Isomorphism theorems Week of March 9, 2020

GU4041

Columbia University

October 25, 2023

イロト イ理ト イヨト イヨト

2 Classification of finite abelian groups

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

There are *three* isomorphism theorems, known by their numbers.

First we need to define the notion of a *product of subgroups*.

Lemma

Let $J, N \subseteq G$ be two subgroups, with N normal in G (we write $N \leq G$). Then the set

$$J \cdot N = \{j \cdot n, \, j \in J, n \in N\}$$

is a subgroup of G.

Proof.

$$(jn)^{-1} = n^{-1}j^{-1} = j^{-1} \cdot (jnj^{-1}) \in J \cdot N$$

There are *three* isomorphism theorems, known by their numbers. First we need to define the notion of a *product of subgroups*.

Lemma

Let $J, N \subseteq G$ be two subgroups, with N normal in G (we write $N \leq G$). Then the set

$$J \cdot N = \{j \cdot n, j \in J, n \in N\}$$

is a subgroup of G.

Proof.

$$(jn)^{-1} = n^{-1}j^{-1} = j^{-1} \cdot (jnj^{-1}) \in J \cdot N$$

There are *three* isomorphism theorems, known by their numbers. First we need to define the notion of a *product of subgroups*.

Lemma

Let $J, N \subseteq G$ be two subgroups, with N normal in G (we write $N \leq G$). Then the set

$$J \cdot N = \{j \cdot n, j \in J, n \in N\}$$

is a subgroup of G.

Proof.

$$(jn)^{-1} = n^{-1}j^{-1} = j^{-1} \cdot (jnj^{-1}) \in J \cdot N$$

There are *three* isomorphism theorems, known by their numbers. First we need to define the notion of a *product of subgroups*.

Lemma

Let $J, N \subseteq G$ be two subgroups, with N normal in G (we write $N \leq G$). Then the set

$$J \cdot N = \{j \cdot n, j \in J, n \in N\}$$

is a subgroup of G.

Proof.

$$(jn)^{-1} = n^{-1}j^{-1} = j^{-1} \cdot (jnj^{-1}) \in J \cdot N$$

Proof.

Next, if $j_1, j_2 \in J$, $n_1, n_2 \in N$, then

$$(j_1 \cdot n_1)(j_2 \cdot n_2) = j_1 j_2 \cdot (j_2^{-1} n_1 j_2) n_2 \in J \cdot N,$$

again because N is normal. This completes the proof.

イロト イ理ト イヨト イヨト

First isomorphism theorem

Theorem

Let $f: G \rightarrow H$ be a homomorphism with kernel K. . Then there is an isomorphism

$$G/K = G/Ker(f) \xrightarrow{\sim} Image(f).$$

If G and H are vector spaces and f is a linear transformation, this can be compared to the formula

$$\dim G - \dim \ker(f) = \dim \operatorname{Image}(f).$$

First isomorphism theorem

Theorem

Let $f : G \rightarrow H$ be a homomorphism with kernel K. . Then there is an isomorphism

$$G/K = G/Ker(f) \xrightarrow{\sim} Image(f).$$

If G and H are vector spaces and f is a linear transformation, this can be compared to the formula

$$\dim G - \dim \ker(f) = \dim \operatorname{Image}(f).$$

First isomorphism theorem

Theorem

Let $f : G \rightarrow H$ be a homomorphism with kernel K. . Then there is an isomorphism

$$G/K = G/Ker(f) \xrightarrow{\sim} Image(f).$$

If G and H are vector spaces and f is a linear transformation, this can be compared to the formula

$$\dim G - \dim \ker(f) = \dim \operatorname{Image}(f).$$

Second Isomorphism theorem

Theorem

Let G be a group, $H \subseteq G$ *a subgroup,* $N \trianglelefteq G$ *a normal subgroup.*

Then the inclusion of H in $H \cdot N$ determines an isomorphism

$H/H \cap N \xrightarrow{\sim} H \cdot N/N$

Second Isomorphism theorem

Theorem

Let G be a group, $H \subseteq G$ a subgroup, $N \trianglelefteq G$ a normal subgroup. Then the inclusion of H in $H \cdot N$ determines an isomorphism

$H/H\cap N \overset{\sim}{\longrightarrow} H \cdot N/N$

First recall that if $N \leq G$ is a normal subgroup, then there is a bijection between the set *S* of subgroups of the quotient G/N and the set *T* of subgroups of *G* containing *N*.

