INTRODUCTION TO MODERN ALGEBRA I, GU4041, FALL 2023

Midterm 2, November 162023

1. (15 points) True or False? (Each question is worth 5 points.) If false, give a counterexample; if true, provide an explanation. The explanation can be brief but it is not enough to say that the statement was explained in the course.
(a) There is only one non-abelian group of order ≤ 7.
(b) There are exactly two non-isomorphic abelian groups of order 24.
(c) Let H be a subgroup of the finite group G and let $g \in G$. Then the image of H under conjugation by g is a subgroup of G.
2. (25 points) (a) Write down the cycle decompositions of each of the following permutations in S_{7}.
(i) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 6 & 5 & 7 & 3 & 4 & 2\end{array}\right)$
(ii) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 2 & 6 & 3 & 4 & 1\end{array}\right)$
(b) Write down the order of each permutation in (a) as an element of S_{7}.
(c) Show that there are 6 distinct 4 cycles in S_{4}. Are they in A_{4} ?
(d) Write each of the following permutations
(i) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 4 & 2 & 5 & 6 & 7\end{array}\right)$
(ii) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 6 & 3 & 4 & 7\end{array}\right)$
as a product of transpositions in S_{7}, and determine which belongs to the alternating group A_{7}.
(e) Does S_{7} have an element of order 8? If so, give an example; if not, explain why not.
3. (20 points) State one of the three isomorphism theorems and illustrate it with an example in which one of the groups involved is non-abelian.
4. (15 points) List all the abelian groups of order 14,16 , and 20 . In other words, for each number, give a list of abelian groups of that order such that any abelian group of that order is isomorphic to exactly one on your list.
5. Let G be a finite group and $N \subset G$ a normal subgroup. Suppose N is abelian. For any $g \in G$ consider the function $c_{g}: N \rightarrow N$, defined by

$$
c_{g}(n)=g n g^{-1}
$$

(a) (10 points) Show carefully that $c_{g}: N \rightarrow N$ is an automorphism. Prove first that it is a homomorphism, then that it is bijective.
(b) (10 points) Show carefully that if $g, h \in G$, then $c_{g} \circ c_{h}=c_{g \cdot h}$. Thus the map $g \mapsto c_{g}$ is a homomorphism

$$
f: G \rightarrow \operatorname{Aut}(N)
$$

where $\operatorname{Aut}(N)$ is the group of automorphisms of N.
(c) (5 points) Suppose G / N is of prime order p. Show that $\operatorname{ker}(f)=G$ if and only if G is abelian.

