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Product of two subgroups

There are three isomorphism theorems, known by their numbers.
First we need to define the notion of a product of subgroups.

Lemma
Let J,N ⊆ G be two subgroups, with N normal in G (we write
N E G). Then the set

J · N = {j · n, j ∈ J, n ∈ N}

is a subgroup of G.

Proof.
It suffices to show that J · N is closed under multiplication and
inverses . If j · n ∈ JN, then

(jn)−1 = n−1j−1 = j−1 · (jnj−1) ∈ J · N

because N is normal. GU4041 Isomorphism Theorems
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Proof.
Next, if j1, j2 ∈ J, n1, n2 ∈ N, then

(j1 · n1)(j2 · n2) = j1j2 · (j−1
2 n1j2)n2 ∈ J · N,

again because N is normal. This completes the proof.
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First isomorphism theorem

Theorem
Let f : G→ H be a homomorphism with kernel K. .
Then there is an isomorphism

G/K = G/Ker(f ) ∼−→ Image(f ).

If G and H are vector spaces and f is a linear transformation, this can
be compared to the formula

dim G− dim ker(f ) = dim Image(f ).
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Second Isomorphism theorem

Theorem
Let G be a group, H ⊆ G a subgroup, N E G a normal subgroup.
Then the inclusion of H in H · N determines an isomorphism

H/H ∩ N ∼−→ H · N/N
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Third isomorphism theorem

First recall that if N E G is a normal subgroup, then there is a
bijection between the set S of subgroups of the quotient G/N and the
set T of subgroups of G containing N.

If π : G→ G/N is the quotient map, this correspondence is defined as
follows: to each subgroup J ⊂ G/N, we associate the preimage
π−1(J) ⊂ G.

This defines a function from S to T . The inverse function takes a
subgroup H ⊂ G containing N to its image π(H) ⊂ G/N.
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Proof of First Isomorphism Theorem

f : G→ H; G/K = G/Ker(f ) ∼−→ Image(f ).

Proof.
Let J = Image(f ) ⊂ H. Define α : G/K → J by setting
α(gK) = f (g).
First, α is well-defined; in other words, if gK = g′K then
α(gK) = α(g′K). Now if gK = g′K then ∃k ∈ K such that g′ = gk.
Then

α(gK) = f (g) = f (g) · f (k) = f (gk) = f (g′) = α(g′K),

where the second equality follows because f (k) = e for any
k ∈ ker(f ).
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Proof of First Isomorphism Theorem

Proof.
Next, the image of α (which a priori is in H) is in fact contained in J.
This is obvious by the definition of “image.”
Third, α is surjective. Suppose j ∈ J = Image(f ). Thus there exists
g ∈ G such that f (g) = j. It follows that α(gK) = j.
Finally α is injective. Suppose α(gK) = e. Then f (g) = e, in other
words g ∈ ker(f ) = K. So gK = K which is the identity element of
G/K. Thus α is injective.
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Proof of Second Isomorphism Theorem

Proof.
Consider the composition

H ↪→ H · N → H · N/N; h 7→ h · eN 7→ (h · eN)N ∈ H · N/N.

Call the composition φ.
First, φ is surjective. Indeed, the map π.H · N → H · N/N is the
surjective quotient map. Let j ∈ H · N/N and suppose j = π(h · n).
Since n ∈ N = kerπ,

j = π(h · n) = π(h) · π(n) = π(h) = π(h · eN) = φ(h).

Thus φ is surjective.
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Proof of Second Isomorphism Theorem

Proof.
Next,

ker(φ) = {h |h · eN ∈ ker(π)} = {h |h · eN ∈ N}.

But h · eN ∈ N if and only if h ∈ N. Since h ∈ H, it follows that
ker(φ) = H ∩ N.
But the First Isomorphism Theorem implies that

H/ ker(φ) ∼−→Image(φ).

We know ker(φ) = H ∩ N and Image(φ) = H · N/N because φ is
surjective. Thus

H/H ∩ N ∼−→H · N/N,

which is what we had to prove.
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Proof of Third Isomorphism Theorem

Proof.
Let π : G→ G/N be the quotient map. We define a homomorphism

f : G/N → G/H; gN 7→ gH.

This is well-defined because N ⊆ H: if g′N = gN then g′H = gH.
And it is a homomorphism because if g1, g2 ∈ G,

g1g2H = g1H · g2H

because H is a normal subgroup. Moreover, f is surjective: if j ∈ G/H
then j = gH for some g ∈ G, and then j = f (gN).
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Proof of Third Isomorphism Theorem

Proof.
Finally,

ker(f ) = {gN | gH = H} = {gN | g ∈ H}

which is just π(H). But π(H) = H/N under the bijection between
subgroups of G/N and subgroups of G containing N.
Thus ker(f ) = H/N.
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An example

Let G = S4, H = A4 ⊇ N = K4. (We know N is normal in S4 by a
homework exercise.)
Then H/N = A4/K4 is a group of order 3, which must be the cyclic
group Z3.

Question

G/N = 6. Is it isomorphic to Z6 or S3 = D6?

Z6 has an element of order 6. If G/N = Z6, then G must have an
element of order at least 6. But S4 has no such element. Thus
G/N = D6.
Of course G/H = Z2, H/N is the unique subgroup of order 3 in D6,
and (G/N)/(H/N) is also Z2.
There are more interesting examples for finite abelian groups.
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The main theorem

Theorem
Let A be a finite abelian group. There is a sequence of prime numbers

p1 ≤ p2 ≤ · · · ≤ pn

(not necessarily all distinct) and a sequence of positive integers

a1, a2, . . . , an

(in no particular order) such that A is isomorphic to the direct product

A ∼−→Zp
a1
1
× Zp

a2
2
× · · · × Zpan

n
.

In particular

|A| =
n∏

i=n

pai
i .
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Prime factors

This can be broken down into two theorems.

Theorem (Theorem 1)
Let A be a finite abelian group. Let q1, . . . , qr be the distinct primes
dividing |A|, and say

|A| =
∏

j

qbj
j .

Then there are subgroups Aj ⊆ A, j = 1, . . . , r, with |Aj| = qbj
j , and an

isomorphism
A ∼−→A1 × A2 × · · · × Ar.
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Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order pN for
some N > 1. Then there is a sequence of positive integers
c1 ≤ c2 · · · ≤ cs and an isomorphism

A ∼−→Zpc1 × Zpc2 × · · · × Zpcs .

Theorem 1 is essentially a series of applications of the Chinese
Remainder Theorem, and is not very hard.
Theorem 2 is a more complicated induction argument.
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Additive notation

We will use additive notation for the abelian group A. So instead of
writing a · b we write a + b, and instead of writing am we write ma,
where m is any integer. We also write −a instead of a−1 and 0 instead
of e. Because A is abelian, we know a + b = b + a for any a, b ∈ A.

Lemma
Let A be an abelian group. Then for any m ∈ Z, the function a 7→ ma
is a homomorphism.
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Proof of the Lemma

Proof.
We need to show that, for all a, b ∈ A,

m(a + b) = ma + mb.

We prove this for m > 0 by induction; the case of m < 0 is similar.
For m = 1 there is nothing to prove. Suppose we know the equality
for m. Then

(m + 1)(a + b) = m(a + b) + (a + b) = (ma + mb) + (a + b)

by the induction hypothesis. But now by associativity

(ma + mb) + (a + b) = ma + (mb + a) + b = ma + (a + mb) + b

where the last equality is allowed because A is abelian.
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Proof of the Lemma, concluded

Proof.
So far we have

(m + 1)(a + b) = ma + (a + mb) + b.

Continuing by associativity

ma + (a + mb) + b = (ma + a) + (mb + b) = (m + 1)a + (m + 1)b

and we are done by induction.
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A Proposition

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then
there are subgroups Am,An ⊆ A such that |Am| = m, |An| = n, such
that the inclusion defines an isomorphism

An × Am
∼−→A.

Proof.
Define

mA = {ma, a ∈ A}; nA = {na, a ∈ A}.

Claim mA ∩ nA = {0}. Suppose x ∈ mA ∩ nA. Then there are
a, b ∈ A such that

x = ma = nb.
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Proof of Proposition, continued

Proof.
Since x = ma = nb, we have

mx = m2a = mnb = 0.

Similarly nx = 0.
But there are constants α, β ∈ Z such that αm + βn = 1. Thus

x = (αm + βn)x = α · mx + β · nx = 0.

So mA ∩ nA = {0} as claimed.
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Proof of Proposition, continued

Proof.
Now define An = mA, Am = nA (careful!) Inclusion defines a
homomorphism

f : An × Am → A; f ((u, v)) = u− v.

Suppose (u, v) ∈ ker f . Then u− v = 0, so u = v ∈ An ∩ Am = {0}.
Thus f is injective.
On the other hand, if a ∈ A, let αm + βn = 1 as before. Write
u = α · ma ∈ An, v = −β · na ∈ Am. Then

f ((u, v)) = α · ma− (−β · na) = (αm + βn)a = a,

so f is surjective as well. Thus f is an isomorphism.

GU4041 Isomorphism Theorems



The Isomorphism Theorems
Classification of finite abelian groups

Proof of Proposition, continued

Proof.
Now define An = mA, Am = nA (careful!) Inclusion defines a
homomorphism

f : An × Am → A; f ((u, v)) = u− v.

Suppose (u, v) ∈ ker f . Then u− v = 0, so u = v ∈ An ∩ Am = {0}.
Thus f is injective.
On the other hand, if a ∈ A, let αm + βn = 1 as before. Write
u = α · ma ∈ An, v = −β · na ∈ Am. Then

f ((u, v)) = α · ma− (−β · na) = (αm + βn)a = a,

so f is surjective as well. Thus f is an isomorphism.

GU4041 Isomorphism Theorems



The Isomorphism Theorems
Classification of finite abelian groups

Proof of Proposition, continued

Proof.
Now define An = mA, Am = nA (careful!) Inclusion defines a
homomorphism

f : An × Am → A; f ((u, v)) = u− v.

Suppose (u, v) ∈ ker f . Then u− v = 0, so u = v ∈ An ∩ Am = {0}.
Thus f is injective.
On the other hand, if a ∈ A, let αm + βn = 1 as before. Write
u = α · ma ∈ An, v = −β · na ∈ Am. Then

f ((u, v)) = α · ma− (−β · na) = (αm + βn)a = a,

so f is surjective as well. Thus f is an isomorphism.

GU4041 Isomorphism Theorems



The Isomorphism Theorems
Classification of finite abelian groups

Proof of Proposition, continued

Proof.
Now define An = mA, Am = nA (careful!) Inclusion defines a
homomorphism

f : An × Am → A; f ((u, v)) = u− v.

Suppose (u, v) ∈ ker f . Then u− v = 0, so u = v ∈ An ∩ Am = {0}.
Thus f is injective.
On the other hand, if a ∈ A, let αm + βn = 1 as before. Write
u = α · ma ∈ An, v = −β · na ∈ Am. Then

f ((u, v)) = α · ma− (−β · na) = (αm + βn)a = a,

so f is surjective as well. Thus f is an isomorphism.

GU4041 Isomorphism Theorems



The Isomorphism Theorems
Classification of finite abelian groups

Proof of Proposition, continued

Proof.
Now define An = mA, Am = nA (careful!) Inclusion defines a
homomorphism

f : An × Am → A; f ((u, v)) = u− v.

Suppose (u, v) ∈ ker f . Then u− v = 0, so u = v ∈ An ∩ Am = {0}.
Thus f is injective.
On the other hand, if a ∈ A, let αm + βn = 1 as before. Write
u = α · ma ∈ An, v = −β · na ∈ Am. Then

f ((u, v)) = α · ma− (−β · na) = (αm + βn)a = a,

so f is surjective as well. Thus f is an isomorphism.

GU4041 Isomorphism Theorems



The Isomorphism Theorems
Classification of finite abelian groups

Proof of Proposition, continued

Proof.
We see that

nm = |A| = |An| · |Am|.

But we still need to show that |An| = n and |Am| = m. It suffices to
show that |Am| and n are relatively prime, because then n divides
nm = |An| · |Am| implies n divides |An| by Gauss’s Lemma; similarly
m divides |Am|, so we must have n = |An| and m = |Am|.
Thus suppose p|gcd(|Am|, n). Now we claim that v 7→ nv is an
automorphism of Am. Indeed, for v = nb ∈ Am, mv = mnb = 0, so

βnv = βn(nb) = αmv + βnv = v

so that v 7→ βv is the inverse automorphism. Since p|n, it follows that
for v ∈ Am, pv = 0 only if v = 0.
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A key lemma

So p is an automorphism of |Am| but p divides the order of Am. We
pause for a key lemma:

Lemma
Let B be a finite abelian group of order divisible by p. Then B
contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that pv = 0⇒ v = 0.
So the Lemma completes the proof of the Proposition.
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Proof of the key lemma

Proof.
This is again an inductive proof. Say |B| = pN. If N = 1 then B is
cyclic of order p and we know the result. Suppose we know the result
for all |B| of order pk with k < N. If B has no nontrivial proper
subgroup, then B is cyclic of prime order; so B must have a proper
subgroup H ( B, |H| > 1. If p divides |H| then by induction H has a
non-zero element of order p, and we are done. So assume p does not
divide r = |H|. It follows that there is g ∈ B/H of order p.
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Proof of the key lemma

Proof.
Let π : B→ B/H be the quotient map, π(b) = g ∈ B/H. Thus b /∈ H
but π(pb) = pg = 0, so pb ∈ H, so rpb = 0. Let a = rb, so pa = 0.
We suppose a = 0 and derive a contradiction. Use Bezout’s relation
yet again. Since (p, r) = 1 there are integers γ, δ such that

b = (γp + δr)b = γpb + δa = γpb + 0 ∈ H,

contradiction.
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