If $\pi : G \to G/N$ is the quotient map, this correspondence is defined as follows: to each subgroup $J \subset G/N$, we associate the preimage $\pi^{-1}(J) \subset G$.

This defines a function from *S* to *T*. The inverse function takes a subgroup $H \subset G$ containing *N* to its image $\pi(H) \subset G/N$.

First recall that if $N \leq G$ is a normal subgroup, then there is a bijection between the set *S* of subgroups of the quotient G/N and the set *T* of subgroups of *G* containing *N*.

If $\pi : G \to G/N$ is the quotient map, this correspondence is defined as follows: to each subgroup $J \subset G/N$, we associate the preimage $\pi^{-1}(J) \subset G$.

This defines a function from *S* to *T*. The inverse function takes a subgroup $H \subset G$ containing *N* to its image $\pi(H) \subset G/N$.

イロト イ押ト イヨト イヨト

First recall that if $N \leq G$ is a normal subgroup, then there is a bijection between the set *S* of subgroups of the quotient G/N and the set *T* of subgroups of *G* containing *N*.

If $\pi : G \to G/N$ is the quotient map, this correspondence is defined as follows: to each subgroup $J \subset G/N$, we associate the preimage $\pi^{-1}(J) \subset G$.

This defines a function from *S* to *T*. The inverse function takes a subgroup $H \subset G$ containing *N* to its image $\pi(H) \subset G/N$.

イロト イポト イヨト イヨト

The Isomorphism Theorems Classification of finite abelian groups

Third isomorphism theorem

Theorem

Let G be a group, $H \trianglelefteq G$, $N \trianglelefteq G$ two normal subgroups, with $N \subseteq H$.

Then the natural homomorphism $G/N \rightarrow G/H$ induces an isomorphism

 $(G/N)/(H/N) \xrightarrow{\sim} G/H.$

Theorem

Let G be a group, $H \leq G$, $N \leq G$ two normal subgroups, with $N \subseteq H$. Then the natural homomorphism $G/N \rightarrow G/H$ induces an isomorphism

 $(G/N)/(H/N) \xrightarrow{\sim} G/H.$

$$f: G \to H; \quad G/K = G/Ker(f) \stackrel{\sim}{\longrightarrow} Image(f).$$

Proof.

Let $J = Image(f) \subset H$. Define $\alpha : G/K \to J$ by setting $\alpha(gK) = f(g)$. First, α is *well-defined*; in other words, if gK = g'K then $\alpha(gK) = \alpha(g'K)$. Now if gK = g'K then $\exists k \in K$ such that g' = gk. Then

$$\alpha(gK) = f(g) = f(g) \cdot f(k) = f(gk) = f(g') = \alpha(g'K),$$

$$f: G \to H; \quad G/K = G/Ker(f) \stackrel{\sim}{\longrightarrow} Image(f).$$

Proof.

Let $J = Image(f) \subset H$. Define $\alpha : G/K \to J$ by setting $\alpha(gK) = f(g)$. First, α is *well-defined*; in other words, if gK = g'K then $\alpha(gK) = \alpha(g'K)$. Now if gK = g'K then $\exists k \in K$ such that g' = gk. Then

$$\alpha(gK) = f(g) = f(g) \cdot f(k) = f(gk) = f(g') = \alpha(g'K),$$

$$f: G \to H; \quad G/K = G/Ker(f) \xrightarrow{\sim} Image(f).$$

Proof.

Let $J = Image(f) \subset H$. Define $\alpha : G/K \to J$ by setting $\alpha(gK) = f(g)$. First, α is *well-defined*; in other words, if gK = g'K then $\alpha(gK) = \alpha(g'K)$. Now if gK = g'K then $\exists k \in K$ such that g' = gk. Then

$$\alpha(gK) = f(g) = f(g) \cdot f(k) = f(gk) = f(g') = \alpha(g'K),$$

$$f: G \to H; \quad G/K = G/Ker(f) \xrightarrow{\sim} Image(f).$$

Proof.

