
THE JORDAN-HÖLDER THEOREM

1

We have seen examples of chains of normal subgroups:

(1.1) G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gi ⊇ Gi+1 . . . Gr = {e}

in which each group Gi+1 is normal in the preceding group Gi (though not
necessarily normal in G). Such a series is often called subnormal, and this
is the terminology we use. For example, there is the sequence of derived
subgroups

G ⊇ D(G) = [G,G] ⊇ D2(G) = [D(G), D(G)] . . .

which ends with Dr(G) = {e} if G is a solvable group, in which Di(G)/Di+1(G)
is abelian.

At the other extreme, the group G is simple if it contains no proper
normal subgroups other than {e}. A subnormal series such as (??) is called
a composition series if each of the quotient groups Gi/Gi+1 is simple; in
particular, Gi 6= Gi+1 for all i.

Lemma 1.2. Let G be a finite group. Then G has a composition series.

Proof. We induct on the order of G. We know that a group of order 1
has a composition series. Suppose every group of order less than |G| has
a composition series. If G is simple, then we are done. If not, then G has
a non-trivial proper normal subgroup N . By induction, N and G/N both
have composition series. Say

G/N = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hr = {e}.

is a composition series. By the correspondence principle, each Hi corre-
sponds to a subgroup Gi containing N , with Hi = Gi/N for all i. By the
Third Isomorphism Theorem,

Gi/Gi+1
∼−→(Gi/N)/(Gi+1/N) = Hi/Hi+1

which is simple. On the other hand, Hr = N has a composition series

N = Gr ⊇ Gr+1 · · · ⊇ GN = {e}.

Then

G = G0 ⊇ G1 · · · ⊇ N = Gr ⊇ Gr+1 · · · ⊇ GN = {e}
is a composition series for G. �
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We write the collection of simple factors (Jα,mα) where Jα is a simple
group and mα is the number of time it appears as a quotient Gi/Gi+1. We
call mα the multiplicity of the simple factor Jα. We call it a collection rather
than a set, because the same element can appear more than once; sometimes
this is called a multiset.

Example 1.3 (Cyclic groups of prime power order). The cyclic group Zpa
has a composition series:

Zpa ⊇ (p) ⊇ (p2) ⊇ · · · ⊇ (pa−1) ⊇ {0}
where (pi) denotes the multiples of pi modulo pa, for any i ≤ a. We can use
the Third Isomorphism Theorem: if 〈pi〉 ⊆ Z is the subgroup of multiples
of pi for each i, then the subgroups of Zpa correspond to subgroups of Z
containing 〈pa〉. In particular

(pi) = 〈pi〉/〈pa〉 ⊆ Zpa .
Then by the Third Isomorphism Theorem

(pi)/(pi+1) = (〈pi〉/〈pa〉)/(〈pi+1〉/〈pa〉) ∼−→〈pi〉/〈pi+1

and multiplication by pi is an isomorphism

Z/〈p〉 ∼−→〈pi〉/〈pi+1〉.
So the collection of simple factors of Zpa is (Zp, a) (multiplicity a).

Example 1.4 (Cyclic groups). Let n ∈ Z. Write n =
∏
i p
ai
i as a product

of prime factors. Then the cyclic group Zn is isomorphic to a product of
cyclic groups Zpaii and the collection of simple factors of Zn is the union of

the simple factors of all the Zpaii :

(Zpi , ai).

Example 1.5 (Abelian groups). We know that any abelian group is iso-
morphic to a direct product of cyclic groups:∏

i

∏
j

Z
p
aij
i

where the pi are distinct prime numbers and the aijj are positive integers.
The only simple abelian groups are the cyclic groups of prime order. So the
collection of simple factors is

{(Zpi ,mi =
∑
j

aij)}.

In other words, Zpi occurs as a simple factor aij times in the cyclic group
Z
p
aij
i

, and the total multiplicity is the sum of the multiplicities in the simple

factors.

A given finite group G can have more than one composition series. Nev-
ertheless, there is a uniqueness theorem that is analogous to the uniqueness
of prime factorization of an integer. First we prove a lemma
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Lemma 1.6. Let G be a group with two normal subgroups H and J , H 6= J .
Suppose G/H and G/J are both simple. Then

G/H
∼−→J/H ∩ J ;G/J

∼−→H/H ∩ J.

Proof. If H ⊆ J then G/H ⊇ J/H, and since G/H is simple this implies
J = G or J = H, both of which are impossible. Thus G ⊇ H · J ⊇ J and
since H · J 6= J we must have G = H · J .

Now we apply the Second Isomorphism Theorem:

G/H = H · J/H ∼−→J/H ∩ J.

The same proof works for G/J . �

Theorem 1.7 (Jordan-Hölder Theorem). Let G be a finite group. Suppose
G has two composition series:

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gi ⊇ Gi+1 · · · ⊇ Gr+1 = {e}

G = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hs+1 = {e}.
Then r = s and the two collections of quotients

{Gi/Gi+1}, {Hj/Hj+1}
are equal (not taking order into account).

Proof. This is of course an induction proof. The case |G| = 1 is trivial. If
r = 1 then G is simple so again we must have H1 = G1. Now suppose
the theorem is known for groups of order |G|. We assume r is the minimal
length of a composition series for G. Suppose G1 = H1. Then by induction
on |G| the composition series for G1 and H1 are equivalent, and so we are
done. Thus we must assume G1 6= H1. Now G/G1 is simple, so the only
subgroups of G containing G1 are G1 and G. Since G1 ·H1 is normal in G
and contains but is not equal to G1, we have G = G1 ·H1. Let K1 = G1∩H1.
By the lemma,

G/G1
∼−→H1/K1; G/H1

∼−→G1/K1.

Also H1 E H0 = G0, the intersection Ki = H1 ∩Gi is normal in each Gi

as well. Also, Ki+1 E Ki for each i. So we have a new subnormal series

G = G0 ⊇ G1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kr ⊇ Kr+1 = {e}.
Note that this is of length r+ 1. The image of Ki in Gi/Gi+1 is normal and
is isomorphic to

Ki/Ki ∩Gi+1 = Ki/(H1 ∩Gi) ∩Gi+1 = Ki/H1 ∩Gi+1 = Ki/Ki+1

because Gi+1 ⊂ Gi. Since Gi/Gi+1 is simple, we have either Ki/Ki+1 =
Gi/Gi+1 or Ki = Ki+1. In particular, every non-trivial term in

G1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kr ⊇ Kr+1 = {e}
is simple, and thus it must be a composition series when the non-trivial
terms are removed. But by induction, every composition series for G1 has
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length r − 1 and any two are equivalent. So exactly one quotient Kj/Kj+1

is trivial, and with that removed we have a composition series equivalent to

G1 ⊇ G2 ⊇ · · · ⊇ Gr ⊇ Gr+1 = {e}.
In particular the two collections

{Ki/Ki+1, i 6= j, i ≥ 1}
and

{Gi/Gi+1, i ≥ 1}
are the same.

On the other hand, we also have two composition series for H1:

H1 ⊇ H2 ⊇ · · · ⊇ Hs+1 = {e}
and

H1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kr ⊇ Kr+1 = {e}
where we remove the term Kj = Kj+1. Again by induction, these are
equivalent, but the first is of length s − 1 and the second of length r − 1.
Thus r = s. And again the two collections

{Ki/Ki+1, i 6= j, i ≥ 1}
and

{Hi/Hi+1, i ≥ 1}
are the same. So for i ≥ 1, we have

{Gi/Gi+1, i ≥ 1} = {Hi/Hi+1, i ≥ 1}
Finally, we return to the two series

G ⊇ H1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kr ⊇ Kr+1 = {e}
G ⊇ G1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kr ⊇ Kr+1 = {e}

(with Kj omitted). By the lemma, as we have said, the two unordered pairs

(G/H1, H1/K1); (G/G1, G1/K1)

are equal. Moreover, the remaining terms are equal, so we are done.
�


