QUICK NOTES ON PERMUTATION GROUPS

1. DEFINITIONS

By a permutation of the set .S, we mean a bijective function o : S — S.
This definition will only be used when S is a finite set. Let n € N. The
symmetric group on n letters is the group of all permutations of the set
{1,2,...,n}. (The terminology is classical; the “letters” are in fact numbers,
although they could be any objects whatsoever.)

It is well known that there are n!l =n-(n—1)-(n—2)----(3) - (2) - (1)
permutations of a collection X = {xo,...,zn_1} of n elements. Here is the
argument: let o be a permutation of X. There are n choices for o(z).
Then o(z1) € X \ {o(z0)}, which has n — 1 elements. Similarly, at the ith
stage, there are n — i choices for o(x;). Thus the total number of choices is
precisely n!.

We see that the symmetric group has n! elements. However, it is denoted
Sn — or ©,, if we want to be old-fashioned — and this is the only exception
to our rule that a group denoted H,, has m elements. An element o € S, is
traditionally denoted by a matrix with n columns and 2 rows, where the top
row is always (1 2 ... n—1 n), and the second row shows the effect
of the permutation, like this:

_ 1 2 .. n—1 n
7= \e(1) 02 ... on—-1) o(n)
Thus if n = 4, the permutation
(1 2 3 4
77\2 4 1 3
takes 1 to 2, 2 to 4, 3 to 1, and 4 to 3.
Another way to represent this permutation is
1—-2—-4—3—1,

but this notation only works if all the numbers are in a single cycle. This
leads to the introduction of cycle notation.

2. CYCLE DECOMPOSITION OF A PERMUTATION

Suppose X is the set {1,2,...,n}. Let X' C X, with | X!| = n;. Suppose
o € S, is a permutation with the following property: we can label the
elements of X! ay,...,ay,, in such a way that

o(ar) = ag;o(az) =az;...o(a;) = ajp1...0(an,) = a;
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and o(a) = a if a € X \ X'. Then ¢ is said to be a cycle, or an ni-cycle,
and can be written

o= (ar,az,...,ap,).

Theorem 2.1. Any permutation o € S, has a cycle decomposition. Pre-
cisely, there is a unique partition

x=x'"1Ix*1[---1Ix
of X into r disjoint subsets, with n; = |X’| and
n=mni+ng+---+ng.,

and for each j, an nj-cycle

aj:(a{,a%,...,a%j)

where XJ = {a{,a%, ... ,a%j}, such that
C=01-09- 0.
1 2 3 4

For example, if ¢ = as above, then o = (1 2 4 3) is

2 41 3
itself a 4-cycle. On the other hand, if

(12 3 4
T=\3 41 2

T=(1 3)(2 4

then

is a product of two 2-cycles.
To simplify notation we omit 1-cycles; thus when n = 4, we write

(1 4 2)
instead of
(1 4 2)(3).
Important fact: disjoint cycles commute. For example if

p=(1 4 2)(3 5),
we can also write

p=(3 5)(1 4 2);
it doesn’t matter how the cycles are ordered. In the above example,

r=(1 3)(2 4)=@2 491 3).

Above we wrote

but we could write

r

for any ordering (permutation!) of the indices 1,2,... 7.
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Proof of the theorem. This is best understood using the notion of orbit. The
orbits of o are the subsets X7/ € X such that, for any = # y € X7, there is
an integer m > 0 such that 0™ (x) = y, and if x € X7 then o(z) € X/. In
other words, setting n; = |X;|, for for any z € X7, 6™ (z) = z and X/ is a
set of the form

{z,0(x),0%(x),...c" 1 (z)}

for any x € X;. We define a relation on X: we say xR,y if there exists some
m > 0 such that 0™ (z) = y. This is an equivalence relation:
(reflexive) Since S, is a finite group, o™ = e for some m > 0; then o™ (z) = x
for all x.
(symmetric) If o™ (z) =y then 0™™(y) = x, but o~
d, and for d sufficiently large dM — m > 0.

(transitive) If 0™ (z) = y and 0™ (y) = 2z then o™ (z) = 2.

m = gM=m — GdM=m fo; any

The equivalence classes for the relation R, are precisely the orbits of o.
They define a partition of X. For each j ¢ induces a permutation o; of X’
that fixes all the X*,i # j. Then o =[], 0; (in any order).

O

3. MULTIPLYING PERMUTATIONS

This is potentially the most confusing aspect of the theory of the sym-
metric group. Suppose 0,7 € S,. Then o - 7 is a permutation in S, with
the property that, for any i € {1,2,...,n}

o-1(i) = o(1(7)).