Let $J = Image(f) \subset H$. Define $\alpha : G/K \to J$ by setting $\alpha(gK) = f(g)$. First, α is *well-defined*; in other words, if gK = g'K then $\alpha(gK) = \alpha(g'K)$. Now if gK = g'K then $\exists k \in K$ such that g' = gk. Then

$$\alpha(gK) = f(g) = f(g) \cdot f(k) = f(gk) = f(g') = \alpha(g'K),$$

Proof.

Next, the image of α (which a priori is in *H*) is in fact contained in *J*. This is obvious by the definition of "image." Third, α is surjective. Suppose $j \in J = Image(f)$. Thus there exists $g \in G$ such that f(g) = j. It follows that $\alpha(gK) = j$. Finally α is injective. Suppose $\alpha(gK) = e$. Then f(g) = e, in other words $g \in \ker(f) = K$. So gK = K which is the identity element of G/K. Thus α is injective.

Proof.

Next, the image of α (which a priori is in *H*) is in fact contained in *J*. This is obvious by the definition of "image." Third, α is surjective. Suppose $j \in J = Image(f)$. Thus there exists $g \in G$ such that f(g) = j. It follows that $\alpha(gK) = j$. Finally α is injective. Suppose $\alpha(gK) = e$. Then f(g) = e, in other words $g \in \ker(f) = K$. So gK = K which is the identity element of G/K. Thus α is injective.

Proof.

Next, the image of α (which a priori is in *H*) is in fact contained in *J*. This is obvious by the definition of "image." Third, α is surjective. Suppose $j \in J = Image(f)$. Thus there exists $g \in G$ such that f(g) = j. It follows that $\alpha(gK) = j$. Finally α is injective. Suppose $\alpha(gK) = e$. Then f(g) = e, in other words $g \in \ker(f) = K$. So gK = K which is the identity element of G/K. Thus α is injective.

Proof.

Consider the composition

 $H \hookrightarrow H \cdot N \to H \cdot N/N; \ h \mapsto h \cdot e_N \mapsto (h \cdot e_N)N \in H \cdot N/N.$

Call the composition ϕ .

First, ϕ is *surjective*. Indeed, the map $\pi \cdot H \cdot N \to H \cdot N/N$ is the surjective quotient map. Let $j \in H \cdot N/N$ and suppose $j = \pi(h \cdot n)$. Since $n \in N = \ker \pi$,

$$j = \pi(h \cdot n) = \pi(h) \cdot \pi(n) = \pi(h) = \pi(h \cdot e_N) = \phi(h).$$

Proof.

Consider the composition

 $H \hookrightarrow H \cdot N \to H \cdot N/N; \ h \mapsto h \cdot e_N \mapsto (h \cdot e_N)N \in H \cdot N/N.$

Call the composition ϕ .

First, ϕ is *surjective*. Indeed, the map $\pi . H \cdot N \to H \cdot N/N$ is the surjective quotient map. Let $j \in H \cdot N/N$ and suppose $j = \pi(h \cdot n)$. Since $n \in N = \ker \pi$,

$$j = \pi(h \cdot n) = \pi(h) \cdot \pi(n) = \pi(h) = \pi(h \cdot e_N) = \phi(h)$$

Proof.

Consider the composition

 $H \hookrightarrow H \cdot N \to H \cdot N/N; \ h \mapsto h \cdot e_N \mapsto (h \cdot e_N)N \in H \cdot N/N.$

Call the composition ϕ .

First, ϕ is *surjective*. Indeed, the map $\pi . H \cdot N \to H \cdot N/N$ is the surjective quotient map. Let $j \in H \cdot N/N$ and suppose $j = \pi(h \cdot n)$. Since $n \in N = \ker \pi$,

$$j = \pi(h \cdot n) = \pi(h) \cdot \pi(n) = \pi(h) = \pi(h \cdot e_N) = \phi(h).$$

Proof.

Consider the composition

 $H \hookrightarrow H \cdot N \to H \cdot N/N; \ h \mapsto h \cdot e_N \mapsto (h \cdot e_N)N \in H \cdot N/N.$

Call the composition ϕ .

