositions then *every* such expression for σ has an odd number of transpositions.

We define the sign of σ , denoted $sgn(\sigma)$ to be 1 if it can be written as a product of an even number of transpositions, and -1 if it can be written as a product of an odd number of transpositions. In particular $sgn(\tau_{ii}) = -1$ for any $i \neq j$.

イロト 不得 とくほ とくほう

Adjacent transpositions

We say τ_{ij} is an adjacent transposition if j = i + 1. It can be shown that every $\sigma \in S_n$ can be written as a product of adjacent transpositions.

The *length* of σ is then the shortest expression of σ as a product of adjacent transpositions. We will not be discussing length in this course.

Adjacent transpositions

We say τ_{ij} is an adjacent transposition if j = i + 1. It can be shown that every $\sigma \in S_n$ can be written as a product of adjacent transpositions.

The *length* of σ is then the shortest expression of σ as a product of adjacent transpositions. We will not be discussing length in this course.

Factorization in transpositions

Proposition

Any element of S_n can be written as the product of transpositions.

Proof: Suppose σ has a cycle decomposition

 $\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$

with σ_i a k_i -cycle. It suffices to check that each σ_i can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$\sigma = (a_1 \ldots a_k).$$

We induct on k, clearly all right if $k \leq 2$. So we assume k > 2.

Factorization in transpositions

Proposition

Any element of S_n can be written as the product of transpositions.

Proof: Suppose σ has a cycle decomposition

 $\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$

with σ_i a k_i -cycle. It suffices to check that each σ_i can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$\sigma = (a_1 \ldots a_k).$$

We induct on k, clearly all right if $k \leq 2$. So we assume k > 2.

Factorization in transpositions

Proposition

Any element of S_n can be written as the product of transpositions.

Proof: Suppose σ has a cycle decomposition

 $\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$

with σ_i a k_i -cycle. It suffices to check that each σ_i can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$\sigma = (a_1 \ldots a_k).$$

We induct on k, clearly all right if $k \leq 2$. So we assume k > 2.

Factorization in transpositions

Proposition

Any element of S_n can be written as the product of transpositions.

Proof: Suppose σ has a cycle decomposition

 $\sigma = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_r$

with σ_i a k_i -cycle. It suffices to check that each σ_i can be written as the product of transpositions. So we may assume σ is itself a k-cycle:

$$\sigma = (a_1 \ldots a_k).$$

We induct on k, clearly all right if $k \le 2$. So we assume k > 2.

Factorization in transpositions

Consider

$$\tau_1 = (a_1 a_2), \ \tau_2 = (a_2 \ldots a_k), \ \tau = \tau_1 \cdot \tau_2.$$

By induction τ_2 of length k - 1 is a product of transpositions, and therefore so is τ .

So we want to show $\sigma = \tau$. But $\tau(a_1) = \tau_1(a_1) = a_2$,

$$3 \le i \le k-1 \Rightarrow \tau(a_i) = \tau_2(a_i) = a_{i+1}.$$

$$\tau(a_2) = \tau_1(\tau_2(a_2)) = \tau_1(a_3) = a_3.$$

$$\tau(a_k) = \tau_1(\tau_2(a_k)) = \tau_1(a_2) = a_1.$$

Thus $\sigma = \tau$ and we conclude.

イロト イ理ト イヨト イヨト

Factorization in transpositions

Consider

$$\tau_1 = (a_1 a_2), \ \tau_2 = (a_2 \ldots a_k), \ \tau = \tau_1 \cdot \tau_2.$$

By induction τ_2 of length k - 1 is a product of transpositions, and therefore so is τ .

So we want to show $\sigma = \tau$. But $\tau(a_1) = \tau_1(a_1) = a_2$,

$$3 \le i \le k-1 \Rightarrow \tau(a_i) = \tau_2(a_i) = a_{i+1}.$$

$$\tau(a_2) = \tau_1(\tau_2(a_2)) = \tau_1(a_3) = a_3.$$

$$\tau(a_k) = \tau_1(\tau_2(a_k)) = \tau_1(a_2) = a_1.$$

Thus $\sigma = \tau$ and we conclude.

イロト イ理ト イヨト イヨト

Factorization in transpositions

Consider

$$\tau_1 = (a_1 a_2), \ \tau_2 = (a_2 \ldots a_k), \ \tau = \tau_1 \cdot \tau_2.$$

By induction τ_2 of length k - 1 is a product of transpositions, and therefore so is τ .

