INTRODUCTION TO MODERN ALGEBRA I, GU4041, FALL 2023

Midterm I, October 10, 2023
For any positive integer m, we denote by \mathbb{Z}_{m} a cyclic group with m elements.

1. True or False? (Each question is worth 5 points.) If false, give a counterexample; if true, provide an explanation. The explanation can be brief but it is not enough to say that the statement was explained in the course.
(a) Let X be a set and let $R \subset X \times X$ be a relation. If R is an equivalence relation then its complement $X \times X \backslash R$ is not an equivalence relation.
(b) Let G be a set with two operations $\star: G \times G \rightarrow G$ and $\circ: G \times G \rightarrow G$. Suppose both of these operations make G into a group. Then the operation

$$
\times: G \times G \rightarrow G: g \times h=(g \star h) \circ(g \star h)
$$

makes G into a group.
(c) Let G be a group and let A be the set of bijective homomorphisms from G to itself. Then A is a group.
2. (15 points) (a) Carry out the following operations in modular arithmetic.
(i) In arithmetic modulo 29 , solve the equation

$$
[2] \cdot x+[5]=[12] .
$$

Exhibit the answer as the residue class of an integer between 0 and 28 .
(ii) In arithmetic modulo 9 find the number a between 1 and 9 such that

$$
1000000004^{2} \equiv a \quad(\bmod 9)
$$

(b) List the set of generators of the group \mathbb{Z}_{8}.
3. (15 points) Which of the following is an equivalence relation? Justify your answer.
(a) On the set X of New York City streets, we say $a \sim b$ if a and b intersect at a corner.
(b) On the set \mathbb{N} of natural numbers, we say $a \sim b$ if a / b is the square of a rational number.
(c) On the set \mathbb{C} of complex numbers, we say $a \sim b$ if a is contained in the circle of radius 2 around b.
4. (20 points) Let G be a group with identity e and $g \in G$. Suppose there is no integer $n>100$ such that $g^{n}=e$. Prove carefully that G is then an infinite group.
5. (15 points) (a) Let $M(2, \mathbb{R})$ be the set of 2×2 matrices. Show that it is not a group under multiplication. Which of the group axioms does $M(2, \mathbb{R})$ satisfy under multiplication?
(b) Let $I \in M(2, \mathbb{R})$ be the diagonal matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. (You should have mentioned this matrix in part (a). Find two elements $x, y \in M(2, \mathbb{R})$ such that $x^{2}=y^{2}=I$ but x and y are not conjugate matrices.
(c) (Extra credit) Can you find three distinct matrices x, y, z with $x^{2}=$ $y^{2}=z^{2}=I$ such that no two are conjugate?
6. (20 points) List the sets of cyclic subgroups of the dihedral group D_{6} and of the group $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$.