First, ϕ is *surjective*. Indeed, the map $\pi . H \cdot N \to H \cdot N/N$ is the surjective quotient map. Let $j \in H \cdot N/N$ and suppose $j = \pi(h \cdot n)$. Since $n \in N = \ker \pi$,

$$j = \pi(h \cdot n) = \pi(h) \cdot \pi(n) = \pi(h) = \pi(h \cdot e_N) = \phi(h).$$

Proof.

Next,

$$\ker(\phi) = \{h \mid h \cdot e_N \in \ker(\pi)\} = \{h \mid h \cdot e_N \in N\}.$$

But $h \cdot e_N \in N$ if and only if $h \in N$. Since $h \in H$, it follows that $\ker(\phi) = H \cap N$. But the First Isomorphism Theorem implies that

 $H/\ker(\phi) \xrightarrow{\sim} Image(\phi).$

We know ker $(\phi) = H \cap N$ and $Image(\phi) = H \cdot N/N$ because ϕ is surjective. Thus

$$H/H \cap N \xrightarrow{\sim} H \cdot N/N,$$

Proof.

Next,

$$\ker(\phi) = \{h \mid h \cdot e_N \in \ker(\pi)\} = \{h \mid h \cdot e_N \in N\}.$$

But $h \cdot e_N \in N$ if and only if $h \in N$. Since $h \in H$, it follows that $ker(\phi) = H \cap N$.

But the First Isomorphism Theorem implies that

 $H/\ker(\phi) \xrightarrow{\sim} Image(\phi).$

We know ker $(\phi) = H \cap N$ and $Image(\phi) = H \cdot N/N$ because ϕ is surjective. Thus

$$H/H \cap N \xrightarrow{\sim} H \cdot N/N,$$

Proof.

Next,

$$\ker(\phi) = \{h \mid h \cdot e_N \in \ker(\pi)\} = \{h \mid h \cdot e_N \in N\}.$$

But $h \cdot e_N \in N$ if and only if $h \in N$. Since $h \in H$, it follows that $\ker(\phi) = H \cap N$. But the First Isomorphism Theorem implies that

 $H/\ker(\phi) \xrightarrow{\sim} Image(\phi).$

We know ker $(\phi) = H \cap N$ and $Image(\phi) = H \cdot N/N$ because ϕ is surjective. Thus

$$H/H \cap N \xrightarrow{\sim} H \cdot N/N,$$

Proof.

Next,

$$\ker(\phi) = \{h \mid h \cdot e_N \in \ker(\pi)\} = \{h \mid h \cdot e_N \in N\}.$$

But $h \cdot e_N \in N$ if and only if $h \in N$. Since $h \in H$, it follows that $\ker(\phi) = H \cap N$.

But the First Isomorphism Theorem implies that

$$H/\ker(\phi) \xrightarrow{\sim} Image(\phi).$$

We know ker $(\phi) = H \cap N$ and $Image(\phi) = H \cdot N/N$ because ϕ is surjective. Thus

$$H/H \cap N \xrightarrow{\sim} H \cdot N/N,$$

Proof.

Let $\pi: G \to G/N$ be the quotient map. We define a homomorphism

 $f:G/N\to G/H;gN\mapsto gH.$

This is well-defined because $N \subseteq H$: if g'N = gN then g'H = gH. And it is a homomorphism because if $g_1, g_2 \in G$,

 $g_1g_2H = g_1H \cdot g_2H$

because *H* is a normal subgroup. Moreover, *f* is surjective: if $j \in G/H$ then j = gH for some $g \in G$, and then j = f(gN).

Proof.

Let $\pi: G \to G/N$ be the quotient map. We define a homomorphism

 $f:G/N\to G/H; gN\mapsto gH.$

This is well-defined because $N \subseteq H$: if g'N = gN then g'H = gH. And it is a homomorphism because if $g_1, g_2 \in G$,

$$g_1g_2H = g_1H \cdot g_2H$$

because *H* is a normal subgroup. Moreover, *f* is surjective: if $j \in G/H$ then j = gH for some $g \in G$, and then j = f(gN).

Proof.

Let $\pi: G \to G/N$ be the quotient map. We define a homomorphism

$$f:G/N\to G/H;gN\mapsto gH.$$

This is well-defined because $N \subseteq H$: if g'N = gN then g'H = gH. And it is a homomorphism because if $g_1, g_2 \in G$,

$$g_1g_2H = g_1H \cdot g_2H$$

because *H* is a normal subgroup. Moreover, *f* is surjective: if $j \in G/H$ then j = gH for some $g \in G$, and then j = f(gN).