So we want to show $\sigma = \tau$. But $\tau(a_1) = \tau_1(a_1) = a_2$,

$$3 \le i \le k-1 \Rightarrow \tau(a_i) = \tau_2(a_i) = a_{i+1}.$$

$$\tau(a_2) = \tau_1(\tau_2(a_2)) = \tau_1(a_3) = a_3.$$

$$\tau(a_k) = \tau_1(\tau_2(a_k)) = \tau_1(a_2) = a_1.$$

Thus $\sigma = \tau$ and we conclude.

イロト イ押ト イヨト イヨト
Factorization in transpositions

Consider

$$\tau_1 = (a_1 a_2), \ \tau_2 = (a_2 \ldots a_k), \ \tau = \tau_1 \cdot \tau_2.$$

By induction τ_2 of length k - 1 is a product of transpositions, and therefore so is τ .

So we want to show $\sigma = \tau$. But $\tau(a_1) = \tau_1(a_1) = a_2$,

$$3 \le i \le k-1 \Rightarrow \tau(a_i) = \tau_2(a_i) = a_{i+1}.$$

$$\tau(a_2) = \tau_1(\tau_2(a_2)) = \tau_1(a_3) = a_3.$$

$$\tau(a_k) = \tau_1(\tau_2(a_k)) = \tau_1(a_2) = a_1.$$

Thus $\sigma = \tau$ and we conclude.

イロト イ押ト イヨト イヨト

The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of transpositions is *not unique*. For example the identity in S_n can be written

$e = (1 \ 2)(1 \ 2).$

But we can restate the theorem:

Theorem

Suppose σ can be written in two different ways as the product

 $\sigma = \tau_1 \cdots \tau_k = \alpha_1 \cdots \alpha_{k'}$

where all the τ_i and α_j are transpositions. Then $k \equiv k' \pmod{2}$.

The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of transpositions is *not unique*. For example the identity in S_n can be written

 $e = (1 \ 2)(1 \ 2).$

But we can restate the theorem:

Theorem

Suppose σ can be written in two different ways as the product

 $\sigma = \tau_1 \cdots \tau_k = \alpha_1 \cdots \alpha_{k'}$

where all the τ_i and α_j are transpositions. Then $k \equiv k' \pmod{2}$.

The parity is well defined

Unlike the cycle decomposition, the decomposition as a product of transpositions is *not unique*. For example the identity in S_n can be written

$$e = (1\ 2)(1\ 2).$$

But we can restate the theorem:

Theorem

Suppose σ can be written in two different ways as the product

$$\sigma = \tau_1 \cdots \tau_k = \alpha_1 \cdots \alpha_{k'}$$

where all the τ_i and α_j are transpositions. Then $k \equiv k' \pmod{2}$.

The sign homomorphism

Corollary

There is a homomorphism

$$sgn: S_n \to \{\pm 1\}$$

 $sgn(\sigma) = (-1)^k$

if σ is the product of k transpositions.

The kernel of *sgn* is a subgroup $A_n \subset S_n$ of index 2 called the *alternating group*.

Proof of the theorem, I

Suppose

$$\sigma = \beta_1 \cdots \beta_k = \alpha_1 \cdots \alpha_{k'}.$$

Then $e = \prod_{i=1}^{k} \beta_i \cdot [\prod_j \alpha_1 \cdots \alpha_{k'}]^{-1}$ or

$$e = \beta_1 \cdot \dots \cdot \beta_k \cdot \alpha_{k'}^{-1} \cdot \dots \cdot \alpha_2^{-1} \cdot \alpha_1^{-1}$$

$$e = \beta_1 \cdots \beta_k \cdot \alpha_{k'} \cdots \alpha_2^{-1} \cdot \alpha_1$$

because each transposition is its own inverse.

So *e* is the product of m = k + k' transpositions. It suffices to show that m = k + k' is even.

Proof of the theorem, I

Suppose

$$\sigma = \beta_1 \cdots \beta_k = \alpha_1 \cdots \alpha_{k'}.$$

Then $e = \prod_{i=1}^{k} \beta_i \cdot [\prod_j \alpha_1 \cdots \alpha_{k'}]^{-1}$ or

$$e = \beta_1 \cdot \dots \cdot \beta_k \cdot \alpha_{k'}^{-1} \cdot \dots \cdot \alpha_2^{-1} \cdot \alpha_1^{-1}$$

$$e = \beta_1 \cdots \beta_k \cdot \alpha_{k'} \cdots \alpha_2^{-1} \cdot \alpha_1$$

because each transposition is its own inverse.

