# Intro Modern Algebra I Midterm 1 

Zhaocheng Dong

October 24, 2023

## Problem 1

(a) True. $X \times X \backslash R$ is the relation $x R^{\prime} y$ iff $\neg x R y$. Then given $(x, y) \in$ $X \times X \backslash R, \neg x R y$ and $\neg y R x$ (because R is symmetric) but $x R x$ (reflexive), so R ' is not transitive thus not an equivalence relation. For an example, let $X=\mathbb{R}, \mathrm{R}$ be $=$.
(b) False. Let $G=\mathbb{Z}_{2}$ and both operations be addition. Then $a \times b=$ $(a+b)+(a+b)=0$ for every $a, b$, and apparently there is no element $a$ such that $a \times 1=1$. Therefore there is no identity element in this operation since there is no identity for 1 .
(c) True. The group operation is composition of functions, and apparently composing two isomorphisms $G \rightarrow G$ gives another isomorphism $G \rightarrow G$. The identity function is the identity element, and the inverse element is the inverse function. Note: this group is usually denoted $\operatorname{Aut}(G)$.

## Problem 2

(a) (i) $2 \mathrm{x}+5=12 \Rightarrow 2 \mathrm{x}=7 \Rightarrow \mathrm{x}=7^{*} 15 \Rightarrow \mathrm{x}=[18]$.
(ii) $(1000000004)^{2}=\left(10^{9}+4\right)^{2}=10^{18}+8 \times 10^{9}+16 \equiv 1^{18}+8 \times 1^{9}+7$ $(\bmod 9)=1+8+7=7(\bmod 9)$.
(b) The generators are those that are coprime with 8 . So they are $\{1,3,5,7\}$.

## Problem 3

(a) No. W 116th St intersects with Broadway, and Broadway intersects with W 115th St, but the two streets do not intersect, so the relation is not transitive.
(b) Yes. $a / a=1=1^{2}$. $a / b=(p / q)^{2}$ then $b / a=(q / p)^{2}$. If $a / b=(p / q)^{2}$ and $b / c=(r / s)^{2}$ then $a / c=(a / b)(b / c)=(p r / q s)^{2}$.
(c) No. Take $0,1.5,3.0 \sim 1.5,1.5 \sim 3$ but $0 \nsim 3$ so the relation is not transitive.

## Problem 4

Proof. It suffices to show $g$ has infinite order, since then $\langle g\rangle \subset G$ would be infinite. Apparently $g$ cannot have order $>100$, but then if $g$ has finite order $n \leq 100$ then $g^{100 n}=e$ and $100 n>100$ since $n>1$ (otherwise $g=e$ ) which creates a contradiction. Therefore G has infinite cardinality.

## Problem 5

(a) It is apparent that $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity under multiplication, but then there is no matrix A such that $A\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=I$ by elementary linear algebra (since $\operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=0$ so it is not invertible). Therefore this matrix does not have an inverse under multiplication and $M(2, \mathbb{R})$ does not form a group under multiplication. It does satisfy closure and existence of identity.
(b) $x=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), y=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
(c) take $z=x y$.

This is not correct. Instead, take $\mathrm{z}=\mathrm{I}$. No two of $\mathrm{x}, \mathrm{y}$, and z are conjugate to each other. This is because $z=I$ commutes with any matrix, so the only conjugate of $z$ is $z$. Similarly, the only conjugate of $y$ is $y$. This implies that $x, y$, and $z=I$ gives a solution to the problem.

Another way to look at the question: if two matrices are conjugate then they have the same characteristic polynomial, hence they have the same eigenvalues. (The converse is not true.) You can compute the eigenvalues of $\mathrm{x}, \mathrm{y}$, and $\mathrm{z}=\mathrm{I}$ to check that they are not conjugate.

On the other hand, $\mathrm{z}=\mathrm{xy}$ is conjugate to x .

## Problem 6

1. $D_{6}=\left\langle a, b \mid a^{2}=b^{3}=1, a b a^{-1}=b^{-1}\right\rangle$. The cyclic subgroups are $\{1\},\langle a\rangle,\langle b\rangle,\langle a b\rangle,\left\langle a b^{2}\right\rangle$. This is similar to an earlier exercise. Main takeaway: subgroups of $D_{6}$ must have order 2 or 3 , and by classification of finite groups they must be cyclic. It suffices to determine which elements have order 2 and which has order 3. Indeed, $a, a b, a b^{2}$ each has order 2 and they each generate a subgroup of order $2 . b, b^{2}$ have order 3 and they generate the same subgroup.
2. Since 3 and 4 are coprime, $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{12}$. The cyclic subgroups are $\{(0,0)\},\{0\} \times\{0,2\}, \mathbb{Z}_{3} \times\{0\},\{0\} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times\{0,2\}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