Proof.

Finally,

$$\ker(f) = \{gN \mid gH = H\} = \{gN \mid g \in H\}$$

which is just $\pi(H)$. But $\pi(H) = H/N$ under the bijection between subgroups of G/N and subgroups of G containing N. Thus ker(f) = H/N.
Proof of Third Isomorphism Theorem

Proof.

Finally,

$$\ker(f) = \{gN \mid gH = H\} = \{gN \mid g \in H\}$$

which is just $\pi(H)$. But $\pi(H) = H/N$ under the bijection between subgroups of G/N and subgroups of G containing N. Thus ker(f) = H/N.

An example

Let $G = S_4$, $H = A_4 \supseteq N = K_4$. (We know N is normal in S_4 by a homework exercise.)

Then $H/N = A_4/K_4$ is a group of order 3, which must be the cyclic group \mathbb{Z}_3 .

Question

G/N = 6. Is it isomorphic to \mathbb{Z}_6 or $S_3 = D_6$?

 \mathbb{Z}_6 has an element of order 6. If $G/N = \mathbb{Z}_6$, then *G* must have an element of order at least 6. But S_4 has no such element. Thus $G/N = D_6$.

Of course $G/H = \mathbb{Z}_2$, H/N is the unique subgroup of order 3 in D_6 , and (G/N)/(H/N) is also \mathbb{Z}_2 .

There are more interesting examples for finite abelian groups.

イロト イ得ト イヨト イヨト

Let $G = S_4$, $H = A_4 \supseteq N = K_4$. (We know N is normal in S_4 by a homework exercise.)

Then $H/N = A_4/K_4$ is a group of order 3, which must be the cyclic group \mathbb{Z}_3 .

Question

$$G/N = 6$$
. Is it isomorphic to \mathbb{Z}_6 or $S_3 = D_6$?

 \mathbb{Z}_6 has an element of order 6. If $G/N = \mathbb{Z}_6$, then *G* must have an element of order at least 6. But S_4 has no such element. Thus $G/N = D_6$.

Of course $G/H = \mathbb{Z}_2$, H/N is the unique subgroup of order 3 in D_6 , and (G/N)/(H/N) is also \mathbb{Z}_2 .

There are more interesting examples for finite abelian groups.

イロト イポト イヨト イヨト

Let $G = S_4$, $H = A_4 \supseteq N = K_4$. (We know N is normal in S_4 by a homework exercise.)

Then $H/N = A_4/K_4$ is a group of order 3, which must be the cyclic group \mathbb{Z}_3 .

Question

$$G/N = 6$$
. Is it isomorphic to \mathbb{Z}_6 or $S_3 = D_6$?

 \mathbb{Z}_6 has an element of order 6. If $G/N = \mathbb{Z}_6$, then *G* must have an element of order at least 6. But S_4 has no such element. Thus $G/N = D_6$. Of course $G/H = \mathbb{Z}_2$, H/N is the unique subgroup of order 3 in D_6 , and (G/N)/(H/N) is also \mathbb{Z}_2 .

There are more interesting examples for finite abelian groups.

イロト イポト イヨト イヨト

Let $G = S_4$, $H = A_4 \supseteq N = K_4$. (We know N is normal in S_4 by a homework exercise.)

Then $H/N = A_4/K_4$ is a group of order 3, which must be the cyclic group \mathbb{Z}_3 .

Question

$$G/N = 6$$
. Is it isomorphic to \mathbb{Z}_6 or $S_3 = D_6$?

 \mathbb{Z}_6 has an element of order 6. If $G/N = \mathbb{Z}_6$, then *G* must have an element of order at least 6. But S_4 has no such element. Thus $G/N = D_6$.

Of course $G/H = \mathbb{Z}_2$, H/N is the unique subgroup of order 3 in D_6 , and (G/N)/(H/N) is also \mathbb{Z}_2 .

There are more interesting examples for finite abelian groups.