So *e* is the product of m = k + k' transpositions. It suffices to show that m = k + k' is even.

Proof of the theorem, I

Suppose

$$\sigma = \beta_1 \cdots \beta_k = \alpha_1 \cdots \alpha_{k'}.$$

Then $e = \prod_{i=1}^k \beta_i \cdot [\prod_j \alpha_1 \cdots \alpha_{k'}]^{-1}$ or
 $e = \beta_1 \cdots \beta_k \cdot \alpha_{k'}^{-1} \cdots \alpha_2^{-1} \cdot \alpha_1^{-1}$

$$e = \beta_1 \cdot \cdots \cdot \beta_k \cdot \alpha_{k'} \cdot \ldots \cdot \alpha_2^{-1} \cdot \alpha_1$$

because each transposition is its own inverse.

So *e* is the product of m = k + k' transpositions. It suffices to show that m = k + k' is even.

イロト 不得 とくほ とくほう

Proof of the theorem, I

Suppose

$$\sigma = \beta_1 \cdots \beta_k = \alpha_1 \cdots \alpha_{k'}.$$

$$T^k \quad \beta \cdots [\Pi \ \alpha_1 \cdots \alpha_{k'}]^{-1} \text{ or }$$

Then
$$e = \prod_{i=1}^{k} \beta_i \cdot [\prod_j \alpha_1 \cdots \alpha_{k'}]^{-1}$$
 or

$$e = \beta_1 \cdot \cdots \cdot \beta_k \cdot \alpha_{k'}^{-1} \cdot \ldots \cdot \alpha_2^{-1} \cdot \alpha_1^{-1}$$

$$e = \beta_1 \cdot \cdots \cdot \beta_k \cdot \alpha_{k'} \cdot \ldots \cdot \alpha_2^{-1} \cdot \alpha_1$$

because each transposition is its own inverse.

So *e* is the product of m = k + k' transpositions. It suffices to show that m = k + k' is even.

イロト イ押ト イヨト イヨト

Proof of the theorem, II

The theorem is thus equivalent to

Theorem

Suppose $e \in S_n$ is the product of m transpositions $e = \tau_1 \cdots \tau_m$. Then m is even.

The proof is an induction on *m*. We have

$$e = [\tau_1 \cdot \cdots \cdot \tau_{m-2}]\tau_{m-1} \cdot \tau_m.$$

Proof of the theorem, II

The theorem is thus equivalent to

Theorem

Suppose $e \in S_n$ is the product of m transpositions $e = \tau_1 \cdots \tau_m$. Then m is even.

The proof is an induction on m. We have

$$e = [\tau_1 \cdot \cdots \cdot \tau_{m-2}]\tau_{m-1} \cdot \tau_m.$$

Proof of the theorem, III

$$e = [\tau_1 \cdot \cdots \cdot \tau_{m-2}]\tau_{m-1} \cdot \tau_m.$$

There are four possibilities.

until there is no more room.

Proof of the theorem, IV

In case (2) $(c d) \cdot (a b) = (a b) \cdot (c d)$. In case (3) $(a c) \cdot (a b) = (a b) \cdot (b c)$. (CHECK!) In case (4) $(b c) \cdot (a b) = (a c) \cdot (b c)$. (CHECK!)

In any case *a* is in τ_{m-1} and is NOT in τ_m . Now continue with the pair τ_{m-2}, τ_{m-1} . We again have four cases.

We repeat the analysis. After each step a moves to the left and is absent from the subsequent transpositions: either a cancels as in case (1), which concludes by induction, or

$$e = \tau_1 \cdot \ldots (a \ b') \cdot \tau_i \cdot \tau_{i+1} \cdot \cdots \cdot \tau_m$$

for some $b' \neq a$, where *a* is NOT in $\tau_i, \tau_{i+1}, \ldots, \tau_m$.

イロト イポト イヨト

Proof of the theorem, IV

In case (2) $(c d) \cdot (a b) = (a b) \cdot (c d)$. In case (3) $(a c) \cdot (a b) = (a b) \cdot (b c)$. (CHECK!) In case (4) $(b c) \cdot (a b) = (a c) \cdot (b c)$. (CHECK!) In any case *a* is in τ_{m-1} and is NOT in τ_m . Now continue with the pair τ_{m-2}, τ_{m-1} . We again have four cases.

We repeat the analysis. After each step a moves to the left and is absent from the subsequent transpositions: either a cancels as in case (1), which concludes by induction, or

$$e = \tau_1 \cdot \ldots (a \ b') \cdot \tau_i \cdot \tau_{i+1} \cdot \cdots \cdot \tau_m$$

for some $b' \neq a$, where *a* is NOT in $\tau_i, \tau_{i+1}, \ldots, \tau_m$.

