THE JORDAN-HOLDER THEOREM

1
We have seen examples of chains of normal subgroups:
(1.1) G=Gy2G12G22---2G; 2Gi1...G, = {e}

in which each group G;1; is normal in the preceding group G; (though not
necessarily normal in G). Such a series is often called subnormal, and this
is the terminology we use. For example, there is the sequence of derived
subgroups

G D D(G) = [G,G] 2 D*(G) = [D(G),D(G)]...

which ends with D" (G) = {e} if G is a solvable group, in which D*(G)/D**(G)
is abelian.

At the other extreme, the group G is simple if it contains no proper
normal subgroups other than {e}. A subnormal series such as (?7) is called
a composition series if each of the quotient groups G;/G;41 is simple; in
particular, G; # G, for all i.

Lemma 1.2. Let G be a finite group. Then G has a composition series.

Proof. We induct on the order of G. We know that a group of order 1
has a composition series. Suppose every group of order less than |G| has
a composition series. If G is simple, then we are done. If not, then G has
a non-trivial proper normal subgroup N. By induction, N and G/N both
have composition series. Say

G/N=Hy2>H D HyD---2H, ={e}.

is a composition series. By the correspondence principle, each H; corre-
sponds to a subgroup G; containing N, with H; = G;/N for all i. By the
Third Isomorphism Theorem,

Gi/Git1 —(Gi/N)/(Giy1/N) = H;/Hia
which is simple. On the other hand, H, = N has a composition series
N=G,2Gp1--- 2 Gn ={e}.

Then
GZG():_)Gl---:_)N:GT:_)GT+1...:_)GN:{€}

is a composition series for G. (|
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We write the collection of simple factors (Ju,m,) where J, is a simple
group and m,, is the number of time it appears as a quotient G;/G;+1. We
call m, the multiplicity of the simple factor J,. We call it a collection rather
than a set, because the same element can appear more than once; sometimes
this is called a multiset.

Example 1.3 (Cyclic groups of prime power order). The cyclic group Zpa
has a composition series:

Zpe 2 (p) 2 (p*) 2 -2 (p* 1) 2 {0}

where (p') denotes the multiples of p* modulo p®, for any i < a. We can use
the Third Isomorphism Theorem: if (p') C Z is the subgroup of multiples
of p* for each i, then the subgroups of Zpa correspond to subgroups of Z
containing (p*). In particular

(") = (")/ (") C Zype
Then by the Third Isomorphism Theorem
")/ @) = (") /(™) /(™) /™)) ")/ ("™
and multiplication by p* is an isomorphism
Z/{p) (") /().
So the collection of simple factors of Zpa is (Zy,a) (multiplicity a).
Example 1.4 (Cyclic groups). Let n € Z. Write n =[], p;" as a product

of prime factors. Then the cyclic group Z, is isomorphic to a product of
cyclic groups Z Pl and the collection of simple factors of Z,, is the union of

the simple factors of all the Z Pl

(sz" ai)'

Example 1.5 (Abelian groups). We know that any abelian group is iso-
morphic to a direct product of cyclic groups:

11112,
i

where the p; are distinct prime numbers and the a;;j are positive integers.
The only simple abelian groups are the cyclic groups of prime order. So the
collection of simple factors is

sz ,m; = g a”

In other words, Zp, occurs as a simple factor a;; times in the cyclic group
7 V03 and the total multiplicity is the sum of the multiplicities in the simple

factors
A given finite group G can have more than one composition series. Nev-

ertheless, there is a uniqueness theorem that is analogous to the uniqueness
of prime factorization of an integer. First we prove a lemma
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Lemma 1.6. Let G be a group with two normal subgroups H and J, H # J.
Suppose G/H and G/J are both simple. Then

G/H =5J/HNJ;G/J “SH/HNJ.

Proof. If H C J then G/H D J/H, and since G/H is simple this implies
J = G or J = H, both of which are impossible. Thus G D H - J D J and
since H - J # J we must have G = H - J.
Now we apply the Second Isomorphism Theorem:
G/H=H-J/H -=J/HNJ.
The same proof works for G/J. O

Theorem 1.7 (Jordan-Hélder Theorem). Let G be a finite group. Suppose
G has two composition series:

G=Gy2G12G22--2G; 2Giq1- 2 Gry1 = {e}
G=Hyo2 Hi 2 Hy2 2 Hg1 = {e}.

Then r = s and the two collections of quotients
{Gi/Gis1}, {Hj/Hj}

are equal (not taking order into account).

Proof. This is of course an induction proof. The case |G| = 1 is trivial. If
r = 1 then G is simple so again we must have H; = G1. Now suppose
the theorem is known for groups of order |G|. We assume r is the minimal
length of a composition series for G. Suppose G; = H;. Then by induction
on |G| the composition series for G5 and H; are equivalent, and so we are
done. Thus we must assume G; # H;. Now G/G; is simple, so the only
subgroups of GG containing G; are G; and G. Since G - Hy is normal in G
and contains but is not equal to G, we have G = G1-H;y. Let K1 = G1NH;.
By the lemma,

G/Gl ;>H1/K1; G/H1 ;Gl/Kl
Also H1 < Hy = G, the intersection K; = Hy N G; is normal in each G;
as well. Also, K;1 < K; for each i. So we have a new subnormal series
G=Gy2G 2K DKy2D--- DK, D K,y1={e}.

Note that this is of length r + 1. The image of K; in G;/G;41 is normal and
is isomorphic to

K@/Kz n Gi+1 = Kl/(Hl N GZ) N Gi+1 = Ki/Hl N Gi+1 = Ki/K/L'Jrl
because G;11 C G;. Since G;/G;y1 is simple, we have either K;/K;1 =
G;i/Git1 or K; = K;11. In particular, every non-trivial term in

Gi2K12Ky2 2K, 2 Kpp1 = {e}

is simple, and thus it must be a composition series when the non-trivial
terms are removed. But by induction, every composition series for GG; has
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length  — 1 and any two are equivalent. So exactly one quotient K;/Kji4
is trivial, and with that removed we have a composition series equivalent to

Gi12G22--- DG, QGrJrl :{6}
In particular the two collections
and
{Gi/Git1,i > 1}
are the same.
On the other hand, we also have two composition series for Hji:

Hi 2 Hy D --- 2 Hgyy = {e}

and

H DK DKy2D:--- DK, DK, ={e}
where we remove the term K; = Kj;ii. Again by induction, these are
equivalent, but the first is of length s — 1 and the second of length r — 1.
Thus » = s. And again the two collections

{Ki/Kiw1,i# j,i > 1}
and
{H;/Hi+1,1> 1}
are the same. So for ¢ > 1, we have
{Gi/Gis1,i > 1} = {H;/Hiy1,1 > 1}
Finally, we return to the two series

GOH DK 2Ky2D- 2K, 2 Kpq1={e}

G2GI 2K DKy 2---2 K, 2 Kpy1 = {e}
(with K; omitted). By the lemma, as we have said, the two unordered pairs

(G/Hy, H1/K1); (G/G1, G1/ K1)

are equal. Moreover, the remaining terms are equal, so we are done.