イロト 不得 とくほ とくほう

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 a_1, a_2, \ldots, a_n

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

In particular

$$|\mathbf{A}| = \prod_{i=1}^{n} p_i^{a_i}.$$

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 $a_1, a_2, ..., a_n$

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

In particular

$$|\mathbf{A}| = \prod_{i=1}^{n} p_i^{a_i}.$$

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 a_1, a_2, \ldots, a_n

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

In particular

Theorem

Let A be a finite abelian group. There is a sequence of prime numbers

$$p_1 \leq p_2 \leq \cdots \leq p_n$$

(not necessarily all distinct) and a sequence of positive integers

 a_1, a_2, \ldots, a_n

(in no particular order) such that A is isomorphic to the direct product

$$A \xrightarrow{\sim} \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}.$$

In particular

$$|A| = \prod_{i=n}^{n} p_i^{a_i}.$$

Prime factors

This can be broken down into two theorems.

Theorem (Theorem 1)

Let A be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}.$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

This can be broken down into two theorems.

Theorem (Theorem 1)

Let A be a finite abelian group. Let q_1, \ldots, q_r be the distinct primes dividing |A|, and say

$$|A| = \prod_j q_j^{b_j}.$$

Then there are subgroups $A_j \subseteq A$, j = 1, ..., r, with $|A_j| = q_j^{b_j}$, and an isomorphism

$$A \xrightarrow{\sim} A_1 \times A_2 \times \cdots \times A_r.$$

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order p^N for some N > 1. Then there is a sequence of positive integers $c_1 \le c_2 \cdots \le c_s$ and an isomorphism

$$A \xrightarrow{\sim} \mathbb{Z}_{p^{c_1}} \times \mathbb{Z}_{p^{c_2}} \times \cdots \times \mathbb{Z}_{p^{c_s}}.$$

Theorem 1 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard. Theorem 2 is a more complicated induction argument.

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order p^N for some N > 1. Then there is a sequence of positive integers $c_1 \le c_2 \cdots \le c_s$ and an isomorphism

$$A \xrightarrow{\sim} \mathbb{Z}_{p^{c_1}} \times \mathbb{Z}_{p^{c_2}} \times \cdots \times \mathbb{Z}_{p^{c_s}}.$$

Theorem 1 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard.

Theorem 2 is a more complicated induction argument.

Abelian groups of prime power order

Theorem (Theorem 2)

Let p be a prime and let A be a finite abelian group of order p^N for some N > 1. Then there is a sequence of positive integers $c_1 \le c_2 \cdots \le c_s$ and an isomorphism

$$A \xrightarrow{\sim} \mathbb{Z}_{p^{c_1}} \times \mathbb{Z}_{p^{c_2}} \times \cdots \times \mathbb{Z}_{p^{c_s}}.$$

Theorem 1 is essentially a series of applications of the Chinese Remainder Theorem, and is not very hard. Theorem 2 is a more complicated induction argument.

Additive notation

We will use *additive notation* for the abelian group *A*. So instead of writing $a \cdot b$ we write a + b, and instead of writing a^m we write ma, where *m* is any integer. We also write -a instead of a^{-1} and 0 instead of *e*. Because *A* is abelian, we know a + b = b + a for any $a, b \in A$.

Lemma

Let A be an abelian group. Then for any $m \in \mathbb{Z}$, the function $a \mapsto ma$ is a homomorphism.

Additive notation

We will use *additive notation* for the abelian group *A*. So instead of writing $a \cdot b$ we write a + b, and instead of writing a^m we write ma, where *m* is any integer. We also write -a instead of a^{-1} and 0 instead of *e*. Because *A* is abelian, we know a + b = b + a for any $a, b \in A$.

Lemma

Let A be an abelian group. Then for any $m \in \mathbb{Z}$, the function $a \mapsto ma$ is a homomorphism.

We will use *additive notation* for the abelian group A. So instead of writing $a \cdot b$ we write a + b, and instead of writing a^m we write ma, where *m* is any integer. We also write -a instead of a^{-1} and 0 instead of *e*. Because A is abelian, we know a + b = b + a for any $a, b \in A$.

Lemma

Let A be an abelian group. Then for any $m \in \mathbb{Z}$, the function $a \mapsto ma$ is a homomorphism.