イロト イヨト イヨト

Proof of the theorem, IV

In case (2) $(c d) \cdot (a b) = (a b) \cdot (c d)$. In case (3) $(a c) \cdot (a b) = (a b) \cdot (b c)$. (CHECK!) In case (4) $(b c) \cdot (a b) = (a c) \cdot (b c)$. (CHECK!) In any case *a* is in τ_{m-1} and is NOT in τ_m . Now continue with the pair τ_{m-2}, τ_{m-1} . We again have four cases.

We repeat the analysis. After each step a moves to the left and is absent from the subsequent transpositions: either a cancels as in case (1), which concludes by induction, or

$$e = \tau_1 \cdot \ldots (a \ b') \cdot \tau_i \cdot \tau_{i+1} \cdot \cdots \cdot \tau_m$$

for some $b' \neq a$, where *a* is NOT in $\tau_i, \tau_{i+1}, \ldots, \tau_m$.

イロト 不得 とくほ とくほう

Proof of the theorem, conclusion

So if *a* survives to the end, we have

$$e = (a \ b') \cdot \prod_{i=2}^m \tau_i$$

where $\tau_i(a) = a$ for $i \ge 2$.

Apply both sides to *a*:

$$a = e(a) = [(a \ b') \cdot \prod_{i=2}^{m} \tau_i](a) = (a \ b')(a) = b'.$$

This is a contradiction, so we conclude by induction

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof of the theorem, conclusion

So if *a* survives to the end, we have

$$e = (a \ b') \cdot \prod_{i=2}^m \tau_i$$

where $\tau_i(a) = a$ for $i \ge 2$. Apply both sides to a:

$$a = e(a) = [(a b') \cdot \prod_{i=2}^{m} \tau_i](a) = (a b')(a) = b'.$$

This is a contradiction, so we conclude by induction

- E - E

Proof of the theorem, conclusion

So if *a* survives to the end, we have

$$e = (a \ b') \cdot \prod_{i=2}^m \tau_i$$

where $\tau_i(a) = a$ for $i \ge 2$. Apply both sides to a:

$$a = e(a) = [(a \ b') \cdot \prod_{i=2}^{m} \tau_i](a) = (a \ b')(a) = b'.$$

This is a contradiction, so we conclude by induction.

- E - E

A_4

The alternating group A_n is of index 2 in S_n , hence is normal.

However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products (a b)(c d).

and all the 3-cycles:

The alternating group A_n is of index 2 in S_n , hence is normal. However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products (a b)(c d).

and all the 3-cycles:

The alternating group A_n is of index 2 in S_n , hence is normal. However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products $(a \ b)(c \ d)$.

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

```
(1 2 3), (1 2 4), (1 3 4), (2 3 4)
```

The alternating group A_n is of index 2 in S_n , hence is normal. However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products $(a \ b)(c \ d)$.

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

and all the 3-cycles:

```
(1 2 3), (1 2 4), (1 3 4), (2 3 4)
```

The alternating group A_n is of index 2 in S_n , hence is normal. However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products $(a \ b)(c \ d)$.

 $(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)$

and all the 3-cycles:

The alternating group A_n is of index 2 in S_n , hence is normal. However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products $(a \ b)(c \ d)$.

$$(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)$$

and all the 3-cycles:

$$(1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (2\ 3\ 4)$$

The alternating group A_n is of index 2 in S_n , hence is normal. However, the kernel of any homomorphism $f : G \to G'$ is always normal. Indeed, if $N = \ker f$, $n \in N$, $g \in G$, then

$$f(gng^{-1}) = f(g)f(n)f(g^{-1}) = f(g) \cdot e \cdot f(g^{-1}) = e.$$

The order of A_4 is $|S_4|/2 = 4!/2 = 12$. We can write all the elements as products $(a \ b)(c \ d)$.

$$(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)$$

and all the 3-cycles:

$$(1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (2\ 3\ 4)$$

The complement of A_4 is S_4 is the coset of elements whose sign is -1.

There are 6 transpositions corresponding to the choice of any pair of two elements, and 6 4-cycles.

イロト イ押ト イヨト イヨト

The complement of A_4 is S_4 is the coset of elements whose sign is -1.

There are 6 transpositions corresponding to the choice of any pair of two elements, and 6 4-cycles.

イロト イポト イヨト