# Fall 2023 Midterm II Answer Key 

Zheheng Xiao

Dec 7, 2023

## 1 Problem 1

(a). True. The groups of order $1,2,3,5,7$ are all isomorphic to the unique cyclic groups of that order. The groups of order 4 are $\mathbb{Z}_{4}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, both of which are abelian. There are 2 groups of order $6: \mathbb{Z}_{6}$ and $S_{3}$, the latter of which is non-abelian. In conclusion, therefore, there is exactly one non-abelian group of order $\leq 7$.
(b). Not true. There are three non-isomorphic abelian groups of order 24. They are:

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$
- $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3}$
- $\mathbb{Z}_{8} \times \mathbb{Z}_{3}$
(c). True. Let $H^{g}$ be the image of $H$ under conjugation by $g$. Note that for any $g h_{1} g^{-1}, g h_{2} g^{-1} \in H^{g}$ (where $h_{1}, h_{2} \in H$ ), we have

$$
g h_{1} g^{-1} \cdot g h_{2} g^{-1}=g\left(h_{1} h_{2}\right) g^{-1} .
$$

So $H^{g}$ is closed under multiplication. Moreover, $H^{g}$ is closed under inverses, since if $p=g h g^{-1} \in H^{g}$, then $p^{-1}=g h^{-1} g^{-1} \in H^{g}$. Hence, $H^{g}$ is indeed a subgroup of $G$.

## 2 Problem 2

(a). (i). (1) (2647)(35) (ii). (15327)(46)
(b). For (i), the order is 4 . For (ii), the order is 10.
(c) There are $4!=24$ ways to assign $\{1,2,3,4\}$ to form a 4 -cycle $(a b c d)$, but $(a b c d),(b c d a)$, $(c d a b)$, and $\left(\begin{array}{lll}d a b & \text { ) represent the same cycle. So, there are } \frac{4!}{4}=6 \text { distinct } 4 \text { cycles in } S_{4} \text {. They }\end{array}\right.$ are (1234), (1243), (1324), (1342), (1423), and (1432). These 4-cycles are not in $A_{4}$, since for any 4-cycle ( $a b c d$ ), we can decompose it as $(a b)(b c)(c d)$, which is an odd number of transpositions.
(e). $S_{7}$ does not have an element of order 8 , as there are no ways of making a 8-cycle from the elements in $S_{7}$.

## 3 Problem 3

The First Isomorphism Theorem: Let $G, H$ be groups, and $\phi: G \rightarrow H$ be a group homomorphism. Then we have

$$
G / \operatorname{ker} \phi \cong \operatorname{Im} \phi .
$$

As an example, we can take the group homomorphism $\phi: S_{3} \rightarrow \mathbb{Z}_{2}$ given by $\phi(\sigma)=\operatorname{sgn}(\sigma)$. Note that $\phi$ is surjective, and the kernel of $\phi$ is $A_{3}$, consisting of the even permutations of $\{1,2,3\}$. Then the First Isomorphism Theorem says that $S_{3} / A_{3} \cong \mathbb{Z}_{2}$. In this example, $S_{3}$ is non-abelian.

## 4 Problem 4

- Abelian groups of order 14

$$
-\mathbb{Z}_{2} \times \mathbb{Z}_{7}
$$

- Abelian groups of order 16

$$
\begin{aligned}
& -\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
& -\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \\
& -\mathbb{Z}_{2} \times \mathbb{Z}_{8} \\
& -\mathbb{Z}_{4} \times \mathbb{Z}_{4} \\
& -\mathbb{Z}_{16}
\end{aligned}
$$

- Abelian groups of order 20

$$
\begin{aligned}
& -\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \\
& -\mathbb{Z}_{4} \times \mathbb{Z}_{5}
\end{aligned}
$$

## 5 Problem 5

(a). First, we show that $c_{g}: N \rightarrow N$ is a group homomorphism. For any $n_{1}, n_{2} \in N$, we have

$$
c_{g}\left(n_{1}\right) c_{g}\left(n_{2}\right)=\left(g n_{1} g^{-1}\right)\left(g n_{2} g^{-1}\right)=g\left(n_{1} n_{2}\right) g^{-1}=c_{g}\left(n_{1} n_{2}\right) .
$$

Next, we show $c_{g}$ is a bijection. If $c_{g}(n)=1$ for some $n \in N$, then $g n g^{-1}=1$, or equivalently $g n=g$. Left multiplying both sides by $g^{-1}$, we get $n=1$. Thus, $\operatorname{ker}\left(c_{g}\right)=1$, so $c_{g}$ is injective. To show surjectivity, suppose that $n \in N$. Let $m=g^{-1} n g=g^{-1} n\left(g^{-1}\right)^{-1} \in N$, and observe that

$$
c_{g}(m)=g m g^{-1}=g g^{-1} n g g^{-1}=n .
$$

Therefore, $c_{g}$ is surjective. We have shown that $c_{g}$ is a bijective group homomorphism, and therefore a group isomorphism.
(b) Let $g, h \in G$. For any $n \in N$, we check that

$$
c_{g} \circ c_{h}(n)=c_{g}\left(h n h^{-1}\right)=g h n h^{-1} g^{-1}=(g h) n(g h)^{-1}=c_{g h}(n) .
$$

Thus, $c_{g} \circ c_{h}=c_{g \cdot h}$. As stated in the problem, this gives a group homomorphism

$$
f: G \rightarrow \operatorname{Aut}(N)
$$

given by $f(g)=c_{g}$.
(c) $(\Longleftarrow)$ Suppose that $G$ is abelian. For any $g \in G$ and $n \in N$, we see that

$$
f(g)(n)=c_{g}(n)=g n g^{-1}=g g^{-1} n=n,
$$

so $f(g)$ is just the identity map, i.e., the identity element in $\operatorname{Aut}(N)$. This shows that $\operatorname{ker}(f)=G$. $(\Longrightarrow)$ Suppose that $\operatorname{ker}(f)=G$. Then for any $g \in G$ and $n \in N$, we have

$$
\begin{equation*}
g n g^{-1}=f(g)(n)=n . \tag{1}
\end{equation*}
$$

We claim that every element of $G$ can be written in the form $x^{a} n$, for some $a \in \mathbb{Z}$ and $n \in N$.
To see why, note that $G / N$ is of prime order $p$, so by Lagrange Theorem we know that $G / N$ is cyclic. Let $x N$ be the generator of $G / N$, where $x$ is a representative. For any $g \in G$, we have that

$$
g N=(x N)^{a}=x^{a} N,
$$

for some $a \in \mathbb{Z}$. Then $g x^{-a} \in N$, which means that there exists $n \in N$ such that $g x^{-a}=n$. We then have $g=x^{a} n$, which proves the claim.

Now, let $g, h \in G$. By claim we can write $g=x^{a_{1}} n_{1}, h=x^{a_{2}} n_{2}$ for some $a_{1}, a_{2} \in \mathbb{Z}$ and $n_{1}, n_{2} \in N$. We compute that

$$
\begin{aligned}
g h & =\left(x^{a_{1}} n_{1}\right)\left(x^{a_{2}} n_{2}\right) \\
& =x^{a_{1}} x^{a_{2}} n_{1} n_{2} \\
& =x^{a_{2}} x^{a_{1}} n_{2} n_{1} \\
& =h g,
\end{aligned}
$$

where the second equality follows from equation (1), and the third equality follows from the assumption that $N$ is abelian. This concludes the proof.