Proof of the Lemma

Proof. We need to show that, for all $a, b \in A$,

$$m(a+b) = ma + mb.$$

We prove this for m > 0 by induction; the case of m < 0 is similar. For m = 1 there is nothing to prove. Suppose we know the equality for *m*. Then

$$(m+1)(a+b) = m(a+b) + (a+b) = (ma+mb) + (a+b)$$

by the induction hypothesis. But now by associativity

$$(ma + mb) + (a + b) = ma + (mb + a) + b = ma + (a + mb) + b$$

where the last equality is allowed because A is abelian.

Proof of the Lemma

Proof.

We need to show that, for all $a, b \in A$,

$$m(a+b) = ma + mb.$$

We prove this for m > 0 by induction; the case of m < 0 is similar. For m = 1 there is nothing to prove. Suppose we know the equality for *m*. Then

$$(m+1)(a+b) = m(a+b) + (a+b) = (ma+mb) + (a+b)$$

by the induction hypothesis. But now by associativity

$$(ma + mb) + (a + b) = ma + (mb + a) + b = ma + (a + mb) + b$$

where the last equality is allowed because A is abelian.

Proof of the Lemma

Proof.

We need to show that, for all $a, b \in A$,

$$m(a+b) = ma + mb.$$

We prove this for m > 0 by induction; the case of m < 0 is similar. For m = 1 there is nothing to prove. Suppose we know the equality for *m*. Then

$$(m+1)(a+b) = m(a+b) + (a+b) = (ma+mb) + (a+b)$$

by the induction hypothesis. But now by associativity

$$(ma+mb)+(a+b)=ma+(mb+a)+b=ma+(a+mb)+b$$

where the last equality is allowed because A is abelian.

Proof of the Lemma, concluded

Proof.

So far we have

$$(m+1)(a+b) = ma + (a+mb) + b.$$

Continuing by associativity

$$ma + (a + mb) + b = (ma + a) + (mb + b) = (m + 1)a + (m + 1)b$$

and we are done by induction.

Proof of the Lemma, concluded

Proof.

So far we have

$$(m+1)(a+b) = ma + (a+mb) + b.$$

Continuing by associativity

$$ma + (a + mb) + b = (ma + a) + (mb + b) = (m + 1)a + (m + 1)b$$

and we are done by induction.

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb.$$

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb.$$

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb.$$

Proposition

Suppose A is an abelian group of order mn, where (m, n) = 1. Then there are subgroups $A_m, A_n \subseteq A$ such that $|A_m| = m$, $|A_n| = n$, such that the inclusion defines an isomorphism

$$A_n \times A_m \xrightarrow{\sim} A.$$

Proof.

Define

$$mA = \{ma, a \in A\}; nA = \{na, a \in A\}.$$

$$x = ma = nb$$

Proof.

Since x = ma = nb, we have

$$mx = m^2 a = mnb = 0.$$

Similarly nx = 0.

But there are constants $\alpha, \beta \in \mathbb{Z}$ such that $\alpha m + \beta n = 1$. Thus

$$x = (\alpha m + \beta n)x = \alpha \cdot mx + \beta \cdot nx = 0.$$

So $mA \cap nA = \{0\}$ as claimed.

Proof.

Since x = ma = nb, we have

$$mx = m^2 a = mnb = 0.$$

Similarly nx = 0. But there are constants $\alpha, \beta \in \mathbb{Z}$ such that $\alpha m + \beta n = 1$. Thus

$$x = (\alpha m + \beta n)x = \alpha \cdot mx + \beta \cdot nx = 0.$$

So $mA \cap nA = \{0\}$ as claimed.

Proof.

Since x = ma = nb, we have

$$mx = m^2 a = mnb = 0.$$

Similarly nx = 0. But there are constants $\alpha, \beta \in \mathbb{Z}$ such that $\alpha m + \beta n = 1$. Thus

$$x = (\alpha m + \beta n)x = \alpha \cdot mx + \beta \cdot nx = 0.$$

So $mA \cap nA = \{0\}$ as claimed.