In other words, multiplication in S, is just composition of (bijective) func-
tions from {1,2,...,n} to {1,2,...,n}: 0-7 =0 o7. Since every g € S, is
bijective, it has an inverse function which also belongs to 5,. Of course the
identity permutation, that takes each i to itself, is in S,,. Finally, composi-
tion of functions is associative:

fo(goh)=(fog)oh

for any triple of functions f, g, h. Thus multiplication in S, is associative,
and S, is indeed a group.
So far, so good. The confusion sets in when it comes time to multiply

(1 2 ... n-1 n
7= \e(1) o) ... on—1) on)
by
_ 1 2 ... n—1 n
TT\r) @) ... tn—1) t(n))"
The matrix notation does not help; how would you multiply two 2 x n
matrices with the same top row? There are some shortcuts — for example,
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see the top of p. 28 of Howie’s notes — but the simplest way to answer the
question is to illustrate it with an example. Suppose n = 4,

(1 2 3 4\
7=\2 4 1 3)°

(123 4>
S \4 1 3 2)°
We compute: o - 7(1) = o(7(1)) = 0(4) = 3. Similarly, o - 7(2) = o(1) = 2;
o-7(3)=0(3)=1;and o -7(4) = 0(2)

Multiplication is not more obvious in cycle notation. We have
c=(1 2 4 3);7=(1 4 2)
and
ser=(1 3)(=(1 3) () @).

Howie’s notes also suggests a shortcut for computing o~
the cycle notation can be more helpful.

Lon p. 28. Here

4. CONJUGACY CLASSES

We can define an equivalence relation ~ on S,: two permutations o, 0’ €
Sy satisfy o ~ ¢’ if and only if their cycle

Theorem 4.1. Suppose 0,0’ € S, both have cycle decompositions with par-
tition n = nqy +ng + - +n,. Then there exists A € S,, such that

o' =oAL
Thus S, has a partition according to the shape of the cycle decomposition.

Proof. Say X = {1,...,n} as before. We write X =[], X* =[], Y’ where
the X' are the orbits of o and the Y are the orbits of o’. We can order
the partitions so that |X?| = |Y?| = n; for each i. We define A; to be any
element of S, such that A\;(X?) = Y for every . (For example, if n = 5 and
we have

X' =1{1,3,4},X%={2,5}; Y!={1,2,5},Y? = {3,4},

1 2 3 4 5
A0‘(1 325 4)')
Then for all 7,

Moy 1Y) = Mg oa(XT) = N(X") =Y

then we can let

Replacing o by Ao it follows that we can assume X' = Y for all i.
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We write o =[], 03, 0’ =[], o}, where each o, o] is a cycle whose orbit
is X*. Now for each i, it suffices to find \; such that

—1 /
Aioi A = 0.

In other words, we may replace X by each X* separately, or (by induction)
we may assume X = X’ and o and ¢’ are n-cycles. We carry out the first
in order to show the computation in detail.

So suppose

0 = (al(i)a a2(i)a oo aam(i)); o' = (all(l)a a/Q(i)a oo aa;zz(l))
In other words, o(a;(i)) = aj+1(i), o'(a}(i)) = aj1(i), and o(an,(i)) =
a1(i). Define \; to be the permutation

)\Z(CLJ(Z)) = a;(l),j = 1, ey Ny
Then
XigiA; (a(i)) = X o a(aj (i) = Maj1(i) = ey (4).
It follows that )\iai)\i_l = o} for each i.

Now setting
A=T] XN
i
we verify easily that
Mod =o'

5. TRANSPOSITIONS

A transposition in S, is a cycle of the form 7;; = (2 j) where 1 < ¢ #
J < n. In other words, 7;; exchanges i and j and leaves the other numbers
unchanged. Then obviously 7;; - 74; is the identity element e.

We will see later in the course that every o € S,, can be written as
a product of transpositions. This product expression is not unique — for
example, the identity element e can be written 7;;-7;;-7;;-7;; and in infinitely
many other ways — it suffices to keep adding pairs of 7;;. What is unique,
however, is the sign of o.

Theorem 5.1. If o can be written in one way as a product of an even num-
ber of transpositions, then every such expression for o has an even number
of transpositions.

It follows that if o can be written in one way as an odd number of transpo-
sitions then every such expression for o has an odd number of transpositions.
We define the sign of o, denoted sgn(c) to be 1 if it can be written as a
product of an even number of transpositions, and —1 if it can be written as
a product of an odd number of transpositions. In particular sgn(r;;) = —1
for any i # j.

We say 7;; is an adjacent transposition if j = ¢ + 1. It can be shown
that every o € S, can be written as a product of adjacent transpositions.
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The length of o is then the shortest expression of ¢ as a product of adjacent
transpositions. We will not be discussing length in this course.

6. PARTING SUGGESTION

The site https://www.wolframalpha.com/examples/mathematics/discrete-mathematics/
combinatorics/permutations/ has many examples.