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

 $f: A_n \times A_m \to A; f((u, v)) = u - v.$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \ker f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus *f* is injective. On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write

 $u = \alpha \cdot ma \in A_n, v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n, v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

Now define $A_n = mA$, $A_m = nA$ (careful!) Inclusion defines a homomorphism

$$f: A_n \times A_m \to A; f((u, v)) = u - v.$$

Suppose $(u, v) \in \text{ker } f$. Then u - v = 0, so $u = v \in A_n \cap A_m = \{0\}$. Thus f is injective.

On the other hand, if $a \in A$, let $\alpha m + \beta n = 1$ as before. Write $u = \alpha \cdot ma \in A_n$, $v = -\beta \cdot na \in A_m$. Then

$$f((u,v)) = \alpha \cdot ma - (-\beta \cdot na) = (\alpha m + \beta n)a = a,$$

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an

automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.
Proof of Proposition, continued

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

Proof of Proposition, continued

Proof.

We see that

$$nm = |A| = |A_n| \cdot |A_m|.$$

But we still need to show that $|A_n| = n$ and $|A_m| = m$. It suffices to show that $|A_m|$ and *n* are relatively prime, because then *n* divides $nm = |A_n| \cdot |A_m|$ implies *n* divides $|A_n|$ by Gauss's Lemma; similarly *m* divides $|A_m|$, so we must have $n = |A_n|$ and $m = |A_m|$. Thus suppose $p|gcd(|A_m|, n)$. Now we claim that $v \mapsto nv$ is an automorphism of A_m . Indeed, for $v = nb \in A_m$, mv = mnb = 0, so

$$\beta nv = \beta n(nb) = \alpha mv + \beta nv = v$$

so that $v \mapsto \beta v$ is the inverse automorphism. Since p|n, it follows that for $v \in A_m$, pv = 0 only if v = 0.

A key lemma

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

A key lemma

So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition. So *p* is an automorphism of $|A_m|$ but *p* divides the order of A_m . We pause for a key lemma:

Lemma

Let B be a finite abelian group of order divisible by p. Then B contains a non-zero element of order p.

This Lemma contradicts the earlier conclusion that $pv = 0 \Rightarrow v = 0$. So the Lemma completes the proof of the Proposition.

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. It follows that there is $g \in B/H$ of order *p*.

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. It follows that there is $g \in B/H$ of order *p*.

Proof.

This is again an inductive proof. Say |B| = pN. If N = 1 then *B* is cyclic of order *p* and we know the result. Suppose we know the result for all |B| of order *pk* with k < N. If *B* has no nontrivial proper subgroup, then *B* is cyclic of prime order; so *B* must have a proper subgroup $H \subsetneq B$, |H| > 1. If *p* divides |H| then by induction *H* has a non-zero element of order *p*, and we are done. So assume *p* does not divide r = |H|. It follows that there is $g \in B/H$ of order *p*.

Proof.

Let $\pi : B \to B/H$ be the quotient map, $\pi(b) = g \in B/H$. Thus $b \notin H$ but $\pi(pb) = pg = 0$, so $pb \in H$, so rpb = 0. Let a = rb, so pa = 0. We suppose a = 0 and derive a contradiction. Use Bezout's relation yet again. Since (p, r) = 1 there are integers γ, δ such that

$$b = (\gamma p + \delta r)b = \gamma pb + \delta a = \gamma pb + 0 \in H,$$

contradiction.

Proof.

Let $\pi : B \to B/H$ be the quotient map, $\pi(b) = g \in B/H$. Thus $b \notin H$ but $\pi(pb) = pg = 0$, so $pb \in H$, so rpb = 0. Let a = rb, so pa = 0. We suppose a = 0 and derive a contradiction. Use Bezout's relation yet again. Since (p, r) = 1 there are integers γ, δ such that

$$b = (\gamma p + \delta r)b = \gamma pb + \delta a = \gamma pb + 0 \in H,$$

contradiction.

Proof.

Let $\pi : B \to B/H$ be the quotient map, $\pi(b) = g \in B/H$. Thus $b \notin H$ but $\pi(pb) = pg = 0$, so $pb \in H$, so rpb = 0. Let a = rb, so pa = 0. We suppose a = 0 and derive a contradiction. Use Bezout's relation yet again. Since (p, r) = 1 there are integers γ, δ such that

$$b = (\gamma p + \delta r)b = \gamma pb + \delta a = \gamma pb + 0 \in H,$$

contradiction